On the phylogeny graphs of degree-bounded digraphs

Seung Chul Lee ${ }^{\text {a }}$, Jihoon Choi ${ }^{\text {a }}$, Suh-Ryung Kim ${ }^{\text {a,* }}$, Yoshio Sano ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics Education, Seoul National University, Seoul 151-742, Republic of Korea
${ }^{\mathrm{b}}$ Division of Information Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan

ARTICLE INFO

Article history:

Received 8 November 2016
Received in revised form 15 May 2017
Accepted 17 July 2017
Available online 12 August 2017

Keywords:

Competition graph
Phylogeny graph
Moral graph
$(2,2)$ digraph
Chordal graph

Abstract

Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and outdegree at most two and whose competition graphs are interval. They called acyclic digraphs each vertex of which has indegree and outdegree at most two $(2,2)$ digraphs. In this paper, we study the phylogeny graphs of $(2,2)$ digraphs. Especially, we give a sufficient condition and necessary conditions for $(2,2)$ digraphs having chordal phylogeny graphs. Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is motivated by problems related to evidence propagation in a Bayesian network for which it is useful to know which acyclic digraphs have their moral graphs being chordal.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we deal with simple graphs and simple digraphs. In a digraph, we sometimes represent an arc (u, v) by $u \rightarrow v$.

Given an acyclic digraph D, the competition graph of D, denoted by $C(D)$, is the graph having vertex set $V(D)$ and edge set $\{u v \mid(u, w),(v, w) \in A(D)$ for some $w \in V(D)\}$. A graph G is called an interval graph if we can assign to each vertex x of G a real interval $J(x)$ so that, whenever $x \neq y, x y \in E(G)$ if and only if $J(x) \cap J(y) \neq \emptyset$. Cohen [1] introduced the notion of competition graphs in the study on predator-prey concepts in ecological food webs. Cohen's empirical observation that real-world competition graphs are usually interval graphs had led to a great deal of research on the structure of competition graphs and on the relationship between the structure of digraphs and their corresponding competition graphs. In the same vein, various variants of competition graphs have been introduced and studied. For recent work related to competition graphs, see $[4,7,8,10,19]$.

Steif [18] showed that it might be difficult to find the structural properties of acyclic digraphs whose competition graphs are interval. In that respect, Hefner et al. [6] placed restrictions on the indegree and the outdegree of vertices of acyclic digraphs to obtain the list of forbidden subdigraphs for acyclic digraphs whose competition graphs are interval.

The notion of phylogeny graphs was introduced by Roberts and Sheng [13] as a variant of competition graphs. (See also $[5,11,14-16,20$] for study on phylogeny graphs.) Given an acyclic digraph D, the underlying graph of D, denoted by $U(D)$, is the graph with vertex set $V(D)$ and edge set $\{x y \mid(x, y) \in A(D)$ or $(y, x) \in A(D)\}$. The phylogeny graph of an acyclic digraph D, denoted by $P(D)$, is the graph with vertex set $V(D)$ and edge set $E(U(D)) \cup E(C(D))$. For example, given an acyclic digraph D in Fig. 1(a), the competition graph of D is the graph $C(D)$ in Fig. $1(\mathrm{~b})$, and the phylogeny graph of D is the graph $P(D)$ in Fig. 1(c).
"Moral graphs", having arisen from studying Bayesian networks, are the same as phylogeny graphs. One of the bestknown problems, in the context of Bayesian networks, is related to the propagation of evidence. It consists of the assignment

[^0]
(a) D.

(b) $C(D)$.

(c) $P(D)$.

Fig. 1. (a) An acyclic digraph D, (b) The competition graph $C(D)$ of D, (c) The phylogeny graph $P(D)$ of D.
of probabilities to the values of the rest of the variables, once the values of some variables are known. Cooper [2] showed that this problem is NP-hard. Most noteworthy algorithms for this problem are given by Pearl [12], Shachter [17] and by Lauritzen and Spiegelhalter [9]. Those algorithms include a step of triangulating a moral graph, that is, adding edges to a moral graph to form a chordal graph.

A graph G is said to be chordal if every cycle in G of length greater than 3 has a chord, namely, an edge joining two nonconsecutive vertices on the cycle, that is, G does not contain a cycle of length at least 4 as an induced subgraph. Throughout this paper, we call a cycle C of length at least 4 as an induced subgraph a hole. A necessary and sufficient condition for a graph being interval is that the graph does not contain a cycle of length at least 4 as an induced subgraph and the complement of the graph is transitively orientable. This implies that an interval graph is chordal.

As triangulations of moral graphs play an important role in algorithms for propagation of evidence in a Bayesian network, studying chordality of the phylogeny graphs of acyclic digraphs is meaningful. Yet, characterizing the acyclic digraphs whose phylogeny graphs are chordal seems to be more difficult than characterizing the acyclic digraphs whose competition graphs are interval. In this respect, hoping to provide insights for the further research, we begin with " $(2,2)$ digraphs" to attack the problem. A $(2,2)$ digraph is an acyclic digraph such that each vertex has both outdegree and indegree at most two. Hefner et al. [6] characterized $(2,2)$ digraphs whose competition graphs are interval.

In this paper, we study the phylogeny graphs of $(2,2)$ digraphs. Especially, we give a sufficient condition and necessary conditions for $(2,2)$ digraphs having chordal phylogeny graphs.

2. Preliminaries

2.1. Properties of chordal graphs

We first see some properties of chordal graphs which will be used in characterizing the $(2,2)$ digraphs whose phylogeny graphs are chordal. The following propositions are easy to check.

Proposition 2.1. Any induced subgraph of a chordal graph is also a chordal graph.
Proposition 2.2. A chordal graph containing a cycle of length n has at least $2 n-3$ edges.
For a graph G and a vertex v of G, a neighbor of v in G is a vertex adjacent to v in G, and the set of neighbors of v in G is denoted by $N_{G}(v)$. Then the following holds.

Proposition 2.3. Let G be a chordal graph. For any cycle C in G and any edge $x y$ on C, there exists a vertex on C that is a common neighbor of x and y in G.

Proof. We show this by contradiction. Suppose that there exists a cycle C in G which has an edge $x y \in E(C)$ satisfying $N_{G}(x) \cap N_{G}(y) \cap V(C)=\emptyset$. We take a cycle of the shortest length among such cycles. Let $C:=v_{0} v_{1} \ldots v_{k-1} v_{0}$ be such a cycle. If $k=3$, then $N_{G}(x) \cap N_{G}(y) \cap V(C) \neq \emptyset$ for any $x y \in E(C)$. Thus $k \geq 4$. Since G is chordal, there exists a chord $v_{i} v_{j}$ of C, where $i<j$. Let P_{1} and P_{2} be the two (v_{i}, v_{j})-sections of C and consider the cycles $C_{1}:=P_{1}+v_{i} v_{j}$ and $C_{2}:=P_{2}+v_{i} v_{j}$. Since both C_{1} and C_{2} have lengths shorter than $k, N_{G}(x) \cap N_{G}(y) \cap V\left(C_{t}\right) \neq \emptyset$ for any $x y \in E\left(C_{t}\right)$ and $t=1$, 2. This implies that $N_{G}(x) \cap N_{G}(y) \cap V(C) \neq \emptyset$ for any $x y \in E(C)$, which is a contradiction.

We say that a vertex v on a cycle C of length at least 4 in a chordal graph G is a vertex opposite to a chord of C if the two vertices immediately following and immediately preceding it, respectively, in the sequence of C are adjacent. (For example, each of the vertices v_{2} and v_{5} in Fig. 2 is a vertex opposite to a chord.)

Proposition 2.4. Each cycle of length at least 4 in a chordal graph has at least two nonconsecutive vertices each of which is opposite to a chord of the cycle.

Fig. 2. Each of v_{2} and v_{5} is a vertex opposite to a chord of the cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$.

Fig. 3. A W-configuration.

Fig. 4. The possible neighbors of v_{1}.

Proof. Let G be a chordal graph, C be a cycle of length at least 4 in G, and G^{\prime} be the subgraph of G induced by the set of vertices of C, that is, $G^{\prime}=G[V(C)]$. Then G^{\prime} is chordal by Proposition 2.1. If G^{\prime} is complete, then the statement is trivially true. Suppose that G^{\prime} is not complete. As Dirac [3] showed that every non-complete chordal graph has at least two nonadjacent simplicial vertices (a simplicial vertex means a vertex whose neighbors form a clique), there exist two nonadjacent simplicial vertices u and v in G^{\prime}. Then each of u and v is obviously opposite to a chord of C. Since u and v are not adjacent in the induced subgraph G^{\prime} of G, u and v are not consecutive on C.

We call a graph isomorphic to the graph G defined by $V(G)=\left\{v_{1}, \ldots, v_{7}\right\}$ and $E(G)=\left\{v_{i} v_{j} \mid 1 \leq i<j \leq 7, j-i \leq 2\right\}$ a W-configuration (see Fig. 3).

Proposition 2.5. If a chordal graph with the degree of each vertex at most four contains a cycle of length 7, then it contains a W-configuration as a subgraph.

Proof. Let G be a chordal graph with the degree of each vertex at most four and let $C=v_{1} \cdots v_{7} v_{1}$ be a cycle of length 7 of G, and let H be the subgraph of G induced by the vertex set of C. Since G is chordal, so is H by Proposition 2.1. Since H is a chordal graph containing a cycle of length $7,|E(H)| \geq 11$ by Proposition 2.2. Then

$$
\sum_{v \in V(H)} \operatorname{deg}_{H}(v)=2|E(H)| \geq 2 \times 11=22
$$

Therefore there exists a vertex on C of degree 4 in H by the pigeonhole principle and the hypothesis. Without loss of generality, we may assume that v_{1} is a vertex of degree 4. By symmetry, it is sufficient to consider the following cases for the possible pairs of neighbors of v_{1} other than v_{2} and v_{7} : (a) $\left\{v_{5}, v_{6}\right\}$; (b) $\left\{v_{4}, v_{6}\right\}$; (c) $\left\{v_{3}, v_{6}\right\}$; (d) $\left\{v_{4}, v_{5}\right\}$ (see Fig. 4).

As a matter of fact, the cases (b) and (c) cannot happen. Suppose to the contrary that (b) happened. Then each of the 4-cycles $v_{1} v_{4} v_{5} v_{6} v_{1}$ and $v_{1} v_{2} v_{3} v_{4} v_{1}$ must contain a chord. By the way, v_{1} already has degree 4 , so $v_{4} v_{6}$ and $v_{4} v_{2}$ must be the chords of $v_{1} v_{4} v_{5} v_{6} v_{1}$ and $v_{1} v_{2} v_{3} v_{4} v_{1}$, respectively. Then $\operatorname{deg}_{G}\left(v_{4}\right) \geq 5$, which is a contradiction. Thus the case (b) cannot happen. Suppose that (c) happened. Then the 5 -cycle $v_{1} v_{3} v_{4} v_{5} v_{6} v_{1}$ must contain a chord since G is chordal. By the hypothesis that each vertex of G has degree at most $4, v_{3} v_{5}, v_{4} v_{6}, v_{3} v_{6}$ are the only possible chords. If $v_{3} v_{6}$ is a chord, then $v_{3} v_{4} v_{5} v_{6} v_{3}$ is a
hole, which is impossible. Thus v_{3} and v_{6} are not joined. Now if $v_{3} v_{5}$ is a chord, then $v_{1} v_{3} v_{5} v_{6} v_{1}$ is a hole, which is impossible again. Thus $v_{4} v_{6}$ is a chord. Then $v_{1} v_{3} v_{4} v_{6} v_{1}$ is a hole and we reach a contradiction. Hence the case (c) cannot happen.

Now we consider the case (a). By applying Proposition 2.3 to the edge $v_{1} v_{2}$ on the cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$, we conclude that one of v_{3}, v_{4}, v_{5} is a vertex that is adjacent to both v_{1} and v_{2}. Since each vertex has degree at most 4 by the hypothesis, it must be v_{5}. By the same proposition applied to the edge $v_{2} v_{3}$ on the cycle $v_{2} v_{3} v_{4} v_{5} v_{2}$, both of v_{2} and v_{3} are adjacent to v_{4} or v_{5}. Since v_{5} is adjacent to four vertices, the possibility of v_{5} is eliminated and so v_{4} is adjacent to v_{2} and v_{3}. Thus G contains a W-configuration.

We consider the case (d). By applying Proposition 2.3 to the edge $v_{1} v_{5}$ on the cycle $v_{1} v_{5} v_{6} v_{7} v_{1}$, we conclude that v_{6} or v_{7} is a vertex that is adjacent to both v_{1} and v_{5}. Since v_{1} is already adjacent to four vertices other than v_{6}, v_{6} is excluded and so v_{7} is adjacent to both v_{1} and v_{5}. By applying Proposition 2.3 to the cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$ and the edge $v_{1} v_{4}$, we conclude that v_{2} is adjacent to both v_{1} and v_{4}. Consequently we obtain a W-configuration.

2.2. Induced edges of the phylogeny graphs of (i, j) digraphs

We call an edge in the phylogeny graph $P(D)$ a cared edge in $P(D)$ if the edge belongs to the competition graph $C(D)$ but not to the underlying graph $U(D)$. For a cared edge $x y$ in $P(D)$, there is a common out-neighbor v of x and y in D by definition. The vertex v is called a vertex taking care of the edge $x y$ and it is said that $x y$ is taken care of by v or that v takes care of $x y$. A vertex in D is called an caring vertex if an edge of $P(D)$ is taken care of by the vertex. For example, the edges $v_{1} v_{7}, v_{7} v_{8}$, and $v_{2} v_{5}$ of $P(D)$ in Fig. $1(\mathrm{c})$ are cared edges and the vertices v_{6}, v_{9}, and v_{3} are vertices taking care of $v_{1} v_{7}, v_{7} v_{8}$, and $v_{2} v_{5}$, respectively.

We call an acyclic digraph D an (i, j) digraph if each vertex of D has indegree at most i and outdegree at most j. In the following, we study the structure of the phylogeny graph of a (i, j) digraph.

Lemma 2.6. Given an (i, j) digraph D, there is no vertex that takes care of more than $\frac{1}{2} i(i-1)$ edges in the phylogeny graph of D.
Proof. Suppose to the contrary that there exists a vertex x taking care of t different edges for $t \geq \frac{1}{2} i(i-1)+1$. Then these edges belong to the clique K in the phylogeny graph of D formed by the in-neighbors of x in D. Thus K contains at least $i+1$ vertices. Hence the indegree of x is greater than i, which contradicts the hypothesis that D is an (i, j) digraph.

The following is a consequence of Lemma 2.6 when $(i, j)=(2,2)$.
Corollary 2.7. Given $a(2,2)$ digraph D, there is no vertex that takes care of more than one cared edge in the phylogeny graph of D.

Lemma 2.8. Given an (i, j) digraph D, there is no vertex that is incident to more than $\frac{1}{2} i(i-1) j$ distinct cared edges in the phylogeny graph of D.

Proof. Take a vertex x incident to at least one cared edge and let e_{1}, \ldots, e_{t} be the cared edges in the phylogeny graph $P(D)$ of D incident to x, where t is a positive integer. Let w_{1}, \ldots, w_{s} be distinct vertices in D taking care of e_{1}, \ldots, e_{t}, where s is a positive integer. Then w_{1}, \ldots, w_{s} are out-neighbors of x, so $s \leq j$. By Lemma 2.6, each of the vertices w_{1}, \ldots, w_{s} can take care of at most $\frac{1}{2} i(i-1)$ edges in $P(D)$. Therefore $t \leq \frac{1}{2} i(i-1) s \leq \frac{1}{2} i(i-1) j$ and thus the lemma holds.

The following is a consequence of Lemma 2.8 when $(i, j)=(2,2)$.
Corollary 2.9. Given $a(2,2)$ digraph D, there is no vertex that is incident to three cared edges in the phylogeny graph of D.

3. Main results

3.1. The phylogeny graphs of $(2,2)$ digraphs are K_{5}-free

In this subsection, we show that there is no $(2,2)$ digraph whose phylogeny graph contains a complete graph K_{n} for $n \geq 5$. Note that we can construct a $(2,2)$ digraph whose phylogeny graph contains a complete graph K_{4} as a subgraph as shown in Example 3.1.

Example 3.1. Let D be a digraph defined by $V(D)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $A(D)=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{4}\right),\left(v_{2}, v_{3}\right)\right.$, $\left.\left(v_{2}, v_{5}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right)\right\}$ (see Fig. 5(a)). Then D is a (2,2) digraph, and the subgraph of $P(D)$ induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is isomorphic to K_{4} (see Fig. 5(b)).

Theorem 3.2. For any $(2,2)$ digraph D, the phylogeny graph of D is K_{5}-free.

Fig. 5. (a) A (2, 2) digraph D, (b) The phylogeny graph of D contains K_{4}.

Fig. 6. The vertex w_{1} taking care of $v_{4} v_{5}$. The gray edges are cared edges.

Proof. Suppose to the contrary that there is a $(2,2)$ digraph D whose phylogeny graph $P(D)$ contains K_{5} as a subgraph. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the vertices of K_{5}. Let D_{1} be the subdigraph of D induced by $\left\{v_{1}, \ldots, v_{5}\right\}$. Since D_{1} is acyclic, there is a vertex of indegree 0 in D_{1}. Without loss of generality, we may assume that v_{1} has indegree 0 . Now consider the edges $v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{1} v_{5}$ in $P(D)$. At most two of them are cared edges by Corollary 2.9. Therefore, at least two of $v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{1} v_{5}$ belong to $U(D)$. By the way, they must be arcs outgoing from v_{1} since v_{1} has indegree 0 in D_{1}. Since v_{1} has outdegree at most two in D, v_{1} has outdegree exactly two in D. Therefore exactly two of $v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{1} v_{5}$ belong to $U(D)$ and, consequently, the remaining two edges are cared edges in $P(D)$.

Without loss of generality, we may assume that $v_{1} v_{2}$ and $v_{1} v_{3}$ are cared edges. Then v_{4} and v_{5} are the out-neighbors of v_{1} in D. Since a vertex taking care of $v_{1} v_{2}$ (resp. $v_{1} v_{3}$) is an out-neighbor of $v_{1}, v_{1} v_{2}$ (resp. $v_{1} v_{3}$) is taken care of by v_{4} or v_{5}. Without loss of generality, we may assume that v_{4} is a common out-neighbor of v_{1} and v_{2} in D. Then, by Corollary $2.7, v_{5}$ is a common out-neighbor of v_{1} and v_{3}. However, since both v_{4} and v_{5} have indegree two, the edge $v_{4} v_{5}$ cannot belong to $U(D)$ and so is a cared edge in $P(D)$. Since $\left(v_{1}, v_{4}\right),\left(v_{2}, v_{4}\right),\left(v_{1}, v_{5}\right)$, and $\left(v_{3}, v_{5}\right)$ are arcs of D, none of v_{1}, v_{2}, v_{3} is a common out-neighbor of v_{4} and v_{5} by the acyclicity of D. Therefore, the edge $v_{4} v_{5}$ is taken care of by a vertex w_{1} distinct from v_{1}, v_{2}, v_{3} (see Fig. 6).

We show that at least one of $v_{3} v_{4}, v_{2} v_{5}$ is a cared edge. Suppose to the contrary that both $v_{3} v_{4}$ and $v_{2} v_{5}$ are not cared edges. Then $v_{3} v_{4}$ and $v_{2} v_{5}$ are inherited from arcs $\left(v_{4}, v_{3}\right)$ and $\left(v_{5}, v_{2}\right)$, respectively, since the indegrees of v_{4} and v_{5} are at most two. Therefore $v_{2} \rightarrow v_{4} \rightarrow v_{3} \rightarrow v_{5} \rightarrow v_{2}$ is a directed cycle, which contradicts the hypothesis that D is acyclic. Thus at least one of $v_{3} v_{4}, v_{2} v_{5}$ is a cared edge. Without loss of generality, we may assume that $v_{3} v_{4}$ is a cared edge. Since none of v_{2} and v_{5} can be an out-neighbor of v_{4}, neither v_{2} nor v_{5} takes care of $v_{3} v_{4}$. Since the indegree of v_{1} is $0, v_{1}$ does not take care of $v_{3} v_{4}$ either. Since w_{1} has in-neighbors v_{4} and v_{5}, w_{1} cannot take care of the edge $v_{3} v_{4}$ due to the degree condition imposed on D. Therefore the edge $v_{3} v_{4}$ is taken care of by a vertex w_{2} distinct from $v_{1}, v_{2}, v_{5}, w_{1}$. Recall that $v_{3} v_{4}$ and $v_{3} v_{1}$ are cared edges. Since v_{3} cannot be incident to three cared edges by Corollary 2.9, the edge $v_{2} v_{3}$ belongs to $U(D)$. Then v_{2} is an in-neighbor of v_{3} since the outdegree of v_{3} is at most two.

Finally we take a look at the edge $v_{2} v_{5}$. Since the indegree of v_{5} is two that is achieved by v_{1} and v_{3}, v_{2} cannot be an in-neighbor of v_{5}. If v_{2} is an out-neighbor of v_{5}, then it results in the directed cycle $v_{2} \rightarrow v_{3} \rightarrow v_{5} \rightarrow v_{2}$, which is a contradiction. Therefore $v_{2} v_{5}$ is a cared edge. Since v_{3} and v_{4} are the only out-neighbors of v_{2}, v_{3} or v_{4} takes care of $v_{2} v_{5}$. Since v_{5} is an out-neighbor of v_{3}, v_{3} cannot take care of the edge $v_{2} v_{5}$. Since the edge $v_{4} v_{5}$ is a cared edge, v_{4} cannot take care of the edge $v_{2} v_{5}$ either. Hence we have reached a contradiction.

3.2. A necessary condition for the phylogeny graph of a $(2,2)$ digraph being chordal

Properties of $(2,2)$ digraphs make us speculate that a sufficiently long hole in the underlying graph of a $(2,2)$ digraph D might give rise to a hole in the phylogeny graph of D as chords cannot be produced enough to fill in it. This motivates us to find the length of a shortest hole among holes in the underlying graph of a $(2,2)$ digraph whose phylogeny graph is chordal.

Lemma 3.3. Let D be $a(2,2)$ digraph. If the underlying graph of D contains a hole H of length at least 7 , then the subgraph of the phylogeny graph of D induced by $V(H)$ is not chordal.

Fig. 7. A W-configuration of G^{*}. The gray edges are cared edges.

Proof. Let $H=v_{1} v_{2} \cdots v_{n} v_{1}(n \geq 7)$ be a hole of length at least 7 in $U(D)$ and let G_{1} be the subgraph of $P(D)$ induced by $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$. Note that no edges on H are cared edges while the edges of G_{1} not on H are cared edges in $P(D)$. Suppose to the contrary that G_{1} is chordal. If there exists a vertex v with $\operatorname{deg}_{G_{1}}(v) \geq 5$, then v is incident to at least three cared edges in G_{1} and so in $P(D)$, which contradicts Corollary 2.9. Therefore $d_{G_{1}}(v) \leq 4$ for every vertex v in G_{1}.

Since G_{1} is a hamiltonian chordal graph with at least seven vertices, there exists a vertex on G_{1} opposite to a chord by Proposition 2.4. Without loss of generality, we may assume that v_{2} is such a vertex. Let G_{2} be the graph obtained by deleting v_{2} from G_{1}. Since v_{2} is a vertex opposite to a chord, G_{2} is a hamiltonian chordal graph with $n-1$ vertices with a hamiltonian cycle $v_{1} v_{3} v_{4} \cdots v_{n} v_{1}$. Since $n-1 \geq 6$, we may apply Proposition 2.4 again to have a vertex on G_{2} which is opposite to a chord. We delete one of such vertices from G_{2} to obtain a hamiltonian chordal graph with $n-2$ vertices. We continue this process until we obtain a hamiltonian chordal graph G^{*} with 7 vertices. Let $v_{n_{1}} v_{n_{2}} \cdots v_{n_{7}} v_{n_{1}}$ be a hamiltonian cycle of G^{*} with $n_{1}<n_{2}<\cdots<n_{7}$, which exists by the definition of G^{*}. By Proposition $2.5, G^{*}$ is a W-configuration. Without loss of generality, we may assume that it is labeled as in Fig. 7.

If the end vertices of an edge in G^{*} are not on the hamiltonian cycle $v_{n_{1}} v_{n_{2}} \cdots v_{n_{7}} v_{n_{1}}$, then the index difference of them is neither 1 nor $n-1$ since $n_{1}<n_{2}<\cdots<n_{7}$. Noting that an edge $v_{m} v_{k}(1 \leq m, k \leq n)$ is on H if and only if $|m-k|=1$ or $|m-k|=n-1$, we may conclude that $v_{n_{4}} v_{n_{1}}, v_{n_{4}} v_{n_{2}}, v_{n_{5}} v_{n_{1}}$, and $v_{n_{5}} v_{n_{7}}$ are cared edges. Let $w_{1}, w_{2}, w_{3}, w_{4}$ be caring vertices of the edges $v_{n_{4}} v_{n_{1}}, v_{n_{4}} v_{n_{2}}, v_{n_{5}} v_{n_{1}}, v_{n_{5}} v_{n_{7}}$, respectively. Then $w_{1}, w_{2}, w_{3}, w_{4}$ are all distinct by Corollary 2.7, and w_{1}, w_{2} (resp. w_{3}, w_{4}) are out-neighbors of $v_{n_{4}}$ (resp. $v_{n_{5}}$). Since D is a $(2,2)$ digraph, there cannot exist an arc between $v_{n_{4}}$ and $v_{n_{5}}$. Therefore $v_{n_{4}} v_{n_{5}}$ should be a cared edge. Then $v_{n_{4}}$ is incident to three cared edges, which contradicts Corollary 2.9. Hence G_{1} is not chordal.

By Lemma 3.3 and Proposition 2.1, the following theorem holds.
Theorem 3.4. Let D be $a(2,2)$ digraph. If the underlying graph of D contains a hole of length at least 7 , then the phylogeny graph of D is not a chordal graph.

3.3. Forbidden subdigraphs for the class of $(2,2)$ digraphs whose phylogeny graphs are chordal

Let \mathcal{D} be a class of digraphs. A digraph D_{0} is called a forbidden subdigraph for \mathcal{D} if $D \notin \mathcal{D}$ holds for any digraph D containing D_{0} as an induced subdigraph. Note that, by Lemma 3.3, the orientations of cycles of length at least 7 are forbidden subdigraphs for the class \mathcal{D}^{*} of $(2,2)$ digraphs whose phylogeny graphs are chordal. In this subsection, we determine the non-isomorphic orientations of cycles of length 4 or 5 or 6 that are forbidden subdigraphs for \mathcal{D}^{*}.

Theorem 3.5. Let \mathcal{D}^{*} be the class of $(2,2)$ digraphs whose phylogeny graphs are chordal. Then the digraphs given in Fig. 8 are the forbidden subdigraphs among orientations of cycles of length at most six for \mathcal{D}^{*}.

Proof. Suppose that a $(2,2)$ digraph D contains an orientation C of a cycle with length six given in Fig. 8 as an induced subdigraph. (We provided the chordal phylogeny graph of a $(2,2)$ digraph containing each of orientations of cycles of length 4 or 5 or 6 in Figs. 9-11 other than the ones given in Fig. 8.) Let S be the subgraph of the phylogeny graph $P(D)$ of D induced by $V(C)$. To reach a contradiction, suppose that $P(D)$ is chordal. Then, in case of (a)-(c), the subgraph of $P(D)$ induced by the vertex set of a cycle H_{1} of length five is contained in S, so it has at least two adjacent chords which are taken care of by two caring vertices. Since each vertex in D has indegree at most two, the two caring vertices must be distinct. In case of (d), (e), S contains the subgraph of $P(D)$ induced by the vertex set of a cycle H_{2} of length four, so it has a chord which is taken care of by a caring vertex. Since C is an induced subdigraph of D, neither the vertices taking care of chords of H_{1} nor the vertices taking care of chords of H_{2} can be on C. Therefore, in case of (a)-(c), the vertex common to the two adjacent chords of H_{1} must have two out-neighbors not on C and in case of (d), (e), there are two nonadjacent vertices on H_{2} each of which has an out-neighbor not on C. However, by the structure of C, each vertex on H_{1} has an out-neighbor on C and especially in case of (d), (e), there are two adjacent vertices on H_{2} each of which has two out-neighbors on C in D. Hence, in either case, we obtain a vertex of outdegree at least three, which is a contradiction.

Fig. 8. The forbidden subdigraphs among orientations of cycles of length at most six for the class of $(2,2)$ digraphs whose phylogeny graphs are chordal.

Fig. 9. The non-isomorphic orientations of cycles of length 4 and their corresponding phylogeny graphs which are chordal.

Fig. 10. Acyclic digraphs including the non-isomorphic (acyclic) orientations of the 5 -cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ as induced subdigraphs and their chordal phylogeny graphs.
3.4. Holes in the underlying graph and the phylogeny graph of a $(2,2)$ digraph

As the edges on holes in the underlying graph of a digraph are inherited to its phylogeny graph, one may expect that the phylogeny graph cannot have a hole longer than the ones in the underlying graph. Contrary to this expectation, each hole in the underlying graph of D in Fig. 12(a) has length 4 while the hole $H=v_{1} v_{2} v_{3} v_{6} v_{7} v_{4} v_{1}$ in its phylogeny graph $P(D)$ in Fig. 12(b) has length 6 . However, the phylogeny graph of a $(2,2)$ digraph lives up to the expectation as long as its underlying graph is chordal. Before we prove it, we derive the following statements to be used in the proof.

Proposition 3.6. Suppose that the phylogeny graph of $a(2,2)$ digraph D contains a hole H. If v is a vertex taking care of an edge on H, then v is not on H.
a

b

C

Fig. 11. The non-isomorphic acyclic orientations of the 6-cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ satisfying the property that there exists an acyclic digraph including one of them as an induced subdigraph such that its phylogeny graph is chordal. Each of the bottom graphs is the phylogeny graph of the digraph above it.

Fig. 12. (a) A (2, 2) digraph D, (b) The phylogeny graph of D.

Fig. 13. (a) $\mathrm{A}(2,2)$ digraph D having a hole $H=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ in $P(D)$. (b) The subgraph obtained from H by $\left\{w_{1}, w_{2}\right\}$.

Proof. Suppose to the contrary that there exists a vertex v on H taking care of an edge $x y$ on H. Then the edge $x v$ or the edge $y v$ is a chord of H, which is a contradiction.

Given a $(2,2)$ digraph D, suppose that the phylogeny graph $P(D)$ has a hole H of length n for $n \geq 4$ and $e_{1}, e_{2}, \ldots, e_{m}$ are the cared edges of H. Let $w_{1}, w_{2}, \ldots, w_{m}$ be vertices taking care of $e_{1}, e_{2}, \ldots, e_{m}$, respectively, and $W=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$. We call W a set extending H. Then $W \subseteq V(D)-V(H)$ by Proposition 3.6. We may obtain a cycle in $U(D)$ from H by replacing each edge e_{i} with a path of length two from one end of e_{i} to the other end of e_{i} with the interior vertex w_{i}. We call such a cycle the cycle obtained from H by W. Let L be the subgraph of $U(D)$ induced by $V(H) \cup W$. We call L the subgraph of $U(D)$ obtained from H by W. By definition, the cycle obtained from H by W is a hamiltonian cycle of the subgraph obtained from H by W. For example the graph in Fig. 13(b) is the subgraph obtained from H by $\left\{w_{1}, w_{2}\right\}$ (see Fig. 13(a) for the corresponding digraph).

Lemma 3.7. Suppose that the phylogeny graph of $a(2,2)$ digraph D contains a hole H. If L is the subgraph of the underlying graph $U(D)$ of D obtained from H by a set W extending H, then there is no edge joining two vertices belonging to W in $U(D)$.

Fig. 14. The arcs of D corresponding to $v_{1} v_{n}, v_{1} w_{1}, v_{2} v_{3}, v_{2} w_{1}, w_{1} v_{n}, w_{1} v_{3}$ in $U(D)$.

Proof. Suppose to the contrary that there exist vertices $w_{1}, w_{2} \in W$ that are adjacent in $U(D)$. Without loss of generality, we may assume that $\left(w_{1}, w_{2}\right) \in A(D)$. Since L is obtained from H by W, w_{2} is a vertex taking care of an edge on H. Thus w_{2} has two in-neighbors in D which belong to $V(H)$. Since $\left(w_{1}, w_{2}\right) \in A(D), w_{2}$ has indegree at least three, which is a contradiction.

Lemma 3.8. Let H be a hole in the phylogeny graph $P(D)$ of $a(2,2)$ digraph D, and L be the subgraph of the underlying graph $U(D)$ of D obtained from H by a set W extending H. If L is chordal and $x y \in E(H)$ is an edge in $P(D)$ taken care of by $w \in W$, then there exists a vertex z on H such that z is adjacent to both x and w in L.

Proof. Let C be the cycle obtained from H by W. Then C is a hamiltonian cycle of L. Since L is obtained from H by W containing w, the edge $x w$ is on C. Since L is chordal, there exists a vertex $z \in V(C)-\{x, w\}$ that is adjacent to both x and w in L by Proposition 2.3. Since L is a subgraph of $U(D), w$ and z are adjacent in $U(D)$. By Lemma 3.7, $z \notin W$ and so z belongs to H, which completes the proof.

Theorem 3.9. Let H be a hole of the phylogeny graph $P(D)$ of $a(2,2)$ digraph D. Then there is a hole $\phi(H)$ in the underlying graph $U(D)$ of D such that

- $\phi(H)$ equals H if H is a hole in $U(D)$;
- $\phi(H)$ is a hole in $U(D)$ only containing vertices in the subgraph obtained from H by a set extending H otherwise.

Moreover, if the holes of $P(D)$ are mutually vertex-disjoint and no hole in $U(D)$ has length 4 or 6 , then there exists an injective map from the set of holes in $P(D)$ to the set of holes in $U(D)$.

Proof. Let $H=v_{1} v_{2} \cdots v_{n} v_{1}$ be a hole in $P(D)$. If no edge of H is taken care of, then H is a hole in $U(D)$ and we let $\phi(H)=H$.
Suppose that at least one edge of H is taken care of. Let e_{1}, \ldots, e_{m} be the cared edges of H and let w_{i} be a vertex taking care of e_{i} for each $i=1, \ldots, m$. Let L be the subgraph of $U(D)$ obtained from H by $\left\{w_{1}, \ldots, w_{m}\right\}$.

To reach a contradiction, suppose that L is chordal. Without loss of generality, we may assume that v_{1} and v_{2} are the end vertices of e_{1}. By Lemma 3.8, v_{1} and w_{1} have a common neighbor in L, say z, on H. Since $v_{1} v_{2}$ is a cared edge, $z \neq v_{2}$. Since H is a hole in $P(D)$, the edge $v_{1} z$ cannot be a chord of H and so $z=v_{n}$. Therefore $v_{n} w_{1}$ and $v_{n} v_{1}$ are edges in L. Since L is a subgraph of $U(D), v_{n} w_{1}$ and $v_{n} v_{1}$ are edges in $U(D)$. Since w_{1} has v_{1} and v_{2} as in-neighbors and D is a (2, 2) digraph, v_{n} must be an out-neighbor of w_{1} in D. Since D is acyclic, v_{n} is an out-neighbor of v_{1}. Similarly, v_{3} is a common out-neighbor of v_{2}, w_{1} in D (see Fig. 14).

Now we consider the graph L^{*} obtained by deleting v_{1} and v_{2} from L. We note that $H^{*}:=w_{1} v_{3} v_{4} \cdots v_{n} w_{1}$ is a hole in $P(D)$ and that L^{*} is the subgraph of $U(D)$ obtained from H^{*} by $\left\{w_{2}, w_{3}, \ldots, w_{n}\right\}$. By applying Proposition 2.1 to L, we can conclude that the subgraph L^{*} is chordal. For an edge $w_{1} v_{3}$ on L^{*}, there exists a vertex $z^{*} \in V\left(H^{*}\right)$ that is adjacent to both w_{1} and v_{3} in $U(D)$ by Lemma 3.8. Since $z^{*} w_{1}$ and $z^{*} v_{3}$ are edges of L^{*} and L^{*} is a subgraph of $U(D)$, they are edges in $U(D)$. Then $z^{*}=v_{n}$ since $z^{*} \in N_{U(D)}\left(w_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{n}\right\}$ and $z^{*} \notin\left\{v_{1}, v_{2}, v_{3}\right\}$. Therefore the edge $z^{*} v_{3}$ in $U(D)$ is now $v_{n} v_{3}$. Thus either $\left(v_{3}, v_{n}\right)$ or $\left(v_{n}, v_{3}\right)$ is an arc in D. However $v_{n} \notin\left\{v_{2}, w_{1}\right\}=N_{D}^{-}\left(v_{3}\right)$ and $v_{3} \notin\left\{v_{1}, w_{1}\right\}=N_{D}^{-}\left(v_{n}\right)$, which is a contradiction. Thus L contains a hole, that is, there exists a hole all of whose vertices are in L. We take one of such holes as $\phi(H)$. Then ϕ defines a map from the set of holes in $P(D)$ to the set of holes in $U(D)$.

To show the second part of the theorem, we assume that the holes of $P(D)$ are mutually vertex-disjoint and no hole in $U(D)$ has length 4 or 6 . We take ϕ^{*} whose image has the largest size among the maps that can be obtained by the way described in the previous argument. Then we take two distinct holes H_{1} and H_{2} in $P(D)$. By the hypothesis, H_{1} and H_{2} are vertex-disjoint. Let L_{1} and L_{2} be the subgraphs of $U(D)$ obtained from H_{1} and H_{2} by sets W_{1} and W_{2} extending H_{1} and H_{2}, respectively. By the above argument, $\phi^{*}\left(H_{1}\right)$ (resp. $\phi^{*}\left(H_{2}\right)$) is a hole whose vertices are on L_{1} (resp. L_{2}). Suppose $\phi^{*}\left(H_{1}\right)=\phi^{*}\left(H_{2}\right)=$: H^{*}. If H^{*} contains a vertex neither on H_{1} nor on H_{2}, then it is a vertex taking care of an edge on H_{1} and an edge on H_{2} at the same time, which contradicts the hypothesis that D is a $(2,2)$ digraph. Thus H^{*} consists of vertices on H_{1} or H_{2}. Suppose that H^{*} contains two consecutive vertices both of which are on H_{1} (resp. H_{2}). Then they are adjacent by an arc a in D. Since they belong to H_{1} (resp. H_{2}), they are vertices taking care of edges on H_{2} (resp. H_{1}) since H_{1} and H_{2} are vertex-disjoint. Therefore each of them has two in-neighbors on H_{2} (resp. H_{1}). However, due to a, one of them must have indegree at least three in D and we reach a contradiction. Thus the vertices on H^{*} belong alternatively to H_{1} and H_{2} and so H^{*} is a hole of an even length.

By the hypothesis, H^{*} has length at least 8 . Then, by applying Theorem 3.4 to the subgraph of $P(D)$ induced by $V\left(H^{*}\right)$, there exists a hole in $P(D)$ all of whose vertices are on H^{*}. Since each vertex on H^{*} belongs to H_{1} or H_{2}, by the hypothesis that the holes in $P(D)$ are vertex-disjoint, this hole is either H_{1} or H_{2}. Without loss of generality, we may assume that it is H_{1}. Let C be the cycle obtained from H_{2} by W_{2}. Then

$$
V\left(H_{1}\right) \subseteq V\left(H^{*}\right) \subseteq V(C)=V\left(L_{2}\right)=V\left(H_{2}\right) \cup W_{2}
$$

Now, since H_{1} and H_{2} are vertex-disjoint, $V\left(H_{1}\right) \subseteq W_{2}$ and so each vertex on H_{1} takes care of an edge on H_{2}. Moreover, since $\left|V\left(H_{2}\right) \cap V\left(H^{*}\right)\right|$ is the same as the number of edges on H_{1}, each edge on H_{1} is taken care of by a vertex in $V\left(H_{2}\right) \cap V\left(H^{*}\right)$.

Take a vertex u on H_{1}. Then u is adjacent to two vertices, say z_{1} and z_{2}, on H_{1}. As we claimed that each vertex both on H^{*} and H_{2} takes care of each edge of H_{1}, there are out-neighbors v and w of u such that v and w are on $V\left(H^{*}\right) \cap V\left(H_{2}\right)$ and $\left(z_{1}, v\right)$, $(u, v),\left(z_{2}, w\right),(u, w)$ are arcs in D. Since v and w are caring vertices, they are not adjacent in $U(D)$ by Lemma 3.7. Since u belongs to H^{*}, u is a vertex taking care of an edge $x y$ on H_{2}. Then x and y are in-neighbors of u in D. We take the (v, w)-section P of C that does not contain u. Then x and y, which are consecutive on H_{2}, do not belong to P since $x u y$ is a section of C by the way in which C is obtained. Thus, by the degree restriction on D, u is not adjacent to any vertex on P other than v and w in $U(D)$. We take a shortest (v, w)-path P^{*} in the subgraph of $U(D)$ induced by the vertex set of P. Since v and w are not adjacent in $U(D), u P^{*} u$ is a hole in $U(D)$. Suppose $u P^{*} u=H^{*}$. Then the vertex z_{1}, which is on H^{*}, is on P^{*}. If x and v are adjacent in $U(D)$, then, since v has already two in-neighbors z_{1} and u, the edge $x v$ in $U(D)$ has orientation (v, x) to form a directed cycle $u \rightarrow v \rightarrow x \rightarrow u$, which is impossible. Thus x and v are not adjacent in $U(D)$. Hence, for the (u, v)-section Q of C containing x, Qu contains a hole $H^{* *}$ in $U(D)$ containing u and x since u is not adjacent to any vertex other than x and v on Q. Since x is not on P, it is not on $u P^{*} u$. Then, since $u P^{*} u=H^{*}, x$ does not belong to H^{*} and therefore $H^{* *}$ is distinct from H^{*}. Therefore we can conclude that $u P^{*} u$ or $H^{* *}$ is a hole different from H^{*} containing u in $U(D)$. We change $\phi^{*}\left(H_{2}\right)$ into $u P^{*} u$ if $H^{*} \neq u P^{*} u$ and into $H^{* *}$ otherwise. By the degree restriction on D, u belongs to only L_{1} and L_{2}. Thus the new $\phi^{*}\left(H_{2}\right)$ does not equal any of ϕ^{*}-values of other holes in $P(D)$ and we have obtained a map from the set of holes in $P(D)$ to a set of holes in $U(D)$ with image larger than ϕ^{*}, which contradicts the choice of ϕ^{*}.

Remark 3.10. The "Moreover" part of Theorem 3.9 does not hold in general. For the digraph D given in Fig. 13, the holes in $P(D)$ are $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ and $v_{1} v_{2} v_{3} w_{2} v_{5} v_{1}$ while the hole in $U(D)$ is $v_{1} w_{1} v_{2} v_{3} w_{2} v_{5} v_{1}$.

Corollary 3.11. Let D be $a(2,2)$ digraph. Suppose that the holes of $P(D)$ are mutually vertex-disjoint and no holes in $U(D)$ has length 4 or 6 . Then the number of holes in $U(D)$ is greater than or equal to that of holes in $P(D)$.

Corollary 3.12. Let D be $a(2,2)$ digraph. If $U(D)$ is chordal, then $P(D)$ is also chordal.

4. Concluding remarks

In this paper, we obtained the complete list of orientations of cycles that are forbidden subdigraphs for the class of $(2,2)$ digraphs whose phylogeny graphs are chordal. Furthermore, we showed that if the holes of the phylogeny graph $P(D)$ of a $(2,2)$ digraph D are mutually vertex-disjoint and no holes in the underlying graph $U(D)$ of D has length 4 or 6 , then the number of holes in $U(D)$ is greater than or equal to that of holes in $P(D)$, which implies the following: If the underlying graph of a $(2,2)$ digraph D is chordal, then the phylogeny graph of D is also chordal. It would be interesting to give a good necessary and sufficient condition for $(2,2)$ digraphs having chordal phylogeny graphs.

Acknowledgments

The second author's research was supported by Global Ph.D. Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2015H1A2A1033541). The third author's research was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MEST) (No. NRF2015R1A2A2A01006885) and by the Korea government (MSIP) (No. 2016R1A5A1008055). The fourth author's work was supported by JSPS KAKENHI Grant Number JP15K20885.

References

[^1][10] Bo-Jr Li, Gerard J. Chang, Competition numbers of complete r-partite graphs, Discrete Appl. Math. 160 (15) (2012) $2271-2276$.
[11] Boram Park, Yoshio Sano, The phylogeny graphs of double partial orders, Discuss. Math. Graph Theory 33 (4) (2013) 657-664.
[12] Judea Pearl, Fusion, propagation, and structuring in belief networks, Artif. Intell. 29 (3) (1986) 241-288.
[13] Fred S. Roberts, Li Sheng, Phylogeny graphs of arbitrary digraphs, Math. Hierarchies Biol. (1997) 233-238.
[14] Fred S. Roberts, Li Sheng, Phylogeny numbers, Discrete Appl. Math. 87 (1-3) (1998) 213-228.
[15] Fred S. Roberts, Li Sheng, Extremal phylogeny numbers, J. Comb. Inf. Syst. Sci. 24 (1999) 143-149.
[16] Fred S. Roberts, Li Sheng, Phylogeny numbers for graphs with two triangles, Discrete Appl. Math. 103 (1) (2000) 191-207.
[17] Ross D. Shachter, Probabilistic inference and influence diagrams, Oper. Res. 36 (4) (1988) 589-604.
[18] Jeffrey E. Steif, Frame Dimension, Generalized Competition Graphs, and Forbidden Sublist Characterizations Henry Rutgers thesis, Department of Mathematics, Rutgers University, New Brunswick, NJ, 1982.
[19] Xinhong Zhang, Ruijuan Li, The (1, 2)-step competition graph of a pure local tournament that is not round decomposable, Discrete Appl. Math. 205 (2016) 180-190.
[20] Yongqiang Zhao, Wenjie He, Note on competition and phylogeny numbers, Australas. J. Combin. 34 (2006) 239-246.

[^0]: * Corresponding author.

 E-mail addresses: mobum83@nate.com (S.C. Lee), gaouls@snu.ac.kr (J. Choi), srkim@snu.ac.kr (S.-R. Kim), sano@cs.tsukuba.ac.jp (Y. Sano).

[^1]: [1] Joel E. Cohen, Interval graphs and food webs: a finding and a problem, RAND Corp. Doc. 17696 (1968).
 [2] Gregory F. Cooper, The computational complexity of probabilistic inference using bayesian belief networks, Artif. Intell. 42 (2-3) (1990) 393-405.
 [3] Gabriel Andrew Dirac, On rigid circuit graphs, in: Abhandlungen Aus Dem Mathematischen Seminar Der UniversitäT Hamburg, vol. 25, Springer, 1961, pp. 71-76.
 [4] Kim A.S. Factor, Sarah K. Merz, The (1, 2)-step competition graph of a tournament, Discrete Appl. Math. 159 (2) (2011) 100-103.
 [5] Stephen Hartke, The elimination procedure for the phylogeny number, Ars Combin. 75 (2005) 297-312.
 [6] Kim A.S. Hefner, Kathryn F. Jones, Suh-ryung Kim, J. Richard Lundgren, Fred S. Roberts, (i, j) competition graphs, Discrete Appl. Math. 32 (1991) $241-262$.
 [7] Akira Kamibeppu, A sufficient condition for kims conjecture on the competition numbers of graphs, Discrete Math. 312 (6) (2012) $1123-1127$.
 [8] Jaromy Kuhl, Transversals and competition numbers of complete multipartite graphs, Discrete Appl. Math. 161 (3) (2013) 435-440.
 [9] Steffen L. Lauritzen, David J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, J. R. Stat. Soc. Ser. B Stat. Methodol. (1988) 157-224.

