The competition graphs of oriented complete bipartite graphs

Suh-Ryung Kim ${ }^{\text {a }}$, Jung Yeun Lee ${ }^{\text {a }}$, Boram Park ${ }^{\text {b }}$, Yoshio Sano ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematics Education, Seoul National University, Seoul 151-742, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, Ajou University, Suwon 443-749, Republic of Korea
${ }^{\text {c }}$ Division of Information Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan

A R T I C L E IN F O

Article history:

Received 30 April 2014
Received in revised form 19 July 2015
Accepted 23 July 2015
Available online 24 August 2015

Keywords:

Competition graph
Complete bipartite graph
Orientation
Edge clique cover
Tournament

Abstract

In this paper, we study the competition graphs of oriented complete bipartite graphs. We characterize graphs that can be represented as the competition graphs of oriented complete bipartite graphs. We also present the graphs having the maximum number of edges and the graphs having the minimum number of edges among such graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The competition graph $C(D)$ of a digraph D is the (simple undirected) graph G defined by $V(G)=V(D)$ and $E(G)=$ $\left\{u v \mid u, v \in V(D), u \neq v, N_{D}^{+}(u) \cap N_{D}^{+}(v) \neq \emptyset\right\}$, where $N_{D}^{+}(x)$ denotes the set of out-neighbors of a vertex x in D. We denote the set of in-neighbors of a vertex x in a digraph D by $N_{D}^{-}(x)$ and denote the set of neighbors of a vertex x in a graph G by $N_{G}(x)$. Competition graphs arose in connection with an application in ecology (see [2]) and also have applications in coding, radio transmission, and modeling of complex economic systems. Early literature of the study on competition graphs is summarized in the survey papers by Kim [6] and Lundgren [10].

For a digraph D, the underlying graph of D is the graph G such that $V(G)=V(D)$ and $E(G)=\{u v \mid(u, v) \in A(D)\}$. An orientation of a graph G is a digraph having no directed 2 -cycles, no loops, and no multiple arcs whose underlying graph is G. An oriented graph is a graph with an orientation. A tournament is an oriented complete graph. The competition graphs of tournaments have been actively studied (see [1,3,5], and [4] for papers related to this topic).

It seems to be a natural shift to take a look at the competition graphs of orientations of complete bipartite graphs. First, we can observe that the competition graph of an orientation of a complete bipartite graph is a disconnected graph as follows.

Proposition 1.1. Let D be an orientation of a complete bipartite graph $K_{m, n}$ with bipartition (U, V), where $|U|=m$ and $|V|=n$. Then, the competition graph of D has no edges between the vertices in U and the vertices in V.
Proof. Since D is an orientation of $K_{m, n}, N_{D}^{+}(x) \cup N_{D}^{-}(x)=N_{K_{m, n}}(x)$ holds for any vertex x in D. Take any vertex u in U and any vertex v in V. Since $N_{K_{m, n}}(u) \subseteq V, N_{K_{m, n}}(v) \subseteq U$, and $U \cap V=\emptyset$, we have $N_{K_{m, n}}(u) \cap N_{K_{m, n}}(v)=\emptyset$. Therefore, $N_{D}^{+}(u) \cap N_{D}^{+}(v)=\emptyset$. Thus, there is no edge between u and v in the competition graph of D. Hence the proposition holds.

[^0]

Fig. 1. An orientation D of the complete bipartite graph $K_{5,4}$ and its competition graph $G_{1} \cup G_{2}$. (A pair of parallel arrows means that there is an arc from each vertex in the ellipse from which the arc initiates to each vertex in the ellipse to which the arc terminates.)

Based on Proposition 1.1, we introduce the notion of competition-realizable pairs.
Definition 1. Let G_{1} and G_{2} be graphs with m vertices and n vertices, respectively. The pair (G_{1}, G_{2}) is said to be competitionrealizable through $K_{m, n}$ (in this paper, we only consider orientations of $K_{m, n}$ and therefore we omit "through $K_{m, n}$ ") if the disjoint union of G_{1} and G_{2} is the competition graph of an orientation of the complete bipartite graph $K_{m, n}$ with bipartition $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$.

Let us see an example. Let G_{1} be the graph defined by $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $E\left(G_{1}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}, u_{4} u_{5}\right\}$, and let G_{2} be the graph defined by $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E\left(G_{2}\right)=\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$. Then the pair $\left(G_{1}, G_{2}\right) \cong\left(K_{3} \cup K_{2}, K_{2} \cup\right.$ K_{2}) is competition-realizable through $K_{5,4}$ (see Fig. 1).

In this paper, we study the competition graphs of oriented complete bipartite graphs by using the notion of competitionrealizable pairs. We characterize graphs that can be represented as the competition graphs of oriented complete bipartite graphs. We also present the graphs having the maximum number of edges and the graphs having the minimum number of edges among such graphs.

2. A characterization of competition-realizable pairs in terms of edge clique covers

In this section, we present a theorem which characterizes a competition-realizable pair (G_{1}, G_{2}) in terms of edge clique covers of the graphs G_{1} and G_{2} without mentioning oriented complete bipartite graphs.

By a family, we mean a multiset of subsets of a set. A clique of a graph G is a set of vertices of G in which any two vertices are adjacent in G. We also consider an empty set \emptyset as a clique. An edge clique cover of a graph G is a family \mathcal{F} of cliques of G such that, for any two adjacent vertices of G, there is a clique in \mathcal{F} containing both of them. For a graph G, we denote by $\theta_{E}(G)$ the minimum size of an edge clique cover of G.

The intersection graph $\Omega(\mathcal{F})$ of a family \mathcal{F} is the graph whose vertex set is \mathcal{F} and in which two sets X and Y in \mathcal{F} are adjacent if and only if $X \cap Y \neq \emptyset$. Recall that a graph isomorphism from G_{1} to G_{2} is a bijection φ from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that $x y \in E\left(G_{1}\right)$ if and only if $\varphi(x) \varphi(y) \in E\left(G_{2}\right)$. For a family \mathcal{F} of subsets of a set V, the dual family of \mathcal{F} is the family \mathcal{F}^{*} defined by $\mathcal{F}^{*}=\{V \backslash S \mid S \in \mathcal{F}\}$.

Theorem 2.1. Let G_{1} and G_{2} be graphs. Then, $\left(G_{1}, G_{2}\right)$ is a competition-realizable pair if and only if there exist edge clique covers \mathcal{F}_{1} and \mathcal{F}_{2} of G_{1} and G_{2}, respectively, such that
(i) there exist graph isomorphisms $\varphi_{1}: G_{2} \rightarrow \Omega\left(\mathcal{F}_{1}^{*}\right)$ and $\varphi_{2}: G_{1} \rightarrow \Omega\left(\mathcal{F}_{2}^{*}\right)$, where $\mathcal{F}_{i}^{*}:=\left\{V\left(G_{i}\right) \backslash S \mid S \in \mathcal{F}_{i}\right\}$ for $i=1$, 2 ;
(ii) for $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right), u \in \varphi_{1}(v)$ if and only if $v \notin \varphi_{2}(u)$.

Before proving the theorem, let us see an example. Let

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{4}, u_{5}\right\},\left\{u_{4}, u_{5}\right\}\right\}, \\
& \mathcal{F}_{2}=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{4}\right\}\right\} .
\end{aligned}
$$

Then \mathscr{F}_{1} and \mathscr{F}_{2} are edge clique covers of $G_{1}:=K_{3} \cup K_{2}$ and $G_{2}:=K_{2} \cup K_{2}$, respectively, and we have $\mathcal{F}_{1}^{*}=\mathcal{F}_{1}$ and $\mathcal{F}_{2}^{*}=$ $\left(\mathcal{F}_{2}-\left\{\left\{v_{1}, v_{2}\right\}\right\}\right) \cup\left\{\left\{v_{3}, v_{4}\right\}\right\}$. We define maps φ_{1} from $V\left(G_{2}\right)$ to \mathcal{F}_{1}^{*} and φ_{2} from $V\left(G_{1}\right)$ to \mathcal{F}_{2}^{*} by $\varphi_{1}\left(v_{1}\right)=\varphi_{1}\left(v_{2}\right)=\left\{u_{4}, u_{5}\right\}$; $\varphi_{1}\left(v_{3}\right)=\varphi_{1}\left(v_{4}\right)=\left\{u_{1}, u_{2}, u_{3}\right\} ; \varphi_{2}\left(u_{1}\right)=\varphi_{2}\left(u_{2}\right)=\varphi_{2}\left(u_{3}\right)=\left\{v_{1}, v_{2}\right\} ; \varphi_{2}\left(u_{4}\right)=\varphi_{2}\left(u_{5}\right)=\left\{v_{3}, v_{4}\right\}$. It is easy to check that \mathcal{F}_{1} and \mathscr{F}_{2} satisfy conditions (i) and (ii) of Theorem 2.1.

Lemma 2.2. Let G_{1} and G_{2} be graphs. Let D be an orientation of a complete bipartite graph with bipartition $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$ such that the competition graph of D is $G_{1} \cup G_{2}$. Then, the family $\left\{N_{D}^{-}(v) \mid v \in V\left(G_{2}\right)\right\}$ is an edge clique cover of G_{1}, and the family $\left\{N_{D}^{-}(u) \mid u \in V\left(G_{1}\right)\right\}$ is an edge clique cover of G_{2}.

Proof. By the definition of the competition graph of a digraph, $N_{D}^{-}(x)$ is a clique of the competition graph of D. Since D has no arcs between two vertices in $V\left(G_{1}\right)$, the family $\left\{N_{D}^{-}(v) \mid v \in V\left(G_{2}\right)\right\}$ forms an edge clique cover of G_{1}. Similarly, it holds that the family $\left\{N_{D}^{-}(v) \mid v \in V\left(G_{1}\right)\right\}$ forms an edge clique cover of G_{2}.

Lemma 2.3. If $\left(G_{1}, G_{2}\right)$ is a competition-realizable pair, then $\theta_{E}\left(G_{1}\right) \leq\left|V\left(G_{2}\right)\right|$ and $\theta_{E}\left(G_{2}\right) \leq\left|V\left(G_{1}\right)\right|$.
Proof. The lemma follows from Lemma 2.2.
Proof of Theorem 2.1. First, we show the "only if" part. Let $\left(G_{1}, G_{2}\right)$ be a competition-realizable pair. Then there exists an orientation D of the complete bipartite graph $K_{m, n}$ where $m=\left|V\left(G_{1}\right)\right|$ and $n=\left|V\left(G_{2}\right)\right|$. Let \mathcal{F}_{1} be the family $\left\{N_{D}^{-}(v) \mid v \in V\left(G_{2}\right)\right\}$, and let \mathcal{F}_{2} be the family $\left\{N_{D}^{-}(u) \mid u \in V\left(G_{1}\right)\right\}$. By Lemma 2.2, \mathcal{F}_{1} and \mathcal{F}_{2} are edge clique covers of G_{1} and G_{2}, respectively. Since D is an orientation of a complete bipartite graph, $N_{D}^{-}(v) \cup N_{D}^{+}(v)=V\left(G_{1}\right)$ for any $v \in V\left(G_{2}\right)$ and that $N_{D}^{-}(u) \cup N_{D}^{+}(u)=V\left(G_{2}\right)$ for any $u \in V\left(G_{1}\right)$. Since D is loopless, $N_{D}^{-}(x) \cap N_{D}^{+}(x)=\emptyset$ for any $x \in V(D)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$. Therefore, $\mathcal{F}_{1}^{*}=\left\{N_{D}^{+}(v) \mid v \in V\left(G_{2}\right)\right\}$ and $\mathcal{F}_{2}^{*}=\left\{N_{D}^{+}(u) \mid u \in V\left(G_{1}\right)\right\}$. We define a map φ_{1} from $V\left(G_{2}\right)$ to \mathcal{F}_{1}^{*} by $\varphi_{1}(v)=$ $N_{D}^{+}(v)$ and a map φ_{2} from $V\left(G_{1}\right)$ to \mathcal{F}_{2}^{*} by $\varphi_{2}(u)=N_{D}^{+}(u)$. It is easy to check that φ_{i} is well-defined and bijective. To show that $\varphi_{i}(i=1,2)$ preserves the adjacency, take two vertices x and x^{\prime} in G_{3-i}. Then, x and x^{\prime} are adjacent in $C(D)$ if and only if $N_{D}^{+}(x) \cap N_{D}^{+}\left(x^{\prime}\right) \neq \emptyset$. Therefore φ_{i} is an isomorphism from G_{3-i} to the intersection graph of \mathcal{F}_{i}^{*} and thus the condition (i) holds. Furthermore, $x \in N_{D}^{+}(y)$ if and only if $y \in N_{D}^{-}(x)$ for any vertices x and y of D. Therefore it follows from the definitions of $\varphi_{1}(v)$ and $\varphi_{2}(u)$ that $u \in \varphi_{1}(v)$ if and only if $v \notin \varphi_{2}(u)$ for $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Thus the condition (ii) holds.

Now we show the "if" part. Suppose that there exist edge clique covers \mathscr{F}_{1} and \mathcal{F}_{2} of G_{1} and G_{2}, respectively, satisfying the conditions (i) and (ii). We define an orientation D of $K_{m, n}$, where $m=\left|V\left(G_{1}\right)\right|$ and $n=\left|V\left(G_{2}\right)\right|$, by

$$
\begin{aligned}
A(D)= & \bigcup_{u \in V\left(G_{1}\right)}\left(\left\{(u, v) \mid v \in \varphi_{2}(u)\right\} \cup\left\{(v, u) \mid v \in V\left(G_{2}\right) \backslash \varphi_{2}(u)\right\}\right) \\
& \cup \bigcup_{v \in V\left(G_{2}\right)}\left(\left\{(v, u) \mid u \in \varphi_{1}(v)\right\} \cup\left\{(u, v) \mid u \in V\left(G_{1}\right) \backslash \varphi_{1}(v)\right\}\right) .
\end{aligned}
$$

To show that D is an orientation of $K_{m, n}$, take an $\operatorname{arc}(x, y)$ in D. Without loss of generality, we may assume that $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. Then $y \in \varphi_{2}(x)$ or $x \in V\left(G_{1}\right) \backslash \varphi_{1}(y)$ by the definition of $A(D)$. By the condition (ii), $y \in \varphi_{2}(x)$ and $x \in V\left(G_{1}\right) \backslash \varphi_{1}(y)$. Thus $(y, x) \notin A(D)$. To show that every edge of $K_{m, n}$ is oriented by $A(D)$, take a vertex $x \in V\left(G_{1}\right)$ and a vertex $y \in V\left(G_{2}\right)$. Then $x \in V\left(G_{1}\right) \backslash \varphi_{1}(y)$ or $x \in \varphi_{1}(y)$. If $x \in V\left(G_{1}\right) \backslash \varphi_{1}(y)$, then $(x, y) \in A(D)$. If $x \in \varphi_{1}(y)$, then $(y, x) \in A(D)$. Thus D is an orientation of $K_{m, n}$. We now show that the competition graph of D is $G_{1} \cup G_{2}$. Take any edge $x y$ of $G_{1} \cup G_{2}$. Without loss of generality, we may assume that $x y$ is an edge of G_{2}. Then $\varphi_{1}(x) \cap \varphi_{1}(y) \neq \emptyset$ by the definition of an intersection graph. Therefore, there exists a vertex $z \in \varphi_{1}(x) \cap \varphi_{1}(y)$ and, by the definition of $A(D),(x, z) \in A(D)$ and $(y, z) \in A(D)$. Thus $x y$ is an edge in the competition graph of D. To show that any edge in the competition graph of D is an edge in $G_{1} \cup G_{2}$, take two vertices x and y which are adjacent in $C(D)$. Then there is a vertex w such that $(x, w) \in A(D)$ and $(y, w) \in A(D)$. Without loss of generality, we may assume that $x \in V\left(G_{2}\right)$. By Proposition $1.1, y \in V\left(G_{2}\right)$. By the definition of $A(D)$, we have $w \in \varphi_{1}(x)$. Since $w \in V\left(G_{1}\right)$ and $(y, w) \in A(D)$, we have $w \in \varphi_{1}(y)$. Therefore $w \in \varphi_{1}(x) \cap \varphi_{1}(y)$, which implies that x and y belong to $V\left(G_{2}\right) \backslash \varphi_{2}(w)$, by the condition (ii). Thus x and y are adjacent in G_{2}.

Hence the theorem holds.

3. Competition-realizable pairs and the independence numbers of graphs

Recall that the independence number of a graph G is the maximum number of vertices in G that are pairwise nonadjacent, and is denoted by $\alpha(G)$.

Lemma 3.1. Let $\left(G_{1}, G_{2}\right)$ be a competition-realizable pair. If $\alpha\left(G_{2}\right) \geq 3$, then G_{1} is a complete graph.
Proof. Suppose that G_{1} is not a complete graph. Then, we have $\alpha\left(G_{1}\right) \geq 2$. Let $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ be independent sets of G_{1} and G_{2}, respectively. Since $\left(G_{1}, G_{2}\right)$ is a competition-realizable pair, there exists an orientation D of a complete bipartite graph such that $C(D)=G_{1} \cup G_{2}$. Note that the subgraph of $C(D)$ induced by $\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ has no edges and also note that the subgraph of the underlying graph of D induced by $\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ is the complete bipartite graph $K_{2,3}$. We can check that the competition graph of any orientation of $K_{2,3}$ has at least one edge, which is a contradiction. Thus the lemma holds.

Note that, if $\left(G_{1}, G_{2}\right)$ is a competition-realizable pair, then $\left(G_{2}, G_{1}\right)$ is also a competition-realizable pair.
Theorem 3.2. Let $\left(G_{1}, G_{2}\right)$ be a competition-realizable pair. Then, one of the following holds:
(i) $\alpha\left(G_{1}\right)=1$ or $\alpha\left(G_{2}\right)=1$;
(ii) $\alpha\left(G_{1}\right)=\alpha\left(G_{2}\right)=2$.

Proof. Suppose that (i) does not hold, i.e., $\alpha\left(G_{1}\right) \geq 2$ and $\alpha\left(G_{2}\right) \geq 2$. Then, neither G_{1} nor G_{2} is a complete graph. By Lemma 3.1, we have $\alpha\left(G_{1}\right) \leq 2$ and $\alpha\left(G_{2}\right) \leq 2$. Thus (ii) holds. Hence the theorem holds.

Based on Theorem 3.2, we consider the following two cases to characterize competition-realizable pairs: (i) G_{1} or G_{2} is a complete graph; (ii) $\alpha\left(G_{1}\right)=\alpha\left(G_{2}\right)=2$.

In Case (i), we may assume without loss of generality that G_{2} is a complete graph. Moreover, we divide Case (i) into the following two cases:
(i-a) G_{1} has an isolated vertex (and G_{2} is a complete graph);
(i-b) G_{1} has no isolated vertices (and G_{2} is a complete graph).
In the next section, we investigate competition-realizable pairs for these three cases.

4. Structural characterizations of competition-realizable pairs ($\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}$)

4.1. The case where G_{1} has an isolated vertex and $\alpha\left(G_{2}\right)=1$

When one of G_{1} and G_{2} is a complete graph and the other graph has an isolated vertex, the necessary condition given in Lemma 2.3 is also a sufficient condition for a pair of graphs being competition-realizable.

Theorem 4.1. Let G be a graph and let n be a positive integer. Suppose that G has at least one isolated vertex. Then, $\left(G, K_{n}\right)$ is a competition-realizable pair if and only if $\theta_{E}(G) \leq n$.
Proof. The "only if" part follows from Lemma 2.3. We show the "if" part. Suppose that $\theta_{E}(G) \leq n$. Let S_{0} be the set of isolated vertices in G. Since G has at least one isolated vertex, $S_{0} \neq \emptyset$. Since $\theta_{E}\left(G-S_{0}\right)=\theta_{E}(G) \leq n$, there exists an edge clique cover $\left\{S_{1}, \ldots, S_{n}\right\}$ of $G-S_{0}$. Let D be a digraph defined by $V(D)=V(G) \cup V\left(K_{n}\right)=V(G) \cup\left\{v_{1}, \ldots, v_{n}\right\}$ and

$$
A(D)=\left(\bigcup_{j=1}^{n}\left\{\left(u, v_{j}\right) \mid u \in S_{j}\right\}\right) \cup\left(\bigcup_{j=1}^{n}\left\{\left(v_{j}, u\right) \mid u \in V(G)-S_{j}\right\}\right)
$$

Then the underlying graph of D is the complete bipartite graph $K_{m, n}$, where $m=|V(G)|$. Since $S_{0} \neq \emptyset$ and $S_{0} \subseteq V(G)-S_{j}$ for each $j \in\{1, \ldots, n\}$, each vertex in S_{0} is an out-neighbor of v_{j} for each $j \in\{1, \ldots, n\}$. Therefore, the vertices v_{1}, \ldots, v_{n} form a clique in the competition graph of D. Thus, the competition graph of D is $G \cup K_{n}$. Hence, (G, K_{n}) is a competition-realizable pair.

Corollary 4.2. For any graph G, there exists a positive integer n such that the pair $\left(G \cup K_{1}, K_{n}\right)$ is competition-realizable.
Proof. Let n be a positive integer such that $n \geq \theta_{E}(G)$. Note that $\theta_{E}\left(G \cup K_{1}\right)=\theta_{E}(G)$. By Theorem 4.1, the pair $\left(G \cup K_{1}, K_{n}\right)$ is competition-realizable.

4.2. The case where G_{1} has no isolated vertices and $\alpha\left(G_{2}\right)=1$

In this subsection, we consider competition-realizable pairs $\left(G_{1}, G_{2}\right)$ where G_{1} has no isolated vertices and $\alpha\left(G_{2}\right)=1$. We present a characterization for a pair (G, K_{n}) being competition-realizable.

Theorem 4.3. Let G be a graph and let n be a positive integer. Suppose that G has no isolated vertices. Then, (G, K_{n}) is a competition-realizable pair if and only if there exists an edge clique cover \mathcal{F} of G of size at most n such that

$$
\left|S \cup S^{\prime}\right| \leq|V(G)|-1
$$

holds for any two cliques S and S^{\prime} in \mathcal{F}.
Proof. Let $G_{1}:=G$ and $G_{2}:=K_{n}$. To show the "only if" part, suppose that $\left(G_{1}, G_{2}\right)=\left(G, K_{n}\right)$ is a competition-realizable pair. Then there exist edge clique covers \mathcal{F}_{1} and \mathcal{F}_{2} of G_{1} and G_{2}, respectively, and graph isomorphisms $\varphi_{1}: G_{2} \rightarrow \Omega\left(\mathcal{F}_{1}^{*}\right)$ and $\varphi_{2}: G_{1} \rightarrow \Omega\left(\mathcal{F}_{2}^{*}\right)$ satisfying the conditions (i) and (ii) of Theorem 2.1. Then $\Omega\left(\mathcal{F}_{1}^{*}\right) \cong K_{n}$ and therefore $\left|\mathcal{F}_{1}^{*}\right|=n$, or equivalently $\left|\mathcal{F}_{1}\right|=n$. We show that \mathcal{F}_{1} is a desired edge clique cover of G_{1}. Take any two elements S and S^{\prime} in \mathcal{F}_{1}. Then $\varphi_{1}(v)=V\left(G_{1}\right) \backslash S$ and $\varphi_{1}\left(v^{\prime}\right)=V\left(G_{1}\right) \backslash S^{\prime}$ for some vertices v and v^{\prime} in G_{2}. Since the intersection graph of \mathcal{F}_{1}^{*} is isomorphic to the complete graph K_{n}, we have $\varphi_{1}(v) \cap \varphi_{1}\left(v^{\prime}\right) \neq \emptyset$. Since

$$
\varphi_{1}(v) \cap \varphi_{1}\left(v^{\prime}\right)=\left(V\left(G_{1}\right) \backslash S\right) \cap\left(V\left(G_{1}\right) \backslash S^{\prime}\right)=V\left(G_{1}\right) \backslash\left(S \cup S^{\prime}\right)
$$

we have $V\left(G_{1}\right) \backslash\left(S \cup S^{\prime}\right) \neq \emptyset$. Thus $\left|S \cup S^{\prime}\right| \leq\left|V\left(G_{1}\right)\right|-1$.
To show the "if" part, suppose that there exists an edge clique cover \mathcal{F}_{1} of G_{1} of size at most n such that $\left|S \cup S^{\prime}\right| \leq$ $\left|V\left(G_{1}\right)\right|-1$ for any cliques S and S^{\prime} in \mathcal{F}_{1}. If the size of \mathcal{F}_{1} is less than n, then we add empty sets to the family \mathcal{F}_{1} to make the size of \mathcal{F}_{1} is equal to n. We label the vertices of G_{2} as v_{1}, \ldots, v_{n} and label the elements of \mathcal{F}_{1} as $S_{v_{1}}^{(1)}, \ldots, S_{v_{n}}^{(1)}$. For $u \in V\left(G_{1}\right)$, let

$$
S_{u}^{(2)}:=\left\{v_{i} \in V\left(G_{2}\right) \mid u \in V\left(G_{1}\right) \backslash S_{v_{i}}^{(1)}\right\}
$$

and let \mathcal{F}_{2} be the family $\left\{S_{u}^{(2)} \mid u \in V\left(G_{1}\right)\right\}$. We now show that \mathcal{F}_{1} and \mathcal{F}_{2} satisfy the conditions (i) and (ii) of Theorem 2.1. To show that \mathcal{F}_{2} is an edge clique cover of $G_{2}=K_{n}$, take two distinct vertices v_{i} and v_{j} of G_{2}. Then there exists a vertex
$u \notin S_{v_{i}}^{(1)} \cup S_{v_{j}}^{(1)}$ by the hypothesis, and therefore $u \in V\left(G_{1}\right) \backslash S_{v_{i}}^{(1)}$ and $u \in V\left(G_{1}\right) \backslash S_{v_{j}}^{(1)}$. Thus $S_{u}^{(2)}$ contains v_{i} and v_{j}, which implies that \mathcal{F}_{2} is an edge clique cover of G_{2}. Let $\mathcal{F}_{i}{ }^{*}$ denote the family $\left\{V\left(G_{i}\right) \backslash S \mid S \in \mathcal{F}_{i}\right\}$ for $i=1$, 2 . We define maps $\varphi_{1}: V\left(G_{2}\right) \rightarrow \mathcal{F}_{1}^{*}$ and $\varphi_{2}: V\left(G_{1}\right) \rightarrow \mathcal{F}_{2}^{*}$ by

$$
\varphi_{1}\left(v_{i}\right):=V\left(G_{1}\right) \backslash S_{v_{i}}^{(1)}, \quad \varphi_{2}(u):=V\left(G_{2}\right) \backslash S_{u}^{(2)}
$$

We show that φ_{1} and φ_{2} satisfy the conditions (i) and (ii) of Theorem 2.1. For $u \in V\left(G_{1}\right)$ and $v_{i} \in V\left(G_{2}\right)$, it follows from the definition of $S_{u}^{(2)}$ that $v_{i} \in S_{u}^{(2)}$ if and only if $u \in V\left(G_{1}\right) \backslash S_{v_{i}}^{(1)}$, or equivalently $u \notin \varphi_{1}\left(v_{i}\right)$ if and only if $v_{i} \in \varphi_{2}(u)$. Thus φ_{1} and φ_{2} satisfy the condition (ii) of Theorem 2.1. We now show that φ_{1} and φ_{2} satisfy the condition (i) of Theorem 2.1. For two vertices u and u^{\prime} of G_{1}, we can easily check that the following statements are equivalent:

- u and u^{\prime} are adjacent in G_{1};
- $S_{v_{i}}^{(1)}$ contains both u and u^{\prime} for some $v_{i} \in V\left(G_{1}\right)$;
- $v_{i} \in V\left(G_{2}\right) \backslash S_{u}^{(2)}$ and $v_{i} \in V\left(G_{2}\right) \backslash S_{u^{\prime}}^{(2)}$ for some $v_{i} \in V\left(G_{1}\right)$;
- $v_{i} \in\left(V\left(G_{2}\right) \backslash S_{u}^{(2)}\right) \cap\left(V\left(G_{2}\right) \backslash S_{u^{\prime}}^{(2)}\right)=\varphi_{2}(u) \cap \varphi_{2}\left(u^{\prime}\right)$ for some $v_{i} \in V\left(G_{1}\right)$;
- $\varphi_{2}(u) \cap \varphi_{2}\left(u^{\prime}\right) \neq \emptyset$.

Therefore φ_{2} is an isomorphism from G_{1} to the intersection graph of \mathcal{F}_{2}^{*}. For two vertices v_{i} and v_{j} of G_{2}, since v_{i} and v_{j} are adjacent in G_{2} and \mathcal{F}_{2} is an edge clique cover of G_{2}, there exists $u \in V\left(G_{1}\right)$ such that $S_{u}^{(2)}$ contains both v_{i} and v_{j}, i.e., $u \in\left(V\left(G_{1}\right) \backslash S_{v_{i}}^{(1)}\right) \cap\left(V\left(G_{1}\right) \backslash S_{v_{j}}^{(1)}\right)=\varphi_{1}\left(v_{i}\right) \cap \varphi_{1}\left(v_{j}\right)$ for some $u \in V\left(G_{1}\right)$. Therefore φ_{1} is an isomorphism from G_{2} to the intersection graph of \mathcal{F}_{1}^{*}. Thus φ_{1} and φ_{2} satisfy the condition (i) of Theorem 2.1. Hence, by Theorem 2.1, $\left(G_{1}, G_{2}\right)=\left(G, K_{n}\right)$ is a competition-realizable pair.

By using this theorem, we can obtain several results.
Proposition 4.4. Let m and n be integers such that $m \geq 6$ and $n \geq 6$. Then, the pair $\left(K_{m}, K_{n}\right)$ is competition-realizable.
Proof. Without loss of generality, we may assume that $m \geq n$. Let $V\left(K_{m}\right)=\left\{u_{1}, \ldots, u_{m}\right\}$. Let

$$
\begin{array}{lll}
R_{1}=\left\{u_{1}, u_{4}, u_{6}\right\}, & R_{2}=\left\{u_{2}, u_{4}, u_{5}\right\}, & R_{3}=\left\{u_{3}, u_{5}, u_{6}\right\} \\
R_{4}=\left\{u_{2}, u_{3}, u_{4}\right\}, & R_{5}=\left\{u_{1}, u_{3}, u_{5}\right\}, & R_{6}=\left\{u_{1}, u_{2}, u_{6}\right\}
\end{array}
$$

Note that $\left\{R_{1}, \ldots, R_{6}\right\}$ is an edge clique cover of K_{6}. Let $S_{i}:=R_{i} \cup\left\{u_{j} \mid 7 \leq j \leq m\right\}$ for $i=1, \ldots, 6$ and let $\mathcal{F}:=\left\{S_{i} \mid 1 \leq\right.$ $i \leq 6\}$. Then the family \mathcal{F} is an edge clique cover of K_{m}. Moreover, for any i and j with $1 \leq i, j \leq 6,\left|S_{i} \cup S_{j}\right|=\left|R_{i} \cup R_{j}\right|+$ $(m-6) \leq 5+(m-6)=m-1$. By Theorem 4.3, the pair $\left(K_{m}, K_{n}\right)$ is competition-realizable.

Proposition 4.5. Let n be a positive integer. Then, the pair $\left(K_{n}, K_{n}\right)$ is competition-realizable if and only if $n=1$ or $n \geq 6$.
Proof. By Proposition 4.4, the pair $\left(K_{n}, K_{n}\right)$ is competition-realizable for $n \geq 6$. Moreover, $\left(K_{1}, K_{1}\right)$ is competition-realizable. Thus the "if" part holds.

To show the "only if" part, let $\left(K_{n}, K_{n}\right)$ be a competition-realizable pair for a positive integer n. Assume that $n \neq 1$, i.e., $n \geq 2$. By Theorem 4.3, there exists an edge clique cover \mathcal{F} consisting at most n cliques of K_{n} such that the union of any two cliques in \mathcal{F} is not the whole vertex set of K_{n}. If \mathcal{F} has an element S of size $n-1$, then the union of S and any clique in \mathcal{F} containing the vertex that is not contained in S is the whole vertex set of K_{n}. Therefore, $|S| \leq n-2$ for any $S \in \mathcal{F}$. Since any element of \mathcal{F} has size at least two, we have $n \geq 4$. Suppose that $n=4$. Then $|S| \leq 2$ for any $S \in \mathcal{F}$. This implies that \mathcal{F} must contain at least $\binom{4}{2}=6$ cliques, which is a contradiction to $|\mathcal{F}| \leq 4$. Therefore $n \geq 5$. Suppose that $n=5$. Then \mathcal{F} has at most 5 cliques and the maximum size of a clique in \mathcal{F} is at most 3 . Since K_{5} has 10 edges, \mathcal{F} contains at least three cliques of size 3 . Let S_{1} and S_{2} be cliques of size 3 in \mathcal{F}. Since $\left|S_{1} \cup S_{2}\right| \leq 4$ by the choice of \mathcal{F}, we have $\left|S_{1} \cap S_{2}\right| \geq 2$, which implies that the triangles induced by S_{1} and S_{2} share an edge. Therefore a subset of \mathcal{F} consisting of three cliques of size 3 covers at most seven edges of K_{5}, which implies that \mathcal{F} must contain at least four cliques of size 3 . However, it is impossible that four triangles of K_{5} mutually share an edge. Thus $n \geq 6$. Hence the proposition holds.

We denote by K_{n}^{m} the complete multipartite graph on m partite sets in which each partite set has n vertices.
Proposition 4.6. Let m and n be positive integers such that $2 \leq m<n$. Then, the pair $\left(K_{2}^{m}, K_{n}\right)$ is competition-realizable.
Proof. Let $\left\{x_{l}, y_{l}\right\}$ be the l th partite set of K_{2}^{m} for each $l \in[m]:=\{1, \ldots, m\}$. Let $S_{0}:=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $S_{i}:=\left(\left\{y_{1}, y_{2}\right.\right.$, $\left.\left.\ldots, y_{m}\right\} \backslash\left\{y_{i}\right\}\right) \cup\left\{x_{i}\right\}$ for $i \in[m]$, and let $\mathcal{F}=\left\{S_{0}, S_{1}, \ldots, S_{m}\right\}$. Since no two vertices in S_{l} belong to the same partite set, S_{l} forms a clique in K_{2}^{m} for each $l \in\{0\} \cup[m]$. Now we take an edge e of K_{2}^{m}. Then, $e=x_{i} x_{j}$, $e=x_{i} y_{j}$, or $e=y_{i} y_{j}$ for some $i, j \in[\mathrm{~m}]$ with $i \neq j$. If $e=x_{i} x_{j}$, then e is covered by the set S_{0}. If $e=x_{i} y_{j}$, then e is covered by S_{i}. If $e=y_{i} y_{j}$, then e is covered by S_{l} for some $l \in[m] \backslash\{i, j\}$. Thus \mathcal{F} is an edge clique cover of K_{2}^{m} of size at most n (by the hypothesis that $n \geq m+1$). Since S_{i} has exactly one of x_{1}, \ldots, x_{m} and $m-1$ of y_{1}, \ldots, y_{m} for $i \in[m]$ and $S_{0}=\left\{x_{1}, \ldots, x_{m}\right\}$, we have $\left|S_{i} \cap S_{j}\right| \geq 1$ for any $i, j \in\{0\} \cup[m]$. Thus $\left|S_{i} \cup S_{j}\right| \leq 2 m-1=\left|V\left(K_{2}^{m}\right)\right|-1$ for any $i, j \in\{0\} \cup[m]$. Hence $\left(K_{2}^{m}, K_{n}\right)$ is competition-realizable by Theorem 4.3.

By Proposition 4.6, we know that the pair $\left(K_{n}^{3}, K_{4}\right)$ is competition-realizable if $n=2$. For $n \geq 3$, the following holds. Let $L(n)$ denote the largest size of a family of mutually orthogonal Latin squares of order n. Park et. al [11] showed that, if m and n are positive integers such that $3 \leq m \leq L(n)+2$, then there is a minimum edge clique cover of K_{n}^{m} of size n^{2} in which each clique in the cover is a complete graph of size m (see also [7] and [9]).

Proposition 4.7. Let m, n, and t be positive integers such that $3 \leq m \leq L(n)+2$. Then, the pair $\left(K_{n}^{m}, K_{t}\right)$ is competition-realizable if and only if $n^{2} \leq t$.
Proof. Suppose that $n^{2} \leq t$. Since K_{n}^{m} has an edge clique cover \mathcal{F} of size n^{2} (at most t) in which each clique has size m, the union of any two cliques in \mathcal{F} has size at most $2 m \leq 3 m-1 \leq n m-1=\left|V\left(K_{n}^{m}\right)\right|-1$. Thus, by Theorem 4.3, $\left(K_{n}^{m}, K_{t}\right)$ is competition-realizable.

Suppose that $\left(K_{n}^{m}, K_{t}\right)$ is competition-realizable. Then, by Theorem 4.3, there exists an edge clique cover \mathcal{F} of K_{n}^{m} with size at most t. Thus, $n^{2}=\theta_{E}\left(K_{n}^{m}\right) \leq|\mathcal{F}| \leq t$.

We now consider (G, K_{n}) where G is a triangle-free graph having no isolated vertices.
Proposition 4.8. Let G be a triangle-free graph having no isolated vertices. Then, the pair $\left(G, K_{n}\right)$ is competition-realizable if and only if either $n=|E(G)|=1$ or $n \geq|E(G)| \geq 3$ and $G \neq P_{4}$, where P_{4} is the path on 4 vertices.

Proof. Let $\mathcal{F}:=\{\{u, v\} \mid u v \in E(G)\}$. Then the family \mathcal{F} is an edge clique cover of G. If $n=|E(G)|=1$, then $G \cong K_{2}$ since G has no isolated vertices and $\left(G, K_{n}\right)=\left(K_{2}, K_{1}\right)$ is clearly a competition-realizable pair. Suppose that $n \geq|E(G)| \geq 3$. Then $|V(G)| \geq 4$ since G is triangle-free. If $|V(G)|=4$, then $G \cong K_{1,3}$ since $G \neq P_{4}$. Let $V\left(K_{1,3}\right)=\{x, y, z$, w\}, where x is the vertex of degree 3. Then $\mathcal{F}=\{\{x, y\},\{x, z\},\{x, w\}\}$ and \mathcal{F} satisfies the condition of Theorem 4.3. If $|V(G)| \geq 5$, then $|\{u, v\} \cup\{x, y\}| \leq 4 \leq|V(G)|-1$ for any two edges $u v$ and $x y$ of G and so $\left(G, K_{n}\right)$ is competition-realizable by Theorem 4.3.

To show the converse, suppose that a pair $\left(G, K_{n}\right)$ is competition-realizable. If $|E(G)|=1$, then $G \cong K_{2}$ since G has no isolated vertices and, by Proposition 4.5, $n=1$. Suppose that $|E(G)|=2$. Then $G \cong K_{1,2}$ or $K_{2} \cup K_{2}$ since G is triangle-free and has no isolated vertices. By Theorem 4.3, neither ($K_{1,2}, K_{n}$) nor ($K_{2} \cup K_{2}, K_{n}$) is competition-realizable. Suppose that $|E(G)| \geq 3$. Then $n \geq \theta_{E}(G)=|E(G)| \geq 3$ by Lemma 2.3. By Theorem 4.3, the pair $\left(P_{4}, K_{n}\right)$ is not competition-realizable. Therefore $G \neq P_{4}$. Hence the proposition holds.

4.3. The case where $\alpha\left(G_{1}\right)=\alpha\left(G_{2}\right)=2$

Let C_{n} denote the cycle with n vertices. By checking all the orientations of the complete bipartite graph $K_{5,5}$, we can confirm that $\left(C_{5}, C_{5}\right)$ is not a competition-realizable pair. Since $\alpha\left(C_{5}\right)=2$, we can observe that the condition $\alpha\left(G_{1}\right)=$ $\alpha\left(G_{2}\right)=2$ does not guarantee the pair $\left(G_{1}, G_{2}\right)$ to be competition-realizable. For a graph G, we denote the complement of G by \bar{G}. Note that $\overline{C_{5}}=C_{5}$. More generally, we can show that the pairs of the complements of odd cycles are such examples (see [8] for a related topic).

Proposition 4.9. Let s and t be positive integers. Let $\left(G_{1}, G_{2}\right)=\left(\overline{C_{2 s+3}}, \overline{C_{2 t+3}}\right)$ Then $\left(G_{1}, G_{2}\right)$ is not competition-realizable and $\alpha\left(G_{1}\right)=\alpha\left(G_{2}\right)=2$.

We use the following lemma to prove this proposition.
Lemma 4.10. Let $\left(G_{1}, G_{2}\right)$ be a competition-realizable pair. If G_{1} is not a complete graph, then the vertex set of G_{2} can be partitioned into two cliques V_{1} and V_{2} of G_{2}.

Proof. Since $\left(G_{1}, G_{2}\right)$ is a competition-realizable pair, there exists an orientation D of the complete bipartite graph $K_{m, n}$ such that $C(D)=G_{1} \cup G_{2}$, where $m=\left|V\left(G_{1}\right)\right|$ and $n=\left|V\left(G_{2}\right)\right|$. Since G_{1} is not a complete graph, there are two vertices u_{1} and u_{2} in $V\left(G_{1}\right)$ which are not adjacent in G_{1}. Let $V_{1}:=N_{D}^{+}\left(u_{1}\right)$ and $V_{2}:=V\left(G_{2}\right) \backslash V_{1}$. Note that $V_{1} \subseteq V\left(G_{2}\right)$ and $V_{2} \subseteq V\left(G_{2}\right)$. Take any vertex v_{1} in V_{1}. Since v_{1} is an out-neighbor of u_{1} and since v_{1} cannot be a common out-neighbor of u_{1} and u_{2}, we have $v_{1} \notin N_{D}^{+}\left(u_{2}\right)$. Then $v_{1} \in N_{D}^{-}\left(u_{2}\right)$. Therefore $\left(v_{1}, u_{2}\right) \in A(D)$. Since v_{1} was arbitrarily taken from V_{1}, u_{2} is a common out-neighbor of all the vertices in V_{1} and thus V_{1} is a clique in G_{2}. Take any vertex v_{2} in V_{2}. Since v_{2} is not an out-neighbor of u_{1}, v_{2} is an in-neighbor of u_{1}. Therefore $\left(v_{2}, u_{1}\right) \in A(D)$. Since v_{2} is arbitrarily taken from V_{2}, u_{1} is a common out-neighbor of all the vertices in V_{2} and thus V_{2} is a clique in G_{2}.
Proof of Proposition 4.9. Let $\left(G_{1}, G_{2}\right)=\left(\overline{C_{2 s+3}}, \overline{C_{2 t+3}}\right)$. It is easy to see that $\alpha\left(G_{1}\right)=\alpha\left(G_{2}\right)=2$. Since the vertex set of an odd cycle of length at least 5 cannot be partitioned into two independent sets, the vertices of the complement $\overline{C_{2 s+3}}$ of an odd cycle cannot be covered by two cliques of $\overline{C_{2 s+3}}$. Thus it follows from Lemma 4.10 that $\left(G_{1}, G_{2}\right)$ is not competitionrealizable.

We can characterize the competition-realizable pairs $\left(G_{1}, G_{2}\right)$ when both G_{1} and G_{2} are cycles.
Proposition 4.11. Let m and n be integers greater than or equal to 3 . Then, the pair $\left(C_{m}, C_{n}\right)$ is competition-realizable if and only if $(m, n)=(4,4)$.

Fig. 2. The digraphs D_{1}, D_{2}, and D_{3}.
Proof. Let $\left(C_{m}, C_{n}\right)$ be a competition-realizable pair. By Lemma 2.3, we have $m=n$. By Theorem 3.2, we have $m \leq 5$. By Proposition $4.5,\left(C_{3}, C_{3}\right) \cong\left(K_{3}, K_{3}\right)$ is not a competition-realizable pair. Since neither $\left(C_{3}, C_{3}\right)$ nor $\left(C_{5}, C_{5}\right)$ is a competitionrealizable pair, we have $(m, n)=(4,4)$. In fact, the pair $\left(C_{4}, C_{4}\right)$ is competition-realizable. To show this, we consider a digraph D_{1} defined by $V\left(D_{1}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $A\left(D_{1}\right)=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{4}\right),\left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{2}\right)\right.$, $\left.\left(u_{3}, v_{3}\right),\left(u_{4}, v_{3}\right),\left(u_{4}, v_{4}\right),\left(v_{2}, u_{1}\right),\left(v_{3}, u_{1}\right),\left(v_{3}, u_{2}\right),\left(v_{4}, u_{2}\right),\left(v_{1}, u_{3}\right),\left(v_{4}, u_{3}\right),\left(v_{1}, u_{4}\right),\left(v_{2}, u_{4}\right)\right\}$ (see Fig. 2). Then, the underlying graph of D_{1} is the complete bipartite graph $K_{4,4}$ and the competition graph of D is $C_{4} \cup C_{4}$. Thus the pair (C_{4}, C_{4}) is competition-realizable. Hence the proposition holds.

We can also characterize a competition-realizable pair $\left(G_{1}, G_{2}\right)$ when both G_{1} and G_{2} are paths by using the following lemma.

Lemma 4.12. Let $\left(G_{1}, G_{2}\right)$ be a competition-realizable pair. If G_{1} and G_{2} are connected triangle-free graphs, then $\left|V\left(G_{2}\right)\right|-1 \leq$ $\left|V\left(G_{1}\right)\right| \leq\left|V\left(G_{2}\right)\right|+1$.

Proof. Since G_{1} and G_{2} are triangle-free, $\theta_{E}\left(G_{1}\right)=\left|E\left(G_{1}\right)\right|$ and $\theta_{E}\left(G_{2}\right)=\left|E\left(G_{2}\right)\right|$. Since G_{1} and G_{2} are connected, $\left|V\left(G_{1}\right)\right|-1 \leq$ $\left|E\left(G_{1}\right)\right|$ and $\left|V\left(G_{2}\right)\right|-1 \leq\left|E\left(G_{2}\right)\right|$. By Lemma 2.3, $\theta_{E}\left(G_{1}\right) \leq\left|V\left(G_{2}\right)\right|$ and $\theta_{E}\left(G_{2}\right) \leq\left|V\left(G_{1}\right)\right|$. Therefore $\left|V\left(G_{2}\right)\right|-1 \leq$ $\left|E\left(G_{2}\right)\right|=\theta_{E}\left(G_{2}\right) \leq\left|V\left(G_{1}\right)\right| \leq\left|E\left(G_{1}\right)\right|+1=\theta_{E}\left(G_{1}\right)+1 \leq\left|V\left(G_{2}\right)\right|+1$.

Let P_{n} denote the path with n vertices.
Proposition 4.13. Let m and n be positive integers such that $m \geq n$. Then, the pair $\left(P_{m}, P_{n}\right)$ is competition-realizable if and only if (m, n) is one of $(1,1),(2,1),(3,3)$, and $(4,3)$.

Proof. First, we show the "if" part. Since $P_{1} \cong K_{1}$ and $P_{2} \cong K_{2}$, the pairs (P_{1}, P_{1}) and (P_{2}, P_{1}) are competition-realizable by Theorem 4.1. Consider the case where $(m, n)=(3,3)$. Let D_{2} be the digraph defined by $V\left(D_{2}\right)=\left\{u_{1}, u_{2}, u_{3}\right\} \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ and $A\left(D_{2}\right)=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{3}\right),\left(v_{1}, u_{3}\right),\left(v_{2}, u_{1}\right),\left(v_{2}, u_{3}\right),\left(v_{3}, u_{1}\right)\right\}$ (see Fig. 2). Then the underlying graph of D_{2} is the complete bipartite graph $K_{3,3}$ and the competition graph of D_{2} is $P_{3} \cup P_{3}$. Thus the pair $\left(P_{3}, P_{3}\right)$ is competition-realizable. Consider the case where $(m, n)=(4,3)$. Let D_{3} be a digraph defined by $V\left(D_{3}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \cup$ $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $A\left(D_{3}\right)=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{2}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{3}\right),\left(v_{1}, u_{3}\right),\left(v_{1}, u_{4}\right),\left(v_{2}, u_{1}\right),\left(v_{2}, u_{4}\right),\left(v_{3}, u_{1}\right)\right.$, $\left.\left(v_{3}, u_{2}\right)\right\}$ (see Fig. 2). Then the underlying graph of D_{3} is the complete bipartite graph $K_{4,3}$ and the competition graph of D_{3} is $P_{4} \cup P_{3}$. Thus the pair $\left(P_{4}, P_{3}\right)$ is competition-realizable.

We now show the "only if" part. Assume that $\left(P_{m}, P_{n}\right)$ is a competition-realizable pair. Note that, if $n \geq 5$, then $\alpha\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil \geq 3$. By Theorem 3.2, we have $1 \leq n \leq 4$. By Lemma 4.12, we have $m=n$ or $m=n+1$. Therefore, $(m, n) \in\{(1,1),(2,1),(2,2),(3,2),(3,3),(4,3),(4,4)\}$. If $\left(G, P_{2}\right)$ is a competition-realizable pair, then G must contain an isolated vertex which is a common out-neighbor of the two vertices of P_{2} in an orientation D of the complete bipartite graph $K_{m, 2}$. Therefore neither $\left(P_{3}, P_{2}\right)$ nor $\left(P_{2}, P_{2}\right)$ is a competition-realizable pair. To show by contradiction that $\left(P_{4}, P_{4}\right)$ is not competition-realizable, suppose that $P_{4} \cup P_{4}$ is the competition graph of some orientation D of the complete bipartite graph $K_{4,4}$. Since P_{4} is triangle-free, $\left|N_{D}^{-}(x)\right| \leq 2$ for any vertex x of D. Then we have

$$
16=|A(D)|=\sum_{x \in V(D)}\left|N_{D}^{-}(x)\right| \leq 16
$$

Therefore, $\left|N_{D}^{-}(x)\right|=2$ holds for any vertex x of D. Moreover, $\left|N_{D}^{+}(x)\right|=4-\left|N_{D}^{-}(x)\right|=2$ holds for any vertex x of D. Since there are only six edges in $P_{4} \cup P_{4}$, there exists an edge e such that the endvertices x and y of e have two common outneighbors in D. Then, at least one of x and y, say x, has degree 2 in $P_{4} \cup P_{4}$. Therefore, the vertex x has an out-neighbor other than the two common out-neighbors of x and y in D. This implies that there is a vertex of out-degree at least 3 in D, which is a contradiction. Thus, $\left(P_{4}, P_{4}\right)$ is not a competition-realizable pair. Hence $(m, n) \in\{(1,1),(2,1),(3,3),(4,3)\}$.

5. Extremal competition-realizable pairs

In this section, we present competition-realizable pairs with the maximum number of edges and with the minimum number of edges.
5.1. The maximum number of edges in a competition-realizable pair

Theorem 5.1. Let m and n be positive integers. If $m \geq 6$ and $n \geq 6$, then the pair (K_{m}, K_{n}) has the maximum number of edges among all the competition realizable pairs $\left(G_{1}, G_{2}\right)$ with $\left|V\left(G_{1}\right)\right|=m$ and $\left|V\left(G_{2}\right)\right|=n$.

Proof. The theorem immediately follows from Proposition 4.4.
Therefore we have an upper bound for the number of edges of the competition graph of an oriented bipartite graph.
Corollary 5.2. Let m and n be positive integers. Let G be the competition graph of an orientation D of the complete bipartite graph $K_{m, n}$. If $m \geq 6$ and $n \geq 6$, then

$$
|E(G)| \leq \frac{1}{2} m(m-1)+\frac{1}{2} n(n-1)
$$

Proof. The corollary follows from Theorem 5.1.

5.2. The minimum number of edges in a competition-realizable pair

Lemma 5.3. Let m and n be positive integers. Let G be the competition graph of an orientation D of the complete bipartite graph $K_{m, n}$. Then

$$
|E(G)| \geq \min \left\{t(m, n), \frac{m(m-1)}{2}, \frac{n(n-1)}{2}\right\}
$$

where $t(m, n)$ is the number of edges in $K_{\left\lfloor\frac{m}{2}\right\rfloor} \cup K_{\left\lceil\frac{m}{2}\right\rceil} \cup K_{\left\lfloor\frac{n}{2}\right\rfloor} \cup K_{\left\lceil\frac{n}{2}\right\rceil}$, i.e.,

$$
t(m, n)=\frac{1}{8}\left\lfloor\frac{m}{2}\right\rfloor\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil\left(\left\lfloor\frac{m}{2}\right\rfloor-1\right)\left(\left\lceil\frac{m}{2}\right\rceil-1\right)\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)\left(\left\lceil\frac{n}{2}\right\rceil-1\right) .
$$

Proof. Let D be any orientation of the complete bipartite graph $K_{m, n}$, and let G be the competition graph of D. Let (U, V) be the bipartition of $K_{m, n}$ where $|U|=m$ and $|V|=n$. If one of U and V is a clique of G, then $|E(G)| \geq \min \left\{\frac{m(m-1)}{2}, \frac{n(n-1)}{2}\right\}$ and therefore the lemma holds. Suppose that neither U nor V is a clique of G. Then there are four vertices $u_{1}, u_{2} \in U$ and v_{1}, $v_{2} \in V$ such that u_{1} and u_{2} are not adjacent in G and v_{1} and v_{2} are not adjacent in G. By Lemma 4.10, U can be partitioned into two cliques U_{1} and U_{2} of G, and V can be partitioned into two cliques V_{1} and V_{2} of G. Therefore,

$$
\begin{aligned}
|E(G)| & \geq\left|E\left(G\left[U_{1}\right]\right)\right|+\left|E\left(G\left[U_{2}\right]\right)\right|+\left|E\left(G\left[V_{1}\right]\right)\right|+\left|E\left(G\left[V_{2}\right]\right)\right| \\
& =\left|E\left(K_{\left|U_{1}\right|}\right)\right|+\left|E\left(K_{m-\left|U_{1}\right|}\right)\right|+\left|E\left(K_{\left|V_{1}\right|}\right)\right|+\left|E\left(K_{n-\left|V_{1}\right|}\right)\right| \\
& \geq\left|E\left(K_{\left\lfloor\frac{m}{2}\right\rfloor}\right)\right|+\left|E\left(K_{\left\lceil\frac{m}{2}\right\rceil}\right)\right|+\left|E\left(K_{\left\lfloor\frac{n}{2}\right\rfloor}\right)\right|+\left|E\left(K_{\left\lceil\frac{n}{2}\right\rceil}\right)\right| \\
& =\left|E\left(K_{\left\lfloor\frac{m}{2}\right\rfloor} \cup K_{\left\lceil\frac{m}{2}\right\rceil} \cup K_{\left\lfloor\frac{n}{2}\right\rfloor} \cup K_{\left\lceil\frac{n}{2}\right\rceil}\right)\right| \\
& =t(m, n) .
\end{aligned}
$$

Hence the lemma holds.
Theorem 5.4. Let m and n be positive integers with $m \geq n$. Then, either the pair $\left(K_{\left\lfloor\frac{m}{2}\right\rfloor} \cup K_{\left\lceil\frac{m}{2}\right\rceil}, K_{\left\lfloor\frac{n}{2}\right\rfloor} \cup K_{\left\lceil\frac{n}{2}\right\rceil}\right)$ or the pair $\left(\overline{K_{m}}, K_{n}\right)$ has the minimum number of edges among all the competition-realizable pairs $\left(G_{1}, G_{2}\right)$ with $\left|V\left(G_{1}\right)\right|=m$ and $\left|V\left(G_{2}\right)\right|=n$.
Proof. We first show that the pair $\left(K_{\left\lfloor\frac{m}{2}\right\rfloor} \cup K_{\left\lceil\frac{m}{2}\right\rceil}, K_{\left\lfloor\frac{n}{2}\right\rfloor} \cup K_{\left\lceil\frac{n}{2}\right\rceil}\right)$ is competition-realizable. Let U_{1}, U_{2}, V_{1}, and V_{2} be disjoint sets with $\left|U_{1}\right|=\left\lfloor\frac{m}{2}\right\rfloor,\left|U_{2}\right|=\left\lceil\frac{m}{2}\right\rceil,\left|V_{1}\right|=\left\lfloor\frac{n}{2}\right\rfloor$, and $\left|V_{2}\right|=\left\lceil\frac{n}{2}\right\rceil$. Let D be the digraph defined by $V(D)=U_{1} \cup U_{2} \cup V_{1} \cup V_{2}$ and $A(D)=\left\{(u, v) \mid u \in U_{1}, v \in V_{1}\right\} \cup\left\{(u, v) \mid u \in U_{2}, v \in V_{2}\right\} \cup\left\{(v, u) \mid u \in U_{1}, v \in V_{2}\right\} \cup\left\{(v, u) \mid u \in U_{2}, v \in V_{1}\right\}$. Then, the underlying graph of D is the complete bipartite graph $K_{m, n}$, and the competition graph of D is $\left(K_{\left\lfloor\frac{m}{2}\right\rfloor} \cup K_{\left\lceil\frac{m}{2}\right\rceil}\right) \cup\left(K_{\left\lfloor\frac{n}{2}\right\rfloor} \cup K_{\left\lceil\left[\frac{n}{2}\right\rceil\right.}\right)$. Thus $\left(K_{\left\lfloor\frac{m}{2}\right\rfloor} \cup K_{\left\lceil\frac{m}{2}\right\rceil}, K_{\left\lfloor\frac{n}{2}\right\rfloor} \cup K_{\left\lceil\frac{n}{2}\right\rceil}\right)$ is competition-realizable.

Second, we show that the pair $\left(\overline{K_{m}}, K_{n}\right)$ is competition-realizable. Let U and V be disjoint sets with $|U|=m$ and $|V|=n$. Let D be the digraph defined by $V(D)=U \cup V$ and $A(D)=\{(v, u) \mid u \in U, v \in V\}$. Then, the underlying graph of D is the complete bipartite graph $K_{m, n}$, and the competition graph of D is $\overline{K_{m}} \cup K_{n}$. Thus the pair ($\left.\overline{K_{m}}, K_{n}\right)$ is competition-realizable.

Since $\left|E\left(\left(K_{\left\lfloor\frac{m}{2}\right\rfloor} \cup K_{\left\lceil\frac{m}{2}\right\rceil}\right) \cup\left(K_{\left\lfloor\frac{n}{2}\right\rfloor} \cup K_{\left\lceil\frac{n}{2}\right\rceil}\right)\right)\right|=t(m, n)$ and $\left|E\left(\overline{K_{m}} \cup K_{n}\right)\right|=\frac{1}{2} n(n-1)$, the theorem follows from Lemma 5.3.

Acknowledgments

The first author's work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2015R1A2A2A01006885). The second author's work was (partially) supported by the new faculty research fund of Ajou University (S-2014-G0001-00293). The third author's work was supported by JSPS KAKENHI Grant Number 15K20885.

References

[1] H.H. Cho, S.-R. Kim, J.R. Lundgren, Domination graphs of regular tournaments, Discrete Math. 252 (2002) 57-71.
[2] J.E. Cohen, Interval graphs and food web: A finding and a problem, in: RAND Corporation Document 17696-PR, Santa Monica, California, 1968.
[3] J.D. Factor, Domination graphs of extended rotational tournaments: chords and cycles, Ars Combin. 82 (2007) 69-82.
[4] D.C. Fisher, J.R. Lundgren, D.R. Guichard, S.K. Merz, K.B. Reid, Domination graphs of tournaments with isolated vertices, Ars Combin. 66(2003) $299-311$.
[5] D.C. Fisher, J.R. Lundgren, S.K. Merz, K.B. Reid, The domination and competition graphs of a tournament, J. Graph Theory 29 (1998) $103-110$.
[6] S.-R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory?, in: Ann. Discret. Math., vol. 55, North Holland B.V., Amsterdam, The Netherlands, 1993, pp. 313-326.
[7] S.-R. Kim, B. Park, Y. Sano, The competition numbers of complete multipartite graphs with many partite sets, Discrete Appl. Math. 160 (2012) 1176-1182.
[8] S.-R. Kim, B. Park, Y. Sano, The competition number of the complement of a cycle, Discrete Appl. Math. 161 (2013) 1755-1760.
[9] S.-R. Kim, Y. Sano, The competition numbers of complete tripartite graphs, Discrete Appl. Math. 156 (2008) 3522-3524.
[10] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs, and niche graphs, in: Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, in: IMH Volumes in Mathematics and Its Application, vol. 17, Springer-Verlag, New York, 1989, pp. 221-243.
[11] B. Park, S.-R. Kim, Y. Sano, The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares, Discrete Math. 309 (2009) 6464-6469.

[^0]: * Corresponding author.

 E-mail addresses: srkim@snu.ac.kr (S.-R. Kim), jungyeunlee@gmail.com (J.Y. Lee), borampark@ajou.ac.kr (B. Park), sano@cs.tsukuba.ac.jp (Y. Sano).

