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Abstract 

We study the statistical nature of stock price fluctuation in the ultrafast stock trading system called the “arrowhead 
market”. The first stage of this “arrowhead market” was started in the beginning of January 2010 at Tokyo Security 
Exchange market in order to reach the speed of transactions at the level of one millisecond. Then it was upgraded to 
the second stage to reach the speed of half a millisecond in September 2015, after the merge of Tokyo market and 
Osaka market to become Japan Exchange Group, Inc. Due to the immense size of the data, only one stock from 
October 2015 to December 2016 is treated in this article. The empirical distributions of stock prices converted to stock 
returns every 0.1 second follow the scaling law of the Lévy stable distribution of index α = 1.7 ± 0.3, as a result of 
scaling study of the coarse graining in the range of 0.8 seconds to 13 minutes. This result clarified that the distribution 
is consistent to the Lévy stable distribution, the same as our past study on the first stage of the arrowhead market, as 
a result of coarse graining in the range of 5 seconds to 2 minutes. Although preliminary, this result may imply that the 
efficient market is realized in the “arrowhead market”. 
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1. Introduction 

It is known that the essential nature of price fluctuation is the random walk (Brownian motion)	[1]. However, the 
details of the price motion tell us a lot about the state of the market. In particular, a notable analysis on short-time 
price change showed a possibility of deviation from the pure random walk [2]. We have been studying the various 
properties of price increments in recent years. In particular, the predictability by using the evolutional computation 
[3-4], trend extraction based on the RMT-oriented principal component analysis [5], possible applications of the 
randomness level of the price time series [6], and so on. 

Meanwhile, the stock exchange system met huge reformation, and it changed from buying and selling by a person 
into the mechanical dealings using internet. As a result, the trading speed as well as traded amount increased incredibly. 
In Japan, Tokyo Security Exchange Market (TSE) and Osaka Security Exchange Market (OSE) merged to establish 
Japan Exchange Group, Inc. in 2013. A few years before the merge, TSE started a new trading system called 
“Arrowhead system” that makes the trading speed as short as a millisecond from January, 2010. This system was 
further renovated in the middle of September, 2015 to the 2nd stage arrowhead system that makes the trading speed to 
half a millisecond [7]. This renovation attracted a lot of attention among the financial technology. In particular, the 
discussion on the possibility of checking the efficient market hypothesis in this ultrafast trading system [8]. 

We also became interested in the nature of this ultrafast price motions in this new trading system. As a first step, 
we collected 5 second sample price time series of the arrowhead market from April to December in 2013, by 
downloading the price time series every day throughout the period, from the homepage of the TMIV (Tokyo Security 
Exchange Market Impact View) [9]. This internet site was prepared for traders to view the real-time motion of the 
market. For this reason, 100 stocks are selected to include various sizes and business types.  

Our result using this TMIV data was reported in KES2017. Based on extensive numerical analysis, we concluded 
that the statistical distribution of the average of 5 second returns obeys a scale-invariant distribution called Lévy stable 
distribution of index α=1.4. This result was supported by another analysis using 1-minute price time series downloaded 
from the google site [10]. We have reported those result in KES2017 [11]. 

In this paper, we report the statistical distributions of price fluctuation obtained from the sub-second range to a 
few minutes, in order to show their scale invariant property. The rest of the paper is structured as follows. In Section 
2, we review the reason of stable distribution in the price dynamics. In Section 3, we summarize the result of our 
former analysis on the TMIV data [9] using five-second sampled prices of 100 companies of Tokyo market in 2013, 
in which the average stock prices per 5 second are well described by Lévy stable distribution of index α=1.4, based 
on the fact that the distribution follows the scale invariance for a wide range of time scale ∆𝑡𝑡=1 to 12. In Section 4, 
we analyze newly obtained full arrowhead stock price data of the years 2015-2016 [8] to show that the scale invariance 
seems to hold in the range of 0.8 second to one hour, although the estimated range of index α is rather broad (α = 1.7 
± 0.3). Finally, Section 5 is devoted for the conclusion. 

2. Reasons of Stable Distribution 

We are interested in the statistical distribution of the price increment, which is often called as log-return 

𝒁𝒁(𝒕𝒕) = 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒕𝒕 + ∆𝒕𝒕)− 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒕𝒕)	                                                                                                                               
(1) 

of the asset price X(t) at time t and the same price X(t+∆t) at t+∆t, to clarify whether the statistical distribution of the 
price returns is not purely Gaussian but has fat-tails and narrow necks. Several decades ago, it was pointed out by 
Mandelbrot then followed by Mantegna and Stanley [2] that the probability distribution of asset returns follow Lévy 
stable distribution, defined as  

𝑓𝑓	1,3(𝑍𝑍) =
5
67 ∫ 𝑒𝑒:;<=3|;|?@

=@ 𝑑𝑑𝑑𝑑                                                                                                                                   (2) 

which is the Fourier transform of the kernel F(k) given by 

𝐹𝐹	1,3(𝑑𝑑) = 𝑒𝑒=3|;|
?                                                                                                                                                         (3) 
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The first parameter	𝜶𝜶 characterizes the distribution and is called Lévy index, taking the range of 𝟏𝟏 ≤ 𝛂𝛂 ≤ 𝟐𝟐, and 
the second parameter 𝛃𝛃 is proportional to the time interval Δt, as follows. 

𝜷𝜷 = 𝜸𝜸𝜟𝜟𝒕𝒕                                                                                                                                                                      
(4) 

Equation (4) can be understood as follows. The stable distribution holds the same index α under convolution of 
two stochastic variables following the same stable distributions: i.e., z=x+y follows Lévy stable distribution of index 
α if both x and y follow Lévy stable distribution of the same index α. This means that the distribution of asset returns 
at 5 seconds (Δt=1) follows the same distribution as the same asset returns at 10 seconds (Δt=2). 

𝑓𝑓MNO6(𝑧𝑧) = ∫ 𝑓𝑓MNO5(𝑥𝑥)𝑓𝑓MNO5(𝑧𝑧 − 𝑥𝑥)𝑑𝑑𝑥𝑥
R
S                                                                                                                   (5) 

In the Fourier space, a convolution is reduced to a product of the Fourier kernels. 

𝐹𝐹MNO6(𝑘𝑘) = (𝐹𝐹MNO5(𝑘𝑘))6                                                                                                                                         (6) 

which can be generated to the case of n steps to have 

𝐹𝐹MNOT(𝑘𝑘) = (𝐹𝐹MNO5(𝑘𝑘))T                                                                                                                                              (7) 

A series of n steps yields 𝛽𝛽 to be multiplied by n, without changing the Lévy index α. As long as the statistical 
distribution of the stochastic variable z(t) in Eq. (1) has the form of stable distribution in Eq.(3), the distribution of 
one step of price change follows the same distribution of n-steps with the same index α but 𝛽𝛽 multiplied by n. 

Note that (2) can be integrated for two special cases, α=1 and α=2, first of which is the Lorentz distribution, 

𝑃𝑃	1O5,3(𝑍𝑍) =
3
7

5
3WX<W

                                                                                                                                                        (8) 

and the second is the normal (Gaussian) distribution. 

𝑃𝑃	1O6,3(𝑍𝑍) =
5

6Y73
𝑒𝑒𝑥𝑥𝑒𝑒 [−<W

\3
]                                                                                                                                                    (9) 

For general values of α, the distribution is computed by numerically integrating Eq. (2). 
   The scale invariant property of Lévy stable distribution is derived from Eq. (2),  

	𝑃𝑃	1,3^𝑍𝑍/(𝛥𝛥𝑡𝑡)5/1a = (𝛥𝛥𝑡𝑡)5/1		𝑃𝑃	1,3∆N(𝑍𝑍)                                                                                                                                                                         (10)	

Setting Z=0 in Eq. (10), Lévy index α is estimated by comparing the height of the distribution 𝑃𝑃∆N(0) for various values 
of 𝛥𝛥𝑡𝑡.  

𝑙𝑙𝑙𝑙𝑙𝑙	(	𝑃𝑃	1,3∆N(0)) = −
5
1
𝑙𝑙𝑙𝑙𝑙𝑙	(𝛥𝛥𝑡𝑡) + 𝑙𝑙𝑙𝑙𝑙𝑙(	𝑃𝑃	1,3(0))			                                                                                                            (11) 

The above scenario was applied on American stock index S&P500, per 1 minute for 1984-1985, and per 15 seconds 
for 1986-1989, which was well-fitted to Lévy stable distribution around the center of the distribution, and the scale 
invariant property was proved in the range of ∆𝑡𝑡 =1-100 min [2]. 

The scale invariant property of Lévy stable distribution is derived from Eq. (2),  
 

	𝑃𝑃	1,			3(	𝑍𝑍	f) = (𝛥𝛥𝑡𝑡)5/1		𝑃𝑃	1,			3MN                                                                                                                                                                                           (12) 

 

	𝑍𝑍	f = 𝑍𝑍/(𝛥𝛥𝑡𝑡)5/1                                                                                                                                                                     (13) 

3. Preliminary result by 5 second sampled data 

Although the arrowhead trading system was introduced in Tokyo Security Exchange (TSE) on January 4, 2010, it 
was hard for us to access to the full numerical data due to its huge size. Tokyo Market Impact View (TMIV) [9] 
offered us an opportunity to download sampled prices of 100 selected stocks per 5 seconds for a limited time from 
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April to December, 2013 (Data-A).  
 

Table 1. The data sizes of active stocks are compared to Data-A. 

Stock code Data-A(2013 100 stocks) 2016 Feb.            2016 Nov.            2016 Dec. 

7203 640,800 20,259,440     13,430,448         10,297,008 

8306 0 41,367,900     36,330,455         31,418,450 

9984 0 25,953,408       9,984,780         14,009,724 

 
We investigated the statistical property of the price increment of TMIV, and obtained the empirical probability 

distribution of the average of the 100 stock prices for various time intervals Δt=1, corresponding to the interval of 5 
seconds, 3, 6, 12, 24, corresponding to the interval of 2 minutes. If the statistical distribution if the price increments 
Z(t) is indeed the scale-invariant distribution, those histograms of five different values of Δt should overlap each other 
after the scaling transformations of Eq. (12) and Eq. (13). We have found that the histograms of various values of the 
scale parameter Δt overlap on a single distribution by rescaling acording to Eq.(12) if the paraneter α is chosen to the 
value α=1.4.  

This result was cross checked by using Eq.(11) by fitting the slope of log P (0) vs. 𝑙𝑙𝑙𝑙𝑙𝑙	(𝛥𝛥𝑡𝑡) as the inverse of Lévy 
index α. 

𝑙𝑙𝑙𝑙𝑙𝑙 P(0) = - 0.709 𝑙𝑙𝑙𝑙𝑙𝑙(𝛥𝛥𝑡𝑡)+2.56                                                                                                                                        (14) 

The result α=1/0.709=1.41 is consistent to the result obtained above. 
    So far, we have seen that our analyses on Data-A (5 seconds resolution of TSE arrowhead market) gave us a 
consistent result. However, a question remains. The price increments looked like purely random in early 20th century. 
However, it was shown that the price changes are governed by the scale invariance under high resolution analyses. 
Also, it became clear that the probability distribution of the price changes is featured by the fat-tails and a narrow 
neck. We have to clarify to what level of resolution this phenomenon goes on. We need to determine whether or not 
the scale invariant property is valid under the arrowhead market in which the assets are traded under ultra-high 
resolution shorter than a millisecond. 
    Before getting into the arrowhead market, we attempted to check our results to another independent data of 1 minute 
resolution, downloaded from Google Finance site [10] for the duration of June 16, 2015 to November 4, 2015. We 
call this data Data-B. However, the time resolution (frequency) of this Data set is not as small as the previous Data-A 
and the scaling method is not suitable to analyze this data. We need a different method for Data-B. Since we cannot 
compare the distributions of different time resolutions, we adopt another method to search for the best value of 𝛼𝛼 to 
minimize Kulbuck-Leibler divergence (K-L divergence)  between two probability distributions p(x) and q(x) defined 
by 

𝐷𝐷(𝑝𝑝||𝑞𝑞) = ∑ 𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙	 k(l)
m(l)l∈o 			                                                                                                                                        (15)	

 We compute D(p||q) in Eq. (15) by setting p(x) and q(x), as the probability distribution of the 1- minute price 
increments (return)  and the corresponding Lévy stable distribution for various values of 𝛼𝛼 and β. The best fitted result 
for those parameters is consistent with the case of Data-A [9]. 

 

4. Full arrowhead price data  

Recently, full arrowhead price data became available via the web page of JPX [7]. Compared to the Data-A, the 
data sizes are incredibly large. They are compared in Table I. The most active stock in Nov. 2016 has over 36 
million data points in one month, and the sum of Nov. and Dec. 2016 has comparable size to that of total 100 
companies in Data-A.  

Moreover, the times of trades are utterly irregular in the case of arrowhead data, while Data-A has exactly 3600 
points each day. Typical directory sizes for January-December 2012 are illustrated in Fig.1, and the typical sizes of 
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top-ranked active stocks are shown in Table II, taking as example from 
February 2016.  
 

 
 
 
 
 
 

 
Fig. 1. Typical directory size of arrowhead data. 

 
We began our analysis from the most active stock, code number 8306, and obtained empirical probability 

distribution by using two different ways of data processing. 
 
(1) The data sampled into 100 millisecond intervals 
 

We first pick up the stock prices every 100 millisecond interval to make a time series of the stock prices of fixed time 
interval from October, 2015 to December 2016. Since the original data do not necessarily have a price at every 100 
milliseconds, the nearest price before that point is filled for that position. Thus a long queue of the same price is 
created if no trade occurs for a long time. 
An example of the created fixed-time interval data is illustrated in Fig.2. This example shows a case where the price 
was 572.9 at the 13-hour-42-minute-54-second, and so on. 
 
 
 
 
 
 
 
 

Fig.2 The original arrowhead data is formed into time series of a fixed time interval of 100 milliseconds. 
 

Based on this data file, we draw the empirical probability distributions for various values of Δt. We focus on the graphs 
for Δt= 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192 (×100ms). Those eleven graphs are simultaneously 
shown in Fig.3.  
 

 

Fixed time interval of 0.1 second  
13 42 54. 0        572.9 
13 42 54.1        572.9 
13 42 54.2        573.0 
13 42 54.3        573.0 
13 42 54.4        573.0 
13 42 54.5        573.0  

201201 contains 2439 files 
   1301 
   1305 
   .. 
   9997 
201202 contains 2442 files 
   1301 
   1305 
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Fig.3 The histograms of 100ms returns of stock code 8306 are compared for various levels of coarse graining, 8.txt, 32.txt,.., 8192.txt, 
corresponding to the time scales, Δt =8-8192 (unit 100ms). 

 
The graph for Δt= 8 has the smallest width on the horizontal axis Z and the tallest height on the vertical axis log2P(Z), 
and the graph for Δt= 16 is slightly smaller width in Z and shorter height in the vertical axis. Those histograms of 
regularly increasing time scales seem to obey some regularity. If	they	obey	a	scale-invariant	distribution	such	as	
Lévy stable distribution, we should be able to identify the scaling factor c = (𝛥𝛥𝑡𝑡)5/1. For example, the graphs for Δt= 
8 should overlap the graph for Δt= 16 by multiply Z by the factor c=25/1 and divide the vertical axis by the same 
factor c. Applying the same rule on all the eleven histograms, they should be able to overlap on a single distribution 
if the factor c is properly chosen. This is done by choosing c=1.5 as shown in Fig.4. All the eleven histograms 
corresponding to Δt= 8-8192 (×100ms) can be scaled to a single curve by choosing c=1.5 and the corresponding index 
is around α=1.7.  

 

 
Fig.4 The histograms in Fig.3 of different time resolutions, Δt =8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 (unit 100ms) can be rescaled 

to overlap on a single curve by properly choosing the scaling factor c =(𝛥𝛥𝑡𝑡)5/1 =1.5 which derives the index 𝛼𝛼 =1.7. 
 
Unfortunately, the resolution of this estimate is not high and the accuracy of the factor c varies in the range of 1.4 < c 
< 1.6 according to the estimation of P(0). This uncertainty of c implies the uncertainty of the index α, in the range of 
1.4 < α< 2, or α = 1.7 ± 0.3 as shown in Table 2. The uncertainty of P(0) comes from the excess zeros created in the 
process of making the price data per 100 milliseconds.  
 

Table 2. The scale factor and the values of Levy index. 
c = (2)–5/1 1.4 1.6 

𝛼𝛼 2.06 1/47 

 
(2) All the prices are used disregarding time stamps 

 
In order to remove excess zeros, we adopted another way of setting the arrowhead data. Instead of forming the price 
data by a fixed time interval, all the price data by disregarding the time stamps are used, as illustrated in Fig. 5. In 
doing so, we can use the entire set of arrowhead price data, in exchange of sacrificing the information of actual time 
stamps. Although the correspondence to the actual time interval is lost, a big advantage in the second way of data 
processing is the lack of excess zero problem. Moreover, processing time is shorter due to the simplicity of the process. 
By drawing histograms for various levels of coarse graining parameter dt=8,…,2048, we recognize a similar scaling 
property observed in the first method of analysis shown in Fig.3, as shown in Fig.6. The histograms in Fig.6 are tested 
for the possibility of scaling. It turns out that the scaling is achieved at the value of the parameter 𝛼𝛼 =2. Although this 
value stays within the range of error bar of the result in the first way of data processing, 𝛼𝛼 =2 implies Gaussian 
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distribution, which conflicts the fat- tail distribution widely 
accepted nowadays.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 The second method of arrowhead data processing of taking all the prices without time stamps illustrated. 
 
 

 
 

Fig.6 The histograms of 100ms returns of stock code 8306 are compared for various levels of coarse graining, dt=8, dt=16,.., dt=2048, for the 
arrowhead price data processed in the second way(no time information). 

 

 
 

yr. mo. day          hour. min. sec.       price 
 

20160229  145950355000 487.700000 
20160229  145950422000 487.600000 
20160229  145950516400 487.600000 
20160229  145950517500 487.600000 
20160229  145950685100 487.700000 

 
For Δt=4, log-returns are computed as follows. 

 
Z(1)=log(487.6)-log(487.7) 
Z(2)=log(487.6)-log(487.6) 
Z(3)=log(487.6)-log(487.6) 
Z(4)=log(487.7)-log(487.6) 
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Fig.7 The 9 curves in Fig.6 of different levels of coarse graining, dt=8, 16, 32, 64, 128, 256, 512, 1024, 2048 can be rescaled to overlap on a 
single curve by properly choosing the scaling factor c =(𝛥𝛥𝑡𝑡)5/1. This figure shows the case of index 𝛼𝛼 =2. 

5. Conclusion 

We focused in this work to discover possible new elements to characterize the price changes under ultrafast market 
transactions of sub-millisecond intervals in the arrowhead market, operated in Tokyo market from 2010. In particular, 
we investigated the shape of the statistical distribution of the price increments. Especially, we obtained the probability 
distribution of the asset returns and examined the central part of the distribution utilizing its scale-invariant property.  
In our previous work using 5 second resolution data [11], however, the distribution turned out to be the same as the 
result of one-minute resolution data in [2]. In this paper we show, using the new data of 100ms resolution, that the 
same kind of scale-invariant statistical distribution holds for the sub-second motion of price changes, although the 
index to characterize the scale invariance comes out to be α=1.7. Considering various uncertainties, this value is 
roughly consistent to our previous result. 
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