Kubo Takayuki

J-GLOBAL         Last updated: Sep 20, 2017 at 02:56
 
Avatar
Name
Kubo Takayuki
E-mail
tkubomath.tsukuba.ac.jp
Affiliation
University of Tsukuba
Section
Faculty of Pure and Applied Sciences
Job title
Assistant Professor
Degree
Doctor of Science, Waseda University(Waseda University)

Research Areas

 
 

Published Papers

 
Mizuguchi, Makoto;Takayasu, Akitoshi;Kubo, Takayuki;Oishi, Shin'Ichi
SIAM J. Numer. Anal.   55(2) 980-1001   May 2017   [Refereed]
This paper presents a numerical method for verifying the existence and local uniqueness of a solution for an initial-boundary value problem of semilinear parabolic equations. The main theorem of this paper provides a sufficient condition for a uni...
発展作用素を用いた半線形放物型方程式に対する解の精度保証付き数値計算法 (現象解明に向けた数値解析学の新展開)
Takayasu,Akitoshi;Mizuguchi,Makoto;Kubo,Takayuki;Oishi,Shin'ichi
RIMS Kokyuroku   1995 122-131   Apr 2016
Kubo, Takayuki; Shibata, Yoshihiro; Soga, Kohei
BOUNDARY VALUE PROBLEMS      Sep 2014   [Refereed]
Fukuda,Naohiro;Kinoshita,Tamotu;Kubo,Takayuki
Bulletin of the Korean Mathematical Society   50(3) 963-982   May 2013   [Refereed]
The Galerkin method has been developed mainly for 2nd order differential equations. To get numerical solutions, there are some choices of Riesz bases for the approximation subspace V-j subset of L-2. In this paper we shall propose a uniform approa...
On the Stokes and Navier-Stokes equations in a perturbed half-space
Takayuki, Kubo; Yoshihiro, Shibata
Advances in Differentical Equations   10(6) 695-720   Jan 2005   [Refereed]

Books etc

 
PROCEEDINGS OF THE 2013 10TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS
Fukuda, Naohiro; Kinoshita, Tamotu; Kubo, Takayuki
IEEE COMPUTER SOC   2013   ISBN:9780769549675
On the Stokes and Navier-Stokes flows in the perturbed half-space and the apeture domain
Kubo,Takayuki
Sep 2005   
非線形偏微分方程式
柴田良弘・久保隆徹;+久保, 隆徹
朝倉書店   Jan 2012   

Conference Activities & Talks

 
Stokes半群の重み付きLp-Lq評価とそのNavier-Stokes方程式への応用
久保,隆徹
第9回弘前解析セミナー   7 Oct 2014   
外部領域におけるStokes半群の重み付きLp-Lq評価を紹介し,そのNavier-Stokes方程式への応用を紹介した.