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Extracting Market Trends from the Cross
Correlation between Stock Time Series

M. Tanaka-Yamawaki, X. Yang, T. Kido, and A. Yamamoto

Abstract In this chapter, the Random Matrix Theory-Principal Component Analy-
sis (RMT-PCA) is applied on daily-close stock prices of American Stocks in NYSE
for 16 years from 1994 to 2009 to show the effectiveness and consistency of this
method by analyzing the whole data of 16 years at once, as well as analyzing the cut
data in various lengths between 2-8 years. The extracted trends are consistent to the
actual history of the markets. The authors further analyze the intra-day stock prices
of Tokyo Stock Market for 12 quarters extending from 2007 to 2009 and attempted
to answer to the two remaining question of the RMT-PCA. The first issue is the
number of principal components to examine, and the second issue is the number of
eminent elements to examine out of the total N components of the chosen eigenvec-
tors. While the second issue is still open, the authors have found for the first issue
that only the second largest principal component is sufficient to examine, based on
the comparison of this scenario and the use of the largest ten principal components.
This paper argues on this point that the positive elements, and the negative elements,
of the eigenvector components individually form collective modes of industrial sec-
tors in the second eigenvectoru2, and those collective modes reveal themselves as
trendy sectors of the market in that time period. The authors also discuss on the
problem of setting the effective border between the noise and signals considering
the artificial correlation created in the process of taking log-returns in analyzing the
price time series.
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1 Introduction

Recently, there have been wide interests on the use of the Random Matrix Theory
(RMT) in many fields of sciences [1–10]. In particular, the use of asymptotic for-
mula of the eigenvalue spectrum of cross correlation matrix between independent
time series of random numbers [11,12], as a reference to the corresponding spectrum
derived from a set of different stock price times series in order to extract principal
components effectively in a simple way [13–16], has attracted much attention in
the community of econo-physics [17, 18]. The main advantage of this method as a
principal component analysis is its simplicity. While the standard Principal Compo-
nent Analysis(PCA) gives out a way to find the largest Principal Component(PC)
and subtract this component from the entire data, and apply the same procedure re-
cursively on the remaining data one by one, the Random Matrix Theory - Principal
Component Analysis (RMT-PCA) can process all the ”non-random” components at
once by subtracting the RMT formula from the eigenvalue spectrum of a cross corre-
lation matrix. Plerau, et al. [13] was one of the first attempts to apply this technique
on stock price time series. By using the daily close stock prices of NYSE/S&P500,
they successfully extracted eminent stocks out of massive data of price time series.

However, this method suffers from two difficulties. One is the restriction on the
data structure. The entire set of N×T data are needed for analysis, due to the fact that
the basic quantity is the cross correlation matrix whose elements are the equal-time
inner products between a pair of stocks.

Another difficulty is the restriction of the parameter size. Since the RMT formula
is derived in the limit of N and T being infinity, a special care is needed to keep the
ranges of the parameters in which the RMT formula is valid.

By using machine-generated random numbers, such as rand(), etc., the authors
have tested the validity of the RMT formula in various range of N and T, and have
clarified that N>300, is the safe range unless T is not too close to N, and the validity
decreases for smaller N, and the borderline is around 50<N<100. Since the size of
stocks dealt in the major markets exceeds 400, the applicability of RMT formula is
justified.

Due to the restriction of the methodology to prepare the length of the time series,
T, larger than the dimension of the correlation matrix, N, all the data extending to
several years had to be combined into a single correlation matrix in [13–16], in
which daily-close prices were used. Thus it was difficult to pin-point a short term
trend or to compare trends of different time periods.

By employing intra-day (tick-wise) data containing all the transactions made ev-
ery day, it has become possible to analyze one-year data to compare the result of
different years. The authors carried out the same line of study used in [13, 14] by
setting up the algorithm of RMT-PCA to be applied on intra-day equal-time price
correlations. Based on this approach, the papers [19,20] have shown that this handy
methodology works well to extract the trend change of 4 year interval, from 1994 to
2002.

The authors have applied the same algorithm to a wider set of stock price data
including daily-close prices of American stocks in the database of S&P500 for 16
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years from 1994 to 2009, by cutting the 16 years into 2, 4 and 8 pieces and check the
consistency and effectiveness of the proposed methodology in various data lengths.
In this paper, the RMT-PCA is applied to a tickwise price data of Tokyo Stock
Market from 2007 to 2009, in order to study quarterly trends of the market and
attempt to clarify the remaining two technical problems of this algorithm.

There are still some technical problems remaining in the application of the RMT-
PCA. One is the number of principal component to be analyzed. It is well known
that the first principal component corresponding to the largest eigenvalue of the
cross correlation matrix does not give out much information on the trendy sectors,
since this mode is almost parallel to the major index of the market made of large-
sized popular stocks thus extremely stable [13]. The next largest mode represented
by the second eigenvector,u2 is the major source of information the trendy sectors
of that period can be extract from it. Based on the conditionλi>λ+, there are 11
to 20 principal components extracted from each data set. Whetheru2 is sufficient
for redthe purpose that is to determine the trendy sectors, or some of the remaining
states are to be considered is the focus of question.

Another problem is how many elements are to be picked up in order to identify
the trendy sectors from the total N dimensional eigenvector, such asu2. In the pre-
vious work of the authors, a fixed number (say 5 or 10) of the largest elements are
chosen from each of the positive and negative elements. This point is examined by
comparing the use of the fixed number of elements and the fixed accumulative rate.

This paper is organized as follows. After introduction, the methodology of RMT-
PCA is summarized in Section 2. The result of daily-close prices of American stocks
in the database of S&P500 for 16 years from 1994 to 2009 is shown in Section 3.
The result of tickwise price data of Tokyo Stock Market from 2007 to 2009 is given
in Section 4, in order to study quarterly trends of the market and attempt to clarify
the remaining two technical problems of this algorithm. Then Section 5 is devoted
to discuss remaining problems of this methodology.

2 Eigenvalue Problem of Correlation Matrix for Stock Prices

The methodology of the RMT-PCA is outlined as folows. The first step is to prepare
the price time series into an N×(T+1) matrix named S, whose i-th row contains the
price time series of length T+1. This matrix S is converted into a matrix of log-return
as follows

r(t) = log(S(t +∆ t))− log(S(t)) (1)

Each string of time series is normalized by

xi(t) =
r i(t)−⟨r i⟩

σi
(i = 1, . . . ,N) (2)
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The correlationCi, j between two stocks, i and j, can be written as the inner prod-
uct of the two log-profit time series,xi(t) andx j(t),

Ci, j =
1
T

T

∑
t=1

xi(t)x j(t) (3)

Here the suffix i indicates the time series on the i-th member of the total N stocks.
The correlations defined in Eq.(3) makes a symmetric (Ci, j = Cj,i), square ma-

trixwhose diagonal elements are all equal to one (Ci,i) and off-diagonal elements are
in general smaller than one (|Ci, j | ≤ 1). As is well known, a real symmetric matrix
C can be diagonalized by a similarity transformationV−1CV by an orthogonal ma-
trix V satisfyingVt = V−1, each column of which consists of the eigenvectors of C.
Such that

Ci, j = λkVk (k = 1, . . . ,N) (4)

where the coefficientλk is the k-th eigenvalue and is the k-th eigenvector.
According to the random matrix theory (RMT, hereafter), the eigenvalue distri-

bution spectrum of C made of random time series is given by the following for-
mula [8,9]

PRMT(λ ) =
Q
2π

√
(λ+ −λ )(λ −λ−)

λ
whereλ± = (1±Q− 1

2 )2 (5)

in the limit of N → ∞, T → ∞, Q = T/N = const where T is the length of the
time series and N is the total number of independent time series (i.e. the number of
stocks considered). This means that the eigenvalues of correlation matrix C between
N normalized time series of length T distribute in the following range.

λ− < λ < λ+ (6)

The criterion of the RMT-PCA propoed in this paper is to identify the principal
components if the eigenvalues are larger than the upper bound given by the RMT.

λ+ < λ (7)

However, the authors have proved based on extensive numerical analysis using
the pseudo random generators that a process of taking the log-return in Eq.(1) adds
extra randomness to the data [21–24]. This percolation always occurs and the max-
imum front of the continuum spectrum extends to about 20% larger than the upper
limit λ+ of RMT. This fact suggests that the upper limitλ+ is not appropriate to sep-
arate the signal from the noise due to the percolation of the random spectrum over
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Fig. 1 The states corresponding to the eigenvalues satisfyingλ > 1.2λ+ = λe f f are identified as
the principal components by the RMT-PCA.

λ+ but an effective upper boundλe f f=1.2λ+. Thus a new criterion is introduced for
choosing the principal components

1.2λ+ = λe f f < λ (8)

instead of Eq.(7), as illustrated in Fig. 1 above.

3 Trendy Industrial Sectors form the Daily-close Stock Prices

A rectangular matrix ofSi,k is constructed by normalizing the N stock returns of the
length where i=1, . . . ,N represents the stock symbol and k=1, . . . ,T represents the
traded time of the stocks. The i-th row of this price matrix corresponds to the price
time series of the i-th stock symbol, and the k-th column corresponds to the prices
of N stocks at the time k. The algorithm to extravt significant principal components
is summaried in Fig. 2.

However, a detailed analysis of the eigenvector components has shown that the
random components do not necessarily reside below the upper limit of RMT,λ+, but
percolate beyond the RMT due to extra randomness added in the process of comput-
ing the log-return in Eq.(1). Based on extensive numerical analysis, this percolation
always occurs and the maximum front of the continuum spectrum extends to about
20% larger than the upper limitλ+ of RMT. This fact suggests that the upper limit
λ+ is not appropriate to separate the signal from the noise due to the percolation of
the random spectrum overλ+ but an effective upper boundλe f f = 1.2λ+ about 20%
larger than the upper limitλ+ of RMT. Thenλ+ in the step (4) of the RMT-PCA
algorithm in Fig. 2 is to be replaced byλe f f.
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Fig. 2 The algorithm to extract the significant principal components in RMT-PCA.

According to the step (4) in the RMT-PCA algorithm in Fig. 2 and, those 14
eigenstates are the principal components, based on. The authors find the business
sectors of the companies of 20 largest components in the corresponding eigenvec-
tors. If those components are concentrated in any particular business sector, that
sector is defined as the trend makers during that time period. It can be proved math-
ematically that the eigenvector of the largest eigenvalue is consist of components
of the same sign, and the corresponding sectors are not concentrated to a particular
sector but distributed to any sectors, because the largest principal component show
the global feature of the market thus corresponds to its representative index, such
as S&P500, in this case of dealing with American stocks. The eigenvectors of the
other eigenvalues have components of both signs. It has been known that the posi-
tive components and the negative components belong to the two separate business
sectors, if they are strongly concentrated to particular sectors. Summing up those
knowledge the authors have, the 2nd principal component reflects the trend of the
time period of the data if any concentration of the sectors are observed.

The sectors are classified according to Global Industry Classification Stan-
dard(GICS) coding system, that classifies the business sectors of stocks into 10
categories. The authors denote them by a single capital letter, A-J as follows.

A: Energy, B: Materials, C: Industrials, D: Service, E: Consumer Products, F:
Health Care, G: Financials, H: Information Technology, I: Telecommunication, and
J: Utility.

If taking λe f f instead ofλ+, as it has been explained in the last paragraph of
Section 3, then there are 10 eigenstates corresponding to the eigenvaluesλ1 =
74.3, . . . ,λ10 = 2.41, actual number of the principal components is less than 14.
However, the concentration of business sectors in the eigenvector components oc-
curs only for the 4-5 largest eigenvalues and quickly becomes blur for smaller eigen-
values. Based on this observation, the authors might increaseλe f f to the range
of λe f f = 2λ, 100% larger than the theoretical criterion. In any case, the differ-
ence is irrelevant as long as only several principal components are taken. There
are 8 bars corresponding tov2(+),v2(−),v3(+),v3(−),v4(+),v4(−),v5(+),v5(−),
wherevk(+)/vk(−) indicates the positive-sign part/negative-sign part of the vector
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Table 1 Results for 16, 8, 4 year data (Eigenvalues larger than 2λ+ are highlighted in bold-Itaric)

94-09 94-01 02-09 94-97 98-01 02-05 06-09

N 373 373 464 373 419 464 468
T 3961 2015 1946 1010 1002 1006 936
Q 10.6 5.40 4.19 2.71 2.17 2.17 2
λ+ 1.7 2.1 2.2 2.6 2.8 2.8 2.9
λ1 74 41 150 37.2 53 116 200
λ2 11 13 15 8.7 19 14 18
λ3 8.8 8.8 12 5.8 13 13 14
λ4 7.7 6.9 11 4.6 9.2 9.1 8.9
λ5 5.1 4.8 6.5 3.3 6.6 6.3 5.3
λ6 4.3 4.2 5.1 3.2 5.8 5.3 5.0
λ7 3.3 3.5 3.8 2.8 4.7 4.8 4.4
λ8 2.9 3.1 3.4 2.6 4.2 4.6 3.5
λ9 2.5 2.7 3.3 2.4 3.8 4.0 3.2
λ10 2.4 2.2 2.8 2.4 3.8 4.0 3.2
λ11 2.0 2.2 2.4 2.3 2.8 2.9 2.7
λ12 1.9 2.1 2.3 2.3 2.7 2.9 2.5

of k-th principal component, by partitions corresponding to 10 sectors of A-J, and
the corresponding eigenvalues and the sign of the components below each bar.

It can be observed from the graphs in Fig. 3 that the sector H (InfoTech) domi-
nates the (+) components ofv2 and the sector J (Utility) dominates the (-) compo-
nents ofv2.

The result of 8 years data, 1994-2001 and 2002-2009 are shown in Fig. 4, the
left figure of which shows the dominance of J (Utility) and H (InfoTech) during the
term 1994-2001, and the right figure shows the dominance of A (Energy) and G
(Financials) during the term 2002-2009. This means the active sector has changed
from J (Utility) and H (InfoTech) to A (Energy) and G (Financials) at the turn of the
century.

The results of 4 year data, 1994-1997, 1998-2001, 2002-2005, and 2006-2009 are
in Fig. 5, showing the dominance of J (Utility) and H (InfoTech) both in 1994-1997
and 1998-2001, the dominance of A (Energy) and H (InfoTech) in 2002-2005, and
A (Energy) and G (Financials) dominance in 2006-2009. The corresponding result
of 2 year data is shown in Fig. 6. No clear structure is seen after 2002, except weak
dominance of G (Financials) and A (Energy).

The authors have pointed out that the trend of each time period can be suc-
cessfully depicted by the concentrated business sectors in the positive components
and the negative components of the eigenvector corresponding to the 2nd principal
components. Although the conditionλ > λ+ dramatically reduces the number of
principal components compared to the conventional method of PCA. Moreover, the
method proposed in this paper is considerably simple with much shorter in process
to extract principal components, which is a great advantage in the case of analyzing
the stock market.
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The conventional PCA can extract the largest principal component and subtract
this element from the entire data, and apply the same procedure recursively on the
remaining data one by one. This kind of method requires a lot of computational time
and is not suitable for analyzing a system of the large dimension, such as a set of
stocks in the market. Another method of PCA uses the eigenvalues of the correlation
matrix of times series, which pick up the components whose eigenvalues are larger
than one, or the accumulated sum of eigenvalues exceeds 80 percent of the total
sum, etc. Neither one is suitable for analyzing the stocks in the market, since the
number of principal components thus obtained usually exceeds 100 for N=400-500,
while the RMT- PCA has derived the number of principal components in the range
of 5-13 in Section 4 in this paper. This point is illustrated in Fig. 9.

Fig. 3 Trends of 16 years from 1994 to 2009 are shown. The sector H (Information Technology)
and J (Utility) are the most eminent sectors in this period.

Fig. 4 Trends of 8 years, 1994-2001 (left) and 2002-2009 (right). In 1994-2001, the sector J (Util-
ity) and H (Information Technology) dominance, but in 2002-2009, A (Energy) and G (Financial)
dominance the market.
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Fig. 5 Trends of 4 years each are shown. Both in 1994-1997 and 1998-2001, J (Utility) and H (In-
formation Technology) dominance, while A (Energy) and H (Information Technology)dominance
in 2002-2005 and A (Energy) and G (Financial) dominance in 2006-2009.

4 Trendy Industrial Sectors form the Tickwise Stock Prices

The original tick-wise stock prices are converted to 30 minutes data by selecting
the stocks which have at least one trade in the range of each 30 minutes period.
For example, the first quarter of the year 2007, from January to March, 2007 had
N=486 stocks satisfied this condition and the length of time series of this period
was T=642. The numbers of principal components thus computed are listed in the
rightmost column of Table 1. Although there are 7-13 principal components whose
eigenvaluesλ larger thanλe f f, for each set of quarterly (or yearly) data, firstly,
focus on the second largest eigenvalueλ2 and its eigenvectoru2, and ignore the rest.
Then comparing the above result to the corresponding results of considering all the
first ten eigenvectors, in order to show the superiority of the information fromu2,
over the noisy results of using other eigenvectors.

First of all, the largest principal component corresponding to the largest eigen-
valueλ1 and its eigenvectoru1 are unfortunately not suitable for extracting trendy
sectors. The components ofu1 are almost equally sized around the average value
0.05 = 1/

√
500 and do not have any distinguished components, as shown in the

first row in Fig. 5. This fact is in common to most markets and is often referred
to the ‘market mode’. It is known that this component is strongly correlated to the
index consist of dominant and stable stocks such as so called blue-chip stocks.

The authors thus focus on the second largest eigenvalueλ2 and its eigenvectoru2,
which exhibits a certain trend that changes from time to time. Moreover, as shown
in the second row of Fig. 5, the positive components aggregate to form a certain
collective mode by their internal attractive force, and the negative components do
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the same, so that both + and - components individually form their own collective
modes, which represent temporary trend of active sectors in the market.

The third largest eigenvalueλ3 and its eigenvectoru3 exhibit the similar feature
as the second component in a vague manner, and the fourth eigenvalueλ4 and its
eigenvectoru4 do not show any clear feature and behave more like Gaussian, as
shown in the third and the fourth raw of Fig. 5. For the fifth or further eigenstates, the
sizes of the N components behave more random and the corresponding histograms
reach the Gaussian.

Comparing the first four eigenvectors, it is clear that the second eigenvectoru2

exhibits the existence of two collective modes in the positive and the negative sides
in a most clear sense. On the other hand, the components of the first eigenvector u1
are distributed evenly and do not show a sign of aggregation. The components of
the fourth or higher eigenvectors are highly random and the distribution is close to
Gaussian. The third eigenvector seems transient in between.

Fig. 6 Trends of 2 years each are shown.The trend change can be observed from J(Utility) and H
(Information Technology) dominance towards A (Energy) and G (Financial) dominance.
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Table 2 Parameters and the resulting numbers of PCs for the 12 quarters)

YEAR Quarter T N Q=T/N λ+ λ > λ+ λe f f λ > λe f f

I 642 486 1.32 3.50 13 4.20 9
2007 II 681 486 1.40 3.40 22 4.08 13

III 681 489 1.39 3.41 18 4.10 12
IV 675 492 1.37 3.44 14 4.12 8
I 642 488 1.32 3.50 11 4.20 7

2008 II 681 491 1.39 3.42 14 4.10 9
III 692 492 1.41 3.40 15 4.08 11
IV 664 487 1.36 3.45 13 4.14 10
I 642 490 1.31 3.51 11 4.21 7

2009 II 659 486 1.36 3.46 13 4.15 10
III 681 485 1.40 3.40 13 4.08 7
IV 670 483 1.39 3.42 15 4.10 10

2007 all 2682 477 5.62 2.02 20 2.43 13
2008 all 2682 480 5.59 2.03 19 2.43 13
2009 all 2655 476 5.58 2.03 16 2.43 10

Based on the above observation, it can be concluded that onlyu2 shows a clear
sign of the collective modes that make the trendy industrial sectors of each period
of time.

5 Trendy Industrial Sectors Extracted from the Collective Modes
in the Second Eigenvectoru2

The trendy industrial sectors are identified as the sectors that the distinguishably
large elements of the chosen eigenvectors belong to. However, how many of such
elements to be taken is not given in any sense. In this paper, the authors followed on
this point two different scenarios. One scenario is to take a fixed number of elements
from + and - elements each. Fig. 8 shows the result of this scenario foru2 only. The
numbers inside the graphs show the industrial sector according to the codes defined
in Table 3. Another scenario is to use the accumulation of large elements in the
descending order of the sizes up to 20% of the total amount. Fig. 8 shows the result
of this scenario for all the largest ten eigenstates.
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Fig. 7 Eigenvector components (left) and the histograms (right) ofu1 - u4.

Table 3 The industrial sectors represented by the code numbers

ID:Sector ID:Sector ID:Sector

13:Fishery/Agri/Forestry 15:Mineral Mining 17:Construction
20:Food 30:Fiber/Paper 40:Chemistry/Medicine
50:Resources/Material 60:Machine/Elec.Machinery 70:Automobile/Trans.apparatus
80:Commerce 83:Finance/Insurance 88:Real Estate
90:Transport/Telecom 95:Electric/GasPowerSupply 96:Service

6 Conclusion and Discussion

In this paper, it has shown the result of applying the RMT-PCA on 30 minutes
traded prices of 4 quarters each in three years from 2007 to 2009 of Tokyo Market,
and compared the result on daily data in sixteen years from 1994 to 2009 of S&P.

By analyzing the size distribution of the N components of the first four eigen-
vectors, the authors found that only the second eigenvectoru2 has a useful feature
for the sake of extracting the trendy industrial sectors from their collective modes,



Title Suppressed Due to Excessive Length 13

Fig. 8 Trendy sectors in the positive and the negative sectors extracted as collective modes ofu2,
obtained from 30 minutes price time series in 2007-2009. The numbers in each bar are the codes
of sectors shown in Table 3.

formed independently in the positive parts and the negative parts of the components.
This is the conclusion that have reached as to the first of the two unresolved techni-
cal problem in the practical application of the RMT-PCA.

As to the second of the unresolved technical problem, the authors have simply
compared Fig. 8 where the fixed number of positive and negative elements are se-
lected in the descending order, and Fig. 9 where the accumulation of large elements
in the descending order of the sizes up to 20% of the total amount. It is observed that
the extracted sectors shown by circles in Fig. 9 coincide with the result of Fig. 8,
and no more useful information is offered by Fig. 9 other than noisy details. Thus
the authors conclude that the use ofu2 is sufficient to extract trendy sectors, while
the number of large elements to consider is inconclusive.

Finally, the authors discuss on the consistency of our result to the actual historical
incidence. Both Fig. 8 and Fig. 9 indicate the change of trendy sectors from 83
(banks) in 2007 to 95 (power supply) in 2009. Also a disappearance of major sectors
in the third quarter of 2007 and the fourth quarter of 2008 represent the extremely
confusing market conditions caused by the sub-prime loan problem in August 2007
and the bankruptcy of Lehman Brothers in October 2008.



14 M. Tanaka-Yamawaki, X. Yang, T. Kido, and A. Yamamoto

Fig. 9 Noisy result of the top ten eigenstates,u1-u10, in 2009 are shown for the sake of comparison.
The industrial sectors are partitioned in each bar showing 10 eigenstates, ordered from the leftmost
bar to the rightmost bar in each figure, with the corresponding eigenvalue below each bar. The first
quarter (Jan.-Mar.) to the last quarter (Oct. -Dec.) are shown in four figures from the top to the
bottom.
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