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Abstract 

The arrowhead system is a new trading system that allows transactions in a millisecond, launched in January 2010 at Tokyo Stock 
Exchange, Inc. (TSE) and was upgraded in September, 2015 to half a millisecond. In order to investigate the nature of the price 
fluctuation in the arrowhead market, we have analyzed price time series of 100 stocks sampled per 5 seconds for the duration of 9 
months in 2013 consists of 640,800 data points taken from TSE. The result shows the central part of the statistical distribution of 
the average returns of 100 selected stocks can be identified as the Levy’s stable distribution of index α=1.4, the same as the 
previous result reported in 1995 for the data of S&P500 index (1983-1989), and also for the Nikkei Index price in mid 1990's. 
However, due to the lack of data points, our result does not mean to constrain the shape of the tails of the distribution thus there is 
no difficulty concerning to the divergent variances of Levy’s stable distribution. 
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1. Introduction 

How the price moves is one of the most fascinating questions to everyone. Although the price changes are 
intrinsically random [1], a great amount of effort is being devoted to predict the future performance of financial markets 
to avoid various kind of risks [2, 4-7]. Financial Technology (FT) has been developed as a fruit of such effort. The 
most remarkable outcomes of FT would be the derivation of the Black-Sholes formula (BSM formula) [3] for the 
European style option pricings in which the price (C) of the call option can be written as 
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and 

	
	

𝑑𝑑* = 𝑑𝑑< − σ 𝑇𝑇 − 𝑡𝑡 (5)	

respectively.  
In short, the option prices can be calculated with high accuracy under the assumption that the probability distribution 

of the asset (e.g., stock) returns is Gaussian, and the volatility of returns are known.  
However, it is well-known that the BSM formula fails to describe the real world. While the important parameter σ 

(volatility) is assumed to be a certain constant in the above formula, there is no reliable way to compute its value 
theoretically. Usually, two empirical ways are used to obtain the value of σ: One is the ‘historical volatility’, or the 
‘realized volatility’, to compute the average values of the standard deviation over the historical price data over a fixed 
length, such as 2 weeks. Another is the ‘implied volatility’ to obtain σ by inversely solving the above formula from 
Eqs.(1-4) for the actual price time series of the option prices. However, the obtained values σ are not a constant but 
varies as a function of K (the target price of each option) of the same option for different terms T of the time interval 
before the target date of the [8-10]. This is known as the ‘smile curve’ because the σ-K plot shapes concave and 
resembles the ‘smile’ mark.  

Another problem of the above formula is on the assumption of the Gaussian nature of price fluctuation. If the 
distribution is not Gaussian, the use of function N(x) in Eq.(3) for the option price determination in Eqs.(1)and (2) are 
no longer justified and the entire framework of option pricing theory might be altered. This fact prompts us examine 
the real-world data of price fluctuation. Plenty of works in the field of Econophysics have been devoted for this 
question. Based on the exhaustive data analysis of European and American stock prices, the distribution function is 
not Gaussian but has  

(1) Fat tail   
(2) Narrow neck 
More specifically, the distribution is identified as the Levy’s stable distribution of index α=1.4 for the American 

stock index S&P500 with the time resolution per one minute [11].  
However, this result has been heavily criticized due to the difficulty of infinitely large variance in the Levy stable 

distribution and the authors later denied their result.  
In this paper, we attempt to add some new knowledge toward this question by analyzing the stock price times series 

in 2013 with the time resolution of 5 seconds, much higher than the data used in Ref. [11]. 
 

Nomenclature 

tS  spot price of the underlying asset 
T-t time to maturity (time interval from the current time t to the target T) 
K target price at T 
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r interest rate 
𝜎𝜎 volatility of returns of the underlying asset 

2. Arrowhead Market 

Supported by the rapid progress in computer hardware and software, Tokyo Security Exchange (TSE) introduced 
a new system to process starting from January 4, 2010, which aims drastic improvement in the following three points 
[15]:   

(1) reliability 
(2) usability 
(3) transaction speed to make a millisecond security exchanges possible 

This new system was further improved five years later in September 2015 to make the transaction to half a millisecond 
resolution. Unfortunately, we are not able to access to the latest dataset. In this paper, we report our result of analyzing 
the arrowhead market data from April to December 2013, in order to help understanding the statistical nature of stock 
price fluctuation. 

3. Scale Invariance of the L𝐞𝐞vy Stable Distribution  

As is well known, the price increments, often represented by the log-returns [13],	

	 𝑍𝑍 𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 + ∆𝑡𝑡 − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑋𝑋 𝑡𝑡 	 (6) 

of the asset price X(t) at time t and a later time at t+∆t are not purely Gaussian but has fat-tails and narrow necks. 
Several decades ago, it was pointed out by Mandelbrot then followed by Mantegna and Stanley that the probability 
distribution of asset returns follow Levy stable distribution, defined as	

	 𝑓𝑓	R,T 𝑍𝑍 =
1
2𝜋𝜋

𝑒𝑒WXY'T X Z

,

',

𝑑𝑑𝑑𝑑 (7) 

by assuming that the return in Eq.(6) as the stochastic variable in Eq.(7). Which is the Fourier transform of the kernel 
F(k) given by 

𝐹𝐹	R,T 𝑘𝑘 = 𝑒𝑒'T X Z (8) 

The first parameter	𝛂𝛂  characterizes the distribution and called L𝐞𝐞 vy index, taking the range of 𝟏𝟏 ≤ 𝜶𝜶 ≤ 𝟐𝟐	, and the second 
parameter 𝜷𝜷 is proportional to the time interval ∆t, as follows. 
 

	 𝛽𝛽 = 𝛾𝛾∆𝑡𝑡 (9) 

 Eq. (9) can be understood as follows. The stable distribution holds the same index α under convolution of two 
stochastic variables following the same stable distributions: i.e., z=x+y follows Levy stable distribution of index α if 
both x and y follow Levy stable distribution of the same index α. This means that the distribution of asset returns at 5 
seconds (∆t=1) follows the same distribution as the same asset returns at 10 seconds (∆t=2). 

	 𝑓𝑓eAf*(𝑧𝑧) = 𝑓𝑓eAf<(𝑥𝑥)𝑓𝑓eAf<(𝑧𝑧 − 𝑥𝑥)𝑑𝑑𝑑𝑑
(

g
 (10)	
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In the Fourier space, a convolution is reduced to a product of the Fourier kernels.	

	 	 	 	 	 	 	
 

𝐹𝐹eAf*(𝑘𝑘) = (𝐹𝐹eAf<(𝑘𝑘))* (11) 

which can be generated to the case of n steps to have 

	 	 	 	 	 	 	
 

𝐹𝐹eAfh(𝑘𝑘) = (𝐹𝐹eAf<(𝑘𝑘))h (12) 

A series of n steps yields 𝛽𝛽 to be multiplied by n, without changing the Levy index α. However, this model of price 
movements naturally assumes a limitation on the maximum number of steps, n.  

Note that E.q (7) can be integrated for two special cases, α=1 and α=2, first of which is the Lorentz distribution, 

	 𝑃𝑃Rf<,T 𝑍𝑍 =
𝛽𝛽
𝜋𝜋

1
𝛽𝛽* + 𝑍𝑍*

 (13) 

and the second is the normal (Gauss) distribution. 

	

 
𝑃𝑃Rf*,T 𝑍𝑍 = <

* jT
𝑒𝑒𝑒𝑒𝑒𝑒(− Y)

lT
)	 (14) 

For general values of α, the distribution is computed by numerically integrating Eq. (7). 
   The scale invariant property of Levy stable distribution is derived from Eq. (7),  

	 	 	 	 	 	  	𝑃𝑃R,T 𝑍𝑍/(∆𝑡𝑡)</R = (∆𝑡𝑡)</R𝑃𝑃	R,T∆A(𝑍𝑍)	 (15) 

 
Setting Z=0 in Eq. (15), Levy index α is estimated by comparing the height of the distribution 𝑃𝑃∆A(0) for various values 
of ∆t.  

	 	 	 	 	 	  𝑙𝑙𝑙𝑙𝑙𝑙	(𝑃𝑃R,T∆A(0)) = −
1
𝛼𝛼
𝑙𝑙𝑙𝑙𝑙𝑙	(∆𝑡𝑡) + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃R,T 0 )	 (16) 

The above scenario was applied on American stock index S&P500, per 1 minute for 1984-1985, and per 15 seconds 
for 1986-1989, which was well-fitted to Levy stable distribution around the center of the distribution, and the scale 
invariant property was proved in the range of ∆𝑡𝑡 =1 min to 100min.[11]  

4. Non Gaussian Nature of Price Return Fluctuation 

The science of price fluctuation was started by Luis Bachelier[1], who described the price change as a process of 
random walk, in 1900 as a doctoral thesis submitted to Ecole Normale Superiore. This work set the direction of 
financial technology toward the stochastic treatment of price fluctuation. 

The first evidence against Gaussian distribution was pointed out by Mandelbrot [2] who examined the price changes 
of cotton prices in 1950’s. Later, Mantegna and Stanley [11], Bouchaud and Potters [12] pointed out that the price 
returns of S&P500, the stock index of 500 common stocks in American market can well be fitted by Levy stable 
distribution of index 𝛼𝛼 = 1.4.,	followed	by	many	related	works.	 

5. Scaling Analysis of the Arrowhead Transaction Prices Per Five Second: Case of Data-A  

The aim of this work is to investigate whether or not the above scenario still fits the recent Japanese market, the 
ultra-fast trading system called “the arrowhead market”. This system was introduced in Jan. 2010 to make the trading 
interval as short as 1 millisecond, then upgraded to 0.5 millisecond after September 2015. The best available data that 
we have obtained are the prices of 100 selected stocks per 5 second intervals offered by TMIV (TOSHO Market 
Impact View), from April 1, 2013 to December 25, 2013. We have collected by downloading the daily collection of 
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such prices per 5 seconds on the web page of the Tokyo Market Impact View open for a limited term from April 1, 
2013 to December 25, 2013. The size of the data is 640800 points for each stock price. We call this set as Data-A.  

The original price time series of stock returns averaged over 100 stocks are processed to draw a histogram of 
return Z defined in Eq. (6) for the horizontal axis and the relative frequency of appearance as the probability 
distribution in log scale for the vertical axis. The increment of Z is set by setting the width of each partition to be 
(max-min)/1200. The size of the partition is selected to be 1200 so that every partition has at least one data point. This 
histogram corresponds to 5 second sampled data is labelled by Δt=1. Next, a coarse graining by skipping two points 
out of three consecutive points is applied to have a histogram corresponds to 15 second sampled data labelled by Δt=3. 
Likewise, histograms corresponding to 30 second sampled data labelled as Δt=6, and 60 second sampled data labelled 
by Δt=12 are constructed. We plot all the histograms from Δt=1 to Δt=12 in Fig.1. 

 

	

Fig. 1. The histograms of frequency of appearance of various Z for Δt=1(5 seconds),3,12,60,120 (2 minutes) are plotted in half-logarithmic scale.  

Note that the number of data points becomes 53400 for Δt=12 and the accuracy of the histogram falls considerably. 
Table 1 summarizes the relation between the data sizes and the corresponding time intervals.  

 
Table 1. Numbers of data points for each time scale 

∆𝑡𝑡 Actual time interval[s] Number of data points 
1 5 640800 
3 15 213600 
6 30 106800 

12 60 53400 
 

 If the distribution of Z is indeed described by Levy’s stable distribution, all the histograms of different time 
resolutions Δt=1 to Δt=12 in Fig.1 should overlap exactly on the same curve of Eq. (7), by applying the scaling 
transformation of both axis as in Eq. (15) as long as both parameters α and 𝛽𝛽 are correctly chosen. 
  This is achieved by rescaling both the return Z by the scaled Zs [13] 

	 	 	 	 	 	  𝑍𝑍x = 𝑍𝑍/(∆𝑡𝑡)</R 	 (17) 

in the horizontal axis, and the probability P(Z) by the scaled P(Zs) as follows. 
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	 	 	 	 	 	  𝑃𝑃R,T 𝑍𝑍x = (∆𝑡𝑡)</R𝑃𝑃R,T∆A(𝑍𝑍)	
 

(18) 

  We search for the best-fit value of α in the range of 1 ≤ 𝛼𝛼 ≤ 2 and found the best value to be α=1.4. In Fig. 2, the 
result for α=1.8 in the upper figure and for α=1.4 in the lower figure are shown.  
 

	

Fig. 2. Scaled histograms for Zs vs. log P(Zs) for Δt=1,3,12,60,120.for the case of 𝛼𝛼 = 1.4. 

   An alternative, independent way of quantification of parameter α is achieved by means of least square fittings of 
Eq. (16), from which the inverse of the parameter α is obtained as the slope of a linear equation between P(0) and ∆𝑡𝑡 
in logarithmic scale. The result by fitting the 10 points from ∆t=1 to ∆𝑡𝑡 = 24 derives α=1.38. However, α=1.41 is 
derived if the point of ∆𝑡𝑡 = 24 is excluded for the reason of low statistics. This result is shown in Fig.2. [14] 
 



	 Mieko Tanaka-Yamawaki / Procedia Computer Science 112 (2017) 1439–1447� 1445 Author name / Procedia Computer Science 00 (2017) 000–000 

	 	 	 	 	 	  𝑃𝑃R,T 𝑍𝑍x = (∆𝑡𝑡)</R𝑃𝑃R,T∆A(𝑍𝑍)	
 

(18) 

  We search for the best-fit value of α in the range of 1 ≤ 𝛼𝛼 ≤ 2 and found the best value to be α=1.4. In Fig. 2, the 
result for α=1.8 in the upper figure and for α=1.4 in the lower figure are shown.  
 

	

Fig. 2. Scaled histograms for Zs vs. log P(Zs) for Δt=1,3,12,60,120.for the case of 𝛼𝛼 = 1.4. 

   An alternative, independent way of quantification of parameter α is achieved by means of least square fittings of 
Eq. (16), from which the inverse of the parameter α is obtained as the slope of a linear equation between P(0) and ∆𝑡𝑡 
in logarithmic scale. The result by fitting the 10 points from ∆t=1 to ∆𝑡𝑡 = 24 derives α=1.38. However, α=1.41 is 
derived if the point of ∆𝑡𝑡 = 24 is excluded for the reason of low statistics. This result is shown in Fig.2. [14] 
 

 Author name / Procedia Computer Science 00 (2017) 000–000  

	 	

Fig.3 The least square fit of Eq. (16) derives 𝛼𝛼 =1.41. 

6. Statistical Distribution of the Recent Arrowhead Prices per 1 minutes to minimize the K-L Divergence 

In spite of the fundamental change in the transaction system of TSE, the arrowhead data sampled by 5 seconds in 9 
months of 2013 exhibited similar behaviour for at least in the central part of the distribution, being consistent to the 
former result Levy’s stable distribution on the American data in 1984-1989. While Arrowhead Data-A that we used 
in this analysis offered us to analyse the range of ∆𝑡𝑡 from 5 seconds to 2 minutes, the result is not essentially different 
from the result of Ref.[3] that used the range of ∆𝑡𝑡 = 1 min. to 1000 min.  
   For the sake of comparison, another set of price change per 1 min. are downloaded containing 29,386 data points 
per stock for 440 stocks of TSE from Google Finance site from June 16, 2015 to November 4, 2015. We call this data 
as Data-B. However, the time resolution (frequency) of this Data set is not as small as the previous Data A and the 
scaling method is not suitable to analyse this data. We need a different method for Data-B. Since we cannot compare 
the distributions of different time resolutions, we adopt another method to search for the best value of 𝛼𝛼 to minimize 
Kulbuck-Leibler divergence (K-L divergence)  between two probability distributions p(x) and q(x) defined by 

 We compute D(p||q) in Eq. (19) by setting p(x) and q(x), as the probability distribution of the 1- minute price 
increments (return)  and the corresponding Levy’s stable distribution for various values of 𝛼𝛼 and β. The best fitted 
result for those parameters is consistent to the case of Data-A, as shown in Table 2. 
 
Table 2 The K-L divergence between Levy’s stable distribution and the distribution of 1-minute returns in Data-B 
(average returns 440 stocks in TSE 2015). 
 
 

 𝐷𝐷(𝑝𝑝||𝑞𝑞) = 𝑝𝑝 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙	
𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)

+∈~

 (19) 
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Stock return data (1 minute interval) 𝛼𝛼 𝛽𝛽 K-L divergence 
Average returns of 440 stocks 1.40 5.4×10-6 0.039 
Kansai Electric 1.55 10.0×10-6 0.286 
Nissan Motors 1.65 3.9×10-6 0.423 
Toshiba 1.55 8.8×10-6 0.156 

 

7. Discussion and Future Perspectives 

In this work, we aimed to examine the nature of the arrowhead financial market in Tokyo Security Exchange Market, where, a new 
ultrafast trading system of sub-millisecond transaction time has been operated from 2010. Especially, we focused on the probability 
distribution of the asset returns and examined the central part of the distribution utilizing its scale-invariant property. The result 
turned out to be the same as in Ref.[11]. Based on this, we have to conclude that, even at the 5 second resolution level, average 
asset returns of small sizes corresponding to the central part of the probability distribution behaves in the same way as the 1 minute 
resolution level. Two questions remain. The first question is the reason why this occurs for the average returns and not for individual 
asset returns. There is an evidence in the computer simulation to show that the combinations of different indices of Levy’s stable 
distribution in the range of  1<𝛼𝛼 <2 indeed derive α=1.4 similar to ours [16]. The second is on the fat-tail behavior of the returns. 
Intuitively, convolutions of too many steps will eventually cause a breaking down of the Levy’s random walk model. Future works 
using a wide range of price data should be able to answer those questions.  
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