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Abstract. We apply the RMT-PCA, recently developed PCA in order to grasp 
temporal trends in a stock market, on daily-close stock prices of American 

Stocks in NYSE for 16 years from 1994 to 2009 and show the effectiveness and 
consistency of this method by analyzing the whole data at once, as well as 
analyzing the cut data in various partitions, such as two files of 8 year length, 
four files of 4 year length, and eight files of 2year length. The result shows a 
good agreement to the actual historical trends of the markets. We also discuss 
on the internal consistency among the results of different time intervals. 
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1   Introduction 

Recently, there have been wide interest on the use of random matrix theory (RMT) in 

many fields of sciences [1-10]. In particular, the use of asymptotic formula of the 

eigenvalue spectrum of cross correlation matrix between independent time series of 

random numbers [11,12], as a reference to the corresponding spectrum derived from a 

set of different stock price times series in order to extract principal components 

effectively in a simple way [13-16], has attracted much attention in the community of 

econophysics [17, 18]. The main advantage of this method as a principal component 

analysis is its simplicity. While the standard PCA tells us to find the largest PC and 
subtract this component from the entire data, and apply the same procedure 

recursively on the remaining data one by one, RMT-based PCA can present all the 

"non-random" components at once by subtracting the RMT formula from the 

eigenvalue spectrum of cross correlation matrix. Plerau, et. al. [14] was one of the 

first attempts to apply this technique on stock price time series. By using the daily 

close stock prices of NYSE/S&P500, they successfully extracted eminent stocks out 

of massive data of price time series. 

However, this method suffers from two difficulties. One is the restriction on the 
dimensionality, N, and the length of the data, T, such that N < T. Moreover, the entire 

set of N times T data are needed for analysis, since the basic quantity of analysis is 



the cross correlation matrix whose elements are the equal-time inner-products 

between a pair of stocks. Another difficulty is the restriction of the parameter size. 

Since the RMT formula is derived in the limit of N and T being infinity, we need a 

special care to keep the range of the parameters in which the RMT formula is valid. 

By using machine-generated random numbers, such as rand(), etc., we have tested 

the validity of the RMT formula in various range of N and T, and have clarified that 
N=300, or larger, is the safe range unless T is not too close to N, and the validity 

decreases for smaller N, and the borderline is around 50<N<100. Since the size of 

stocks dealt in the major markets exceeds 400, the applicability of RMT formula is 

justified. 

Due to the restriction of the methodology to prepare the length of the time series, T, 

larger than the dimension of the correlation matrix, N, all the data extending to 

several years had to be combined into a single correlation matrix in Ref. [3-6], in 

which daily-close prices were used. Thus it was difficult to pin-point a short term 
trend or to compare trends of different time periods. 

  By employing intra-day (tick-wise) data containing all the transactions made every 

day, we can apply the methodology to the data of every year and compare the results 

of different years. We carried out the same line of study used in Ref. [13,14] by 

setting up the algorithm of RMT-PCA to be applied on intra-day equal-time price 

correlations. Based on this approach, we have shown that this handy methodology 

works well to extract the trend change of 4 year interval, from 1994 to 2002 [19,9]. 

  In this paper, we apply the same algorithm to a wider set of stock price data 
including daily-close prices of American stocks in the database of S&P500 for 16 

years from 1994 to 2009. We prepare the data of various lengths by cutting the 16 

years into 2, 4 , 8 pieces and check the consistency and effectiveness of the proposed 

methodology. 

2   Eigenvalue Problem of Correlation Matrix for Stock Prices 

We shall briefly review the outline of the methodology used in RMT-PCA. The first 

step is to prepare the price time series into an N×(T+1) matrix named S, whose i-th 

row contains the price time series of length T+1. This matrix S is converted into a 

matrix of log-return as follows. 
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We normalize each time series in order to have the zero average and the unit 

variances as follows.  
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Here the suffix i indicates the time series on the i-th member of the total N stocks. 



   The correlations defined in Eq. (3) makes a symmetric (Ci,j = Cj,i), square matrix 

whose diagonal elements are all equal to one (Ci,i 1= ) and off-diagonal
 
elements are 

in general smaller than one (|Ci,j| 1≤ ). 

As is well known, a real symmetric matrix C can be diagonalized by a similarity 

transformation V-1CV by an orthogonal matrix V satisfying Vt=V-1, each column of 

which consists of the eigenvectors of C．Such that  

kkk vvC    (k=1,…,N)                           (4) 

where the coefficient λk is the k-th eigenvalue and kv  is the k-th eigenvector.   

    A criterion proposed in Ref. [3-6] and examined recently in many real stock data 

is to compare the result to the formula derived in the random matrix theory [1]. 

According to the random matrix theory (RMT, hereafter), the eigenvalue 

distribution spectrum of C made of random time series is given by the following 

formula[2], illustrated in Fig.1 for the case of Q=3. 

                                                                 (5) 

  

 

in the limit of                             where T is the length of the time 

series and N is the total number of independent time series (i.e. the number of stocks 

considered). This means that the eigenvalues of correlation matrix C between N 

normalized time series of length T distribute in the following range. 
                                        (6) 

 

Following the formula Eq. (5), between the upper bound and the lower bound 

given by the following formula. 

                                       (7) 

 

The proposed criterion in our RMT_PCM is to use the components whose 

eigenvalues, or the variance, are larger than the upper bound     

given by RMT. 

                                        (8) 
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Fig. 1 The RMT formula of eigen-value distribution in Eq.(5) for Q=3. 



3.  Application of RMT-PCA on the Stock Prices 

We prepare N normalized stock returns of the same length T, which makes a 

rectangular matrix of Si,k where i=1,…,N represents the stock symbol and k=1,…,T 

represents the traded time of the stocks. The i-th row of this price matrix corresponds 

to the price time series of the i-th stock symbol, and the k-th column corresponds to 
the prices of N stocks at the time k. We summarize the algorithm that we used for 

extracting significant principal components in Fig. 2, and show an example of the 

result in Fig. 3.  

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 2  The algorithm to extract the significant principal components in RMT-PCA 

 

 
 

 

 

Algorithm of RMT_PCM: 

 

(1) Select N stock symbols for which the traded price exist for all t=1,…,T, 

corresponding to all the working days of that term. 

(2) Compute log-return r(t) for the selected N stocks. Normalize the time series to 
have mean=0, variance=0, for each stock symbol, i=1,…, N. 

(3) Compute the cross correlation matrix C and obtain eigenvalues and 

eigenvectors. 

(4) Select eigenvalues λ  satisfying λ > +λ , where 221
± Q±1=λ )-( / is the 

upper limit of RMT spectrum, )λ-λ)(λ-λ(
πλ2

Q
=)λ(P -+RMT , and identify 

those eigenstates as the principal components. 

(5) Sort the eigenvector components corresponding to the eigenvalues identified in 

the step (4) above, in the descending order and identify the business sectors of 

the largest 20 components. If those 20 components belong to any particular 

sector, that is the leading sector in that term. 

Fig. 3  A result of RMT-PCA applied on stock prices (solid line) is compared to 

the corresponding formula derives by RMT, in the case of Q=3.5 (dashed line). 

The first and the second eigenvalues are shown in the inner window. 



 However, a detailed analysis of the eigenvector components tells us that the 

random components do not necessarily reside below the upper limit of RMT, λ+, but 

percolate beyond the RMT due to extra randomness added in the process of 

computing the log-return in Eq. (1) [19, 21]. Based on extensive numerical analysis, 

this percolation always occurs and the maximum front of the continuum spectrum 

extends to about 20% larger than the upper limit λ+ of RMT. This fact suggests us that 
the upper limit λ+ is not appropriate to separate the signal from the noise due to the 

percolation of the random spectrum over λ+  but an effective upper bound λeff =1.2 λ+ 

about 20% larger than the upper limit λ+ of RMT. Then λ+ in the step (4) of the RMT-

PCA algorithm in Fig. 2 is to be replaced by λeff  [22]. However, the effect of log-

return is not the only reason to use the larger point than λ+ , but the effect from the 

randomness of eigenvectors further reduces the effective number of principal 

component. We shall discuss this point in more detail in our future work, and simply 

use λeff =2 λ+ as a practical borderline of randomness in this work. 

4   Trends Extracted as the Eminent Components of Eigenvectors  

We applied the algorithm stated in Chapter 3 on the daily-close prices of American 
stocks listed in S&P500, for 16 years from 1994 to 2009. 

   At first, the entire data of this period are used for analysis. Then the entire data is 

split to 2 parts, 1994-2001 and 2002-2009. Those are further split to 4 parts, 1994-

1997, 1998-2001, 2003-2005, 2006-2009. Finally, they are split to 8 parts of 2years 

data, 1994-1995, 1996-1997,..., 2008-2009. The results are listed in Table 1. 

 

Table 1  List of eigenvalues for various data (λ>2λ+ are highlighted in bold-Italic) 

 

 94-09 94-01 02-09 94-97 98-01 02-05 06-09 00-01 02-03 04-05 06-07 

N 373 373 464 373 419 464 468 447 464 472 486 

T 3961 2015 1946 1010 1002 1006 936 500 504 504 502 

Q 10.6 5.40 4.19 2.71 2.17 2.17 2 1.12 1.09 2.17 1.33 

λ+ 1.7 2.1 2.2 2.6 2.8 2.8 2.9 3.78 3.83 3.86 3.94 

λ1 74 41 150 37.2 53 116 200 64 140 96 126 

λ2 11 13 15 8.7 19 14 18 28 15 19 18 

λ3 8.8 8.8 12  5.8 13 13 14 17 14 13 12 

λ4 7.7 6.9 11 4.6 9.2 9.1 8.9 11 11 8.1 8.1 

λ5 5.1 4.8 6.5 3.3 6.6 6.3 5.3 8.5 7.7 5.8 6.8 

λ6 4.3 4.2  5.1 3.2 5.8 5.3 5.0 7.3 6.6 4.9 5.1 

λ7 3.3 3.5  3.8  2.8 4.7 4.8 4.4 6.7 5.3 4.7 4.8 

λ8 2.9 3.1 3.4  2.6 4.2 4.6 3.5 5.5 4.9 4.5 4.2 

λ9 2.5 2.7  3.3  2.4 3.8 4.0 3.2 4.7 4.7 4.0 4.0 

λ10 2.4 2.2 2.8  2.4 3 3.3 2.7 4.2 4.0 3.6 3.7 

 

We find the business sectors of the companies of 20 largest components in the 
corresponding eigenvectors. If those components are concentrated in any particular 



business sector, we identify that sector as the trend makers during that time period. 

Since the first principal components does not show a concentration to any particular 

sector but distributes over many sectors, it is regarded as the 'market mode' 

representing the global feature of the market. It has been argued [13] based on a 

quantitative analysis that the market mode indeed corresponds to the representative 

index, S&P500, for the American markets. The eigenvectors of the other eigenvalues 
have components of both signs. It has been known that the positive components and 

the negative components separately concentrated to particular business sectors. 

Summing up the knowledge we have accumulated so far, we conclude that the 2nd 

principal component is the first notable indicator that reflects the trend of the data, if 

any concentration of the business sectors is observed. 

   We classify the sectors according to GICS (Global Industry Classification 

Standard) coding system, in which the business sectors of stocks are classified into 10 

categories. We denote them by a single capital letter, A-J as follows.  
 

A(Energy), B(Materials), C(Industrials), D(Service), E(ConsumerProducts), 

F(HealthCare), G(Financials), H(InformationTechnology), I(Telecommunication), 

and J(Utility). 

 

   We show the results of 1994-2009 in Figs. 4, where the 8 bars in each figure 

correspond to v2(+),v2(-),v3(+),v3(-),v4(+),v4(-),v5(+),v5(-), where vk(+) / vk(-) 

indicates the positive-sign part / negative-sign part of the vector of k-th principal 
component. The business sectors are shown by horizontal partitions in each bar 

corresponding to 10 sectors of A-J, and the corresponding eigenvalue (sign) of the 

eigenstate is shown below the bar. 

   We observe from the graphs in Fig. 4 that the sector H(InfoTech) dominates the 

(+) components of 2v  and the sector J(Utility) dominates the (-) components of 2v . 

   The result of 8 years data, 1994-2001 and 2002-2009 are shown in Fig. 5, the left 

figure of which shows the dominance of J(Utility) and H(InfoTech) during the term 

1994-2001, and the right figure shows the dominance of A(Energy) and G(Financials) 

during the term 2002-2009. This means the active sector has changed from J(Utility) 

and H(InfoTech) to A(Energy) and G(Financials) at the turn of the century. Here we 

have shown the advantage of splitting the original data to 8 years length, which made 

us possible to compare two different trends observed in the period 1994-2001 where 

the utility and Information Technology, including semiconductor and VLSI 

manufacturers were two big issues for investors, and a new trend of Energy and 

Financial business became dominant in the period 2002-2009. 
   The results of 4 year data, 1994-1997, 1998-2001, 2002-2005, and 2006-2009 are 

in Fig.6, showing the dominance of J(Utility) and H(InfoTech) both in 1994-1997 and 

1998-2001, the dominance of A(Energy) and H(InfoTech) in 2002-2005, and 
A(Energy) and G(Financials) dominance in 2006-2009. This fact shows that the 

former 8 years, 1994-2001 was relatively stable period, but the latter 8 years, 2002-

2009 experienced a drastic change from the former half (2002-2005) to the latter half 

(2006-2009) from H(Info Tech) to G(Financials), the same change as we observed in 

Fig. 5. It tells us that the effect of the IT-recession and in the period of 2002-2005 

influenced considerably. The corresponding result of 2 year data is shown in Fig. 7. 



No clear structure is seen after 2002, except weak dominance of G(Financials) and 

A(Energy). 

 
Fig. 4  Trends of 16 years from 1994 to 2009 are shown. The sector H (Information 

Technology) and J(Utility) are the most eminent sectors in this period. 

 

    
 

Fig. 5 Trends of 8 years, 1994-2001(left) and 2002-2009(right). In 1994-2001, the 

sector J (Utility) and H (Information Technology) dominate, but in 2002-2009, 

A(Energy) and G(Financial) dominate the market. 
 

    

    



Fig.6  Trends of 4 years each are shown. Both in 1994-1997 and 1998-2001, 

J(Utility) and H(IT) dominate, while A(Energy) and H(IT) dominate in 2002-2005 

and A (Energy) and G(Financial) dominate in 2006-2009. 

   

     

     

    
 

Fig. 7 Trends of 4 years each are shown. Both in 1994-1997 and 1998-2001, J(Utility) 

and H(IT) dominate, while A(Energy) and H(IT) dominate in 2002-2005 and A 

(Energy) and G(Financial) dominate in 2006-2009. 

5  Conclusion and Discussion 

Our results have shown that the trend of each time period can be successfully depicted 

by the concentrated business sectors in the positive components and the negative 



components of the eigenvector corresponding to the 2nd principal components. 

Although the condition +λ>λ , or effλ>λ  dramatically reduces the number of 

principal components compared to the conventional method of PCA. Moreover, our 
method is considerably simple with much shorter in process to extract principal 

components, which is a great advantage in the case of analyzing the stock market. 

   The conventional PCA tells us to extract the largest principal component and 

subtract this element from the entire data, and apply the same procedure recursively 

on the remaining data one by one. This kind of method requires a lot of computational 

time and is not suitable for analyzing a system of the large dimension, such as a set of 

stocks in the market. Another method of PCA uses the eigenvalues of the correlation 

matrix of times series, but tells us to pick up the components whose eigenvalues are 
larger than one, or the accumulated sum of eigenvalues exceeds 80 percent of the total 

sum, etc. Neither one is suitable for analyzing the stocks in the market, since the 

number of principal components thus obtained usually exceeds 100 for N=400-500, 

while the RMT- PCA has derived the number of principal components in the range of 

3-6 shown by the number of bold/italic content in Table 1. We illustrate the image of 

much smaller principal components in RMT-PCA in Fig. 8. 
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