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Abstract: The notion of H-matroids was introduced by U. Faigle and S. Fujishige in 2009 as a general model
for matroids and the greedy algorithm. They gave a characterization of H-matroids by the greedy
algorithm. In this note, we give a characterization of some H-matroids by rank functions.
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1. Introduction and main result

The notion of matroids was introduced by H. Whitney [10] in 1935 as an abstraction of the notion
of linear independence in a vector space. Many researchers have studied and extended the theory of
matroids (cf. [2, 4, 5, 8, 9]). In 2009, U. Faigle and S. Fujishige [1] introduced the notion of H-matroids
as a general model for matroids and the greedy algorithm. They gave a characterization of H-matroids
by the greedy algorithm. In this note, we give a characterization of the rank functions of H-matroids
that are simplicial complexes, for any family H. Our main result is as follows.

Theorem 1.1. Let E be a finite set and let ρ : 2E → Z≥0 be a set function on E. Let H be a family of
subsets of E with ∅, E ∈ H. Then, ρ is the rank function of an H-matroid (E, I) if and only if ρ is a
normalized unit-increasing function satisfying the H-extension property.

(E) (H-extension property)
For X ∈ 2E and H ∈ H with X ⊆ H, if ρ(X) = |X| < ρ(H),
then there exists e ∈ H \X such that ρ(X ∪ {e}) = ρ(X) + 1.

Moreover, if ρ is a normalized unit-increasing set function on E satisfying the H-extension property and
I := {X ∈ 2E | ρ(X) = |X|}, then (E, I) is an H-matroid with rank function ρ and I is a simplicial
complex.
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This note is organized as follows. Section 2 gives some definitions and preliminaries on H-matroids.
In Section 3, we give a proof of Theorem 1.1 and an example which shows H-matroids that are not
simplicial complexes are not characterized only by their rank functions.

2. Preliminaries

Let E be a nonempty finite set and let 2E denote the family of all subsets of E. For any family I of
subsets of E, the extreme-point operator exI : I → 2E and the co-extreme-point operator ex∗I : I → 2E

associated with I are defined as follows:

exI(I) := {e ∈ I | I \ {e} ∈ I} (I ∈ I),
ex∗I(I) := {e ∈ E \ I | I ∪ {e} ∈ I} (I ∈ I).

For any family I ⊆ 2E , we denote the set of maximal elements of I with respect to set inclusion by
Max(I).

Let I be a nonempty family of subsets of a finite set E. The family I is called constructible if it
satisfies

(C) exI(I) 6= ∅ for all I ∈ I \ {∅}.

Note that (C) implies ∅ ∈ I. We call I ∈ I a base of I if ex∗I(I) = ∅. We denote by B(I) the family of
bases of I, i.e., B(I) := {I ∈ I | ex∗I(I) = ∅}. By definition, it holds that B(I) ⊇Max(I).

A constructible family I induces a (base) rank function ρ : 2E → Z≥0 via

ρ(X) = maxB∈B(I)|X ∩B| = maxI∈I |X ∩ I| = maxI∈Max(I)|X ∩ I|.

The following is easily verified by definitions.

Lemma 2.1. The rank function ρ of a constructible family is normalized (i.e. ρ(∅) = 0) and satisfies
the unit-increase property

(UI) ρ(X) ≤ ρ(Y ) ≤ ρ(X) + |Y \X| for all X ⊆ Y ⊆ E.

Remark that, by putting X = ∅, we obtain

(UI)′ 0 ≤ ρ(Y ) ≤ |Y | for all Y ⊆ E.

The restriction of I to a subset A ∈ 2E is the family I(A) := {I ∈ I | I ⊆ A}. Note that every
restriction of a constructible family is constructible.

A simplicial complex is a family I ⊆ 2E such that X ⊆ I ∈ I implies X ∈ I. We can easily check
the following lemmas on simplicial complexes.

Lemma 2.2. A family I ⊆ 2E is a simplicial complex if and only if exI(I) = I holds for any I ∈ I.

Proof. The lemma follows from the definitions of a simplicial complex and exI(·).

Lemma 2.3. Let I ⊆ 2E be a simplicial complex and let X ∈ 2E. Then,

(a) B(I) = Max(I).

(b) For X ∈ 2E, X ∈ I if and only if ρ(X) = |X|.

(c) For H ∈ 2E, the family I(H) ⊆ 2H is a simplicial complex.
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Proof. (a): Suppose that there exists an element B ∈ B(I) \Max(I). Then, since B is not maximal
in I, there exists I ∈ I such that B ( I. For any e ∈ I \B, we have B ∪ {e} ∈ I since B ∪ {e} ⊆ I and
I is a simplicial complex. Therefore e ∈ ex∗I(B). But this is a contradiction to B ∈ B(I).

(b): If X ∈ I, then ρ(X) = maxI∈I |X ∩ I| = |X|. Take X ∈ 2E with ρ(X) = |X|. Then there
exists I ∈ I such that |X ∩ I| = ρ(X) = |X|. Therefore, X ⊆ I. Since I is a simplicial complex, we have
X ∈ I.

(c): Take any X ∈ 2H and I ∈ I(H) := {I ∈ I | I ⊆ H} with X ⊆ I. Since I is a simplicial complex,
X ∈ I. Since X ⊆ H, we have X ∈ I(H).

We now recall the definitions of an H-independence system and an H-matroid, which were introduced
by Faigle and Fujishige [1]. Let E be a finite set and let H be a family of subsets of E with ∅, E ∈ H. A
constructible family I ⊆ 2E is called an H-independence system if

(I) for all H ∈ H, there exists I ∈ I(H) such that |I| = ρ(H).

An H-matroid is a pair (E, I) of the set E and an H-independence system I satisfying the following
property:

(M) for all H ∈ H, all the bases B of I(H) have the same cardinality |B| = ρ(H).

3. Proof of Theorem 1.1

First, we see an example which shows that H-matroids that are not simplicial complexes are not
characterized by their rank functions.

Example 3.1. Let E = {1, 2, 3} and H = {∅, E}. Let

I1 = {∅, {2}, {1, 2}, {2, 3}},
I2 = {∅, {1}, {3}, {1, 2}, {2, 3}},
I3 = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}}.

Then (E, I1), (E, I2), and (E, I3) are H-matroids with the same rank function ρ : 2E → Z≥0 such that
ρ(∅) = 0, ρ({1}) = ρ({2}) = ρ({3}) = ρ({1, 3}) = 1, and ρ({1, 2}) = ρ({2, 3}) = ρ({1, 2, 3}) = 2.

Therefore, we cannot distinguish H-matroids in general by their rank functions. More generally, the
following holds.

Proposition 3.2. For any constructible families I and I ′ with Max(I) = Max(I ′), the rank function
ρ′ associated with I ′ coincides with the rank function ρ associated with I.

Proof. For any X ∈ 2E , it holds that

ρ(X) = maxI∈Max(I)|X ∩ I| = maxI∈Max(I′)|X ∩ I| = ρ′(X)

since Max(I) = Max(I ′).

In the following, we give a proof of Theorem 1.1.

Lemma 3.3. For any constructible family, there exists a simplicial complex such that their rank functions
are the same.
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Proof. Let I ⊆ 2E be a constructible family. Define I ′ := {X ∈ 2E | X ⊆ I for some I ∈ I}. Then
it is clear that I ′ is a simplicial complex. Obviously each Y ∈ Max(I) is maximal in I ′, and I ′ does
not have new maximal members. Therefore Max(I) = Max(I ′). Note that any simplicial complex is a
constructible family. By Proposition 3.2, the rank functions of I and I ′ are the same.

Lemma 3.4. Let ρ : 2E → Z≥0 be the rank function of an H-matroid (E, I), where I is a simplicial
complex. Then ρ satisfies the H-extension property.

Proof. Take X ∈ 2E and H ∈ H with X ⊆ H, and suppose that ρ(X) = |X| < ρ(H). By Lemma
2.3 (c), I(H) is a simplicial complex since I is a simplicial complex. Note that B(I(H)) = Max(I(H))
by Lemma 2.3 (a). By Lemma 2.3 (b), X ∈ I. Therefore X ∈ I(H), and X is not a base of I(H) by (I)
and (M) since ρ(X) < ρ(H). Thus there exists B ∈ I such that X ( B ⊆ H and |B| = ρ(H). Take any
element e ∈ B \X ⊆ H \X. Then X ∪ {e} ∈ I since X ∪ {e} ⊆ B ∈ I and I is a simplicial complex.
Hence it follows that ρ(X ∪ {e}) = |X ∪ {e}| = |X|+ 1 = ρ(X) + 1.

Lemma 3.5. Let ρ : 2E → Z≥0 be a normalized unit-increasing function satisfying the H-extension
property for some family H ⊆ 2E with ∅, E ∈ H. Put

Iρ := {X ∈ 2E | ρ(X) = |X|}.

Then (E, Iρ) is an H-matroid and Iρ is a simplicial complex.

Proof. First we show that Iρ is a simplicial complex. Take any I ∈ Iρ \ {∅} and any e ∈ I. Then
we have ρ(I) = |I|. Since ρ is unit-increasing, we have ρ(I) ≤ ρ(I \ {e}) + 1 and thus ρ(I \ {e}) ≥
ρ(I) − 1 = |I| − 1 = |I \ {e}|. By (UI) and ρ(∅) = 0, we also have ρ(I \ {e}) ≤ 0 + |I \ {e}| and thus
ρ(I \ {e}) ≤ |I \ {e}|. Therefore we have ρ(I \ {e}) = |I \ {e}| and thus I \ {e} ∈ Iρ. By Lemma 2.2, Iρ
is a simplicial complex. Hence it follows from definitions that Iρ satisfies (C) and (I).

Now we show that Iρ satisfies (M). Take any H ∈ H. Suppose that there exist B1, B2 ∈ B(I(H)
ρ )

such that |B1| 6= |B2|. Without loss of generality, we may assume that |B1| < |B2| ≤ ρ(H). Note that
ρ(B1) = |B1| and ρ(B2) = |B2|. Then, by (E), there exists e ∈ H \B1 such that ρ(B1∪{e}) = ρ(B1)+1 =
|B1|+1 = |B1 ∪ {e}|. Thus we have B1 ∪ {e} ∈ Iρ with B1 ∪ {e} ⊆ H. But this is a contradiction to the
assumption that B1 is a base of I(H)

ρ . Thus Iρ satisfies (M). Hence (E, Iρ) is an H-matroid.

Proof of Theorem 1.1. It follows from Lemmas 2.1, 3.3, 3.4, and 3.5.

Remark 3.6. Strict cg-matroids which were introduced by S. Fujishige, G. A. Koshevoy, and Y. Sano
[3] in 2007 can be considered as H-matroids (E, I) where H is an abstract convex geometry and I ⊆ H.
The rank functions ρ : H → Z≥0 of strict cg-matroids (E,H; I) are characterized in [6]. For more study
on cg-matroids, see [7].

Remark 3.7. Faigle and Fujishige gave a characterization of the rank functions H-matroids when H is
a closure space (see [1, Theorem 5.1]).
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able comments.
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