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a b s t r a c t

Hefner et al. (1991) characterized acyclic digraphs each vertex of which has indegree and
outdegree at most two and whose competition graphs are interval. They called acyclic
digraphs each vertex of which has indegree and outdegree at most two (2, 2) digraphs. In
this paper, we study the phylogeny graphs of (2, 2) digraphs. Especially, we give a sufficient
condition and necessary conditions for (2, 2) digraphs having chordal phylogeny graphs.
Phylogeny graphs are also called moral graphs in Bayesian network theory. Our work is
motivated by problems related to evidence propagation in a Bayesian network for which it
is useful to know which acyclic digraphs have their moral graphs being chordal.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we deal with simple graphs and simple digraphs. In a digraph, we sometimes represent an arc
(u, v) by u → v.

Given an acyclic digraph D, the competition graph of D, denoted by C(D), is the graph having vertex set V (D) and edge
set {uv | (u, w), (v, w) ∈ A(D) for some w ∈ V (D)}. A graph G is called an interval graph if we can assign to each vertex x
of G a real interval J(x) so that, whenever x ̸= y, xy ∈ E(G) if and only if J(x) ∩ J(y) ̸= ∅. Cohen [1] introduced the notion
of competition graphs in the study on predator–prey concepts in ecological food webs. Cohen’s empirical observation that
real-world competition graphs are usually interval graphs had led to a great deal of research on the structure of competition
graphs and on the relationship between the structure of digraphs and their corresponding competition graphs. In the same
vein, various variants of competition graphs have been introduced and studied. For recent work related to competition
graphs, see [4,7,8,10,19].

Steif [18] showed that it might be difficult to find the structural properties of acyclic digraphs whose competition graphs
are interval. In that respect, Hefner et al. [6] placed restrictions on the indegree and the outdegree of vertices of acyclic
digraphs to obtain the list of forbidden subdigraphs for acyclic digraphs whose competition graphs are interval.

The notion of phylogeny graphs was introduced by Roberts and Sheng [13] as a variant of competition graphs. (See
also [5,11,14–16,20] for study on phylogeny graphs.) Given an acyclic digraph D, the underlying graph of D, denoted by U(D),
is the graph with vertex set V (D) and edge set {xy | (x, y) ∈ A(D) or (y, x) ∈ A(D)}. The phylogeny graph of an acyclic digraph
D, denoted by P(D), is the graph with vertex set V (D) and edge set E(U(D)) ∪ E(C(D)). For example, given an acyclic digraph
D in Fig. 1(a), the competition graph of D is the graph C(D) in Fig. 1(b), and the phylogeny graph of D is the graph P(D) in
Fig. 1(c).

‘‘Moral graphs’’, having arisen from studying Bayesian networks, are the same as phylogeny graphs. One of the best-
known problems, in the context of Bayesian networks, is related to the propagation of evidence. It consists of the assignment
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(a) D. (b) C(D). (c) P(D).

Fig. 1. (a) An acyclic digraph D, (b) The competition graph C(D) of D, (c) The phylogeny graph P(D) of D.

of probabilities to the values of the rest of the variables, once the values of some variables are known. Cooper [2] showed
that this problem is NP-hard. Most noteworthy algorithms for this problem are given by Pearl [12], Shachter [17] and by
Lauritzen and Spiegelhalter [9]. Those algorithms include a step of triangulating a moral graph, that is, adding edges to a
moral graph to form a chordal graph.

A graph G is said to be chordal if every cycle in G of length greater than 3 has a chord, namely, an edge joining two
nonconsecutive vertices on the cycle, that is, G does not contain a cycle of length at least 4 as an induced subgraph.
Throughout this paper,we call a cycle C of length at least 4 as an induced subgraph a hole. A necessary and sufficient condition
for a graph being interval is that the graph does not contain a cycle of length at least 4 as an induced subgraph and the
complement of the graph is transitively orientable. This implies that an interval graph is chordal.

As triangulations of moral graphs play an important role in algorithms for propagation of evidence in a Bayesian network,
studying chordality of the phylogeny graphs of acyclic digraphs ismeaningful. Yet, characterizing the acyclic digraphswhose
phylogeny graphs are chordal seems to be more difficult than characterizing the acyclic digraphs whose competition graphs
are interval. In this respect, hoping to provide insights for the further research, we begin with ‘‘(2, 2) digraphs’’ to attack
the problem. A (2, 2) digraph is an acyclic digraph such that each vertex has both outdegree and indegree at most two.
Hefner et al. [6] characterized (2, 2) digraphs whose competition graphs are interval.

In this paper, we study the phylogeny graphs of (2, 2) digraphs. Especially, we give a sufficient condition and necessary
conditions for (2, 2) digraphs having chordal phylogeny graphs.

2. Preliminaries

2.1. Properties of chordal graphs

We first see some properties of chordal graphs which will be used in characterizing the (2, 2) digraphs whose phylogeny
graphs are chordal. The following propositions are easy to check.

Proposition 2.1. Any induced subgraph of a chordal graph is also a chordal graph.

Proposition 2.2. A chordal graph containing a cycle of length n has at least 2n − 3 edges.

For a graph G and a vertex v of G, a neighbor of v in G is a vertex adjacent to v in G, and the set of neighbors of v in G is
denoted by NG(v). Then the following holds.

Proposition 2.3. Let G be a chordal graph. For any cycle C in G and any edge xy on C, there exists a vertex on C that is a common
neighbor of x and y in G.

Proof. We show this by contradiction. Suppose that there exists a cycle C in G which has an edge xy ∈ E(C) satisfying
NG(x)∩NG(y)∩ V (C) = ∅. We take a cycle of the shortest length among such cycles. Let C := v0v1 . . . vk−1v0 be such a cycle.
If k = 3, then NG(x) ∩ NG(y) ∩ V (C) ̸= ∅ for any xy ∈ E(C). Thus k ≥ 4. Since G is chordal, there exists a chord vivj of C ,
where i < j. Let P1 and P2 be the two (vi, vj)-sections of C and consider the cycles C1 := P1 + vivj and C2 := P2 + vivj. Since
both C1 and C2 have lengths shorter than k, NG(x) ∩ NG(y) ∩ V (Ct ) ̸= ∅ for any xy ∈ E(Ct ) and t = 1, 2. This implies that
NG(x) ∩ NG(y) ∩ V (C) ̸= ∅ for any xy ∈ E(C), which is a contradiction. □

We say that a vertex v on a cycle C of length at least 4 in a chordal graph G is a vertex opposite to a chord of C if the two
vertices immediately following and immediately preceding it, respectively, in the sequence of C are adjacent. (For example,
each of the vertices v2 and v5 in Fig. 2 is a vertex opposite to a chord.)

Proposition 2.4. Each cycle of length at least 4 in a chordal graph has at least two nonconsecutive vertices each of which is
opposite to a chord of the cycle.
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Fig. 2. Each of v2 and v5 is a vertex opposite to a chord of the cycle v1v2v3v4v5v1 .

Fig. 3. A W -configuration.

Fig. 4. The possible neighbors of v1 .

Proof. Let G be a chordal graph, C be a cycle of length at least 4 in G, and G′ be the subgraph of G induced by the set of vertices
of C , that is, G′

= G[V (C)]. Then G′ is chordal by Proposition 2.1. If G′ is complete, then the statement is trivially true. Suppose
that G′ is not complete. As Dirac [3] showed that every non-complete chordal graph has at least two nonadjacent simplicial
vertices (a simplicial vertexmeans a vertexwhose neighbors form a clique), there exist two nonadjacent simplicial vertices u
and v in G′. Then each of u and v is obviously opposite to a chord of C . Since u and v are not adjacent in the induced subgraph
G′ of G, u and v are not consecutive on C . □

We call a graph isomorphic to the graph G defined by V (G) = {v1, . . . , v7} and E(G) = {vivj | 1 ≤ i < j ≤ 7, j − i ≤ 2} a
W-configuration (see Fig. 3).

Proposition 2.5. If a chordal graph with the degree of each vertex at most four contains a cycle of length 7, then it contains a
W-configuration as a subgraph.

Proof. Let G be a chordal graph with the degree of each vertex at most four and let C = v1 · · · v7v1 be a cycle of length 7 of
G, and let H be the subgraph of G induced by the vertex set of C . Since G is chordal, so is H by Proposition 2.1. Since H is a
chordal graph containing a cycle of length 7, |E(H)| ≥ 11 by Proposition 2.2. Then∑

v∈V (H)

degH (v) = 2|E(H)| ≥ 2 × 11 = 22.

Therefore there exists a vertex on C of degree 4 in H by the pigeonhole principle and the hypothesis. Without loss of
generality, we may assume that v1 is a vertex of degree 4. By symmetry, it is sufficient to consider the following cases
for the possible pairs of neighbors of v1 other than v2 and v7: (a) {v5, v6}; (b) {v4, v6}; (c) {v3, v6}; (d) {v4, v5} (see Fig. 4).

As a matter of fact, the cases (b) and (c) cannot happen. Suppose to the contrary that (b) happened. Then each of the
4-cycles v1v4v5v6v1 and v1v2v3v4v1 must contain a chord. By the way, v1 already has degree 4, so v4v6 and v4v2 must be the
chords of v1v4v5v6v1 and v1v2v3v4v1, respectively. Then degG(v4) ≥ 5, which is a contradiction. Thus the case (b) cannot
happen. Suppose that (c) happened. Then the 5-cycle v1v3v4v5v6v1 must contain a chord sinceG is chordal. By the hypothesis
that each vertex of G has degree atmost 4, v3v5, v4v6, v3v6 are the only possible chords. If v3v6 is a chord, then v3v4v5v6v3 is a
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hole, which is impossible. Thus v3 and v6 are not joined. Now if v3v5 is a chord, then v1v3v5v6v1 is a hole, which is impossible
again. Thus v4v6 is a chord. Then v1v3v4v6v1 is a hole and we reach a contradiction. Hence the case (c) cannot happen.

Now we consider the case (a). By applying Proposition 2.3 to the edge v1v2 on the cycle v1v2v3v4v5v1, we conclude that
one of v3, v4, v5 is a vertex that is adjacent to both v1 and v2. Since each vertex has degree at most 4 by the hypothesis, it
must be v5. By the same proposition applied to the edge v2v3 on the cycle v2v3v4v5v2, both of v2 and v3 are adjacent to v4 or
v5. Since v5 is adjacent to four vertices, the possibility of v5 is eliminated and so v4 is adjacent to v2 and v3. Thus G contains
a W -configuration.

We consider the case (d). By applying Proposition 2.3 to the edge v1v5 on the cycle v1v5v6v7v1, we conclude that v6 or v7
is a vertex that is adjacent to both v1 and v5. Since v1 is already adjacent to four vertices other than v6, v6 is excluded and so
v7 is adjacent to both v1 and v5. By applying Proposition 2.3 to the cycle v1v2v3v4v1 and the edge v1v4, we conclude that v2
is adjacent to both v1 and v4. Consequently we obtain aW -configuration. □

2.2. Induced edges of the phylogeny graphs of (i, j) digraphs

We call an edge in the phylogeny graph P(D) a cared edge in P(D) if the edge belongs to the competition graph C(D) but
not to the underlying graph U(D). For a cared edge xy in P(D), there is a common out-neighbor v of x and y in D by definition.
The vertex v is called a vertex taking care of the edge xy and it is said that xy is taken care of by v or that v takes care of xy
. A vertex in D is called an caring vertex if an edge of P(D) is taken care of by the vertex. For example, the edges v1v7, v7v8,
and v2v5 of P(D) in Fig. 1(c) are cared edges and the vertices v6, v9, and v3 are vertices taking care of v1v7, v7v8, and v2v5,
respectively.

We call an acyclic digraph D an (i, j) digraph if each vertex of D has indegree at most i and outdegree at most j. In the
following, we study the structure of the phylogeny graph of a (i, j) digraph.

Lemma 2.6. Given an (i, j) digraph D, there is no vertex that takes care of more than 1
2 i(i− 1) edges in the phylogeny graph of D.

Proof. Suppose to the contrary that there exists a vertex x taking care of t different edges for t ≥
1
2 i(i − 1) + 1. Then these

edges belong to the clique K in the phylogeny graph of D formed by the in-neighbors of x in D. Thus K contains at least i+ 1
vertices. Hence the indegree of x is greater than i, which contradicts the hypothesis that D is an (i, j) digraph. □

The following is a consequence of Lemma 2.6 when (i, j) = (2, 2).

Corollary 2.7. Given a (2, 2) digraph D, there is no vertex that takes care of more than one cared edge in the phylogeny graph of
D.

Lemma2.8. Given an (i, j) digraph D, there is no vertex that is incident tomore than 1
2 i(i−1)j distinct cared edges in the phylogeny

graph of D.

Proof. Take a vertex x incident to at least one cared edge and let e1, . . . , et be the cared edges in the phylogeny graph P(D)
of D incident to x, where t is a positive integer. Let w1, . . . , ws be distinct vertices in D taking care of e1, . . . , et , where s is
a positive integer. Then w1, . . . , ws are out-neighbors of x, so s ≤ j. By Lemma 2.6, each of the vertices w1, . . . , ws can take
care of at most 1

2 i(i − 1) edges in P(D). Therefore t ≤
1
2 i(i − 1)s ≤

1
2 i(i − 1)j and thus the lemma holds. □

The following is a consequence of Lemma 2.8 when (i, j) = (2, 2).

Corollary 2.9. Given a (2, 2) digraph D, there is no vertex that is incident to three cared edges in the phylogeny graph of D.

3. Main results

3.1. The phylogeny graphs of (2, 2) digraphs are K5-free

In this subsection, we show that there is no (2, 2) digraphwhose phylogeny graph contains a complete graph Kn for n ≥ 5.
Note that we can construct a (2, 2) digraphwhose phylogeny graph contains a complete graph K4 as a subgraph as shown

in Example 3.1.

Example 3.1. Let D be a digraph defined by V (D) = {v1, v2, v3, v4, v5} and A(D) = {(v1, v2), (v1, v4), (v2, v3),
(v2, v5), (v3, v4), (v4, v5)} (see Fig. 5(a)). Then D is a (2, 2) digraph, and the subgraph of P(D) induced by {v1, v2, v3, v4} is
isomorphic to K4 (see Fig. 5(b)).

Theorem 3.2. For any (2, 2) digraph D, the phylogeny graph of D is K5-free.
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Fig. 5. (a) A (2, 2) digraph D, (b) The phylogeny graph of D contains K4 .

Fig. 6. The vertex w1 taking care of v4v5 . The gray edges are cared edges.

Proof. Suppose to the contrary that there is a (2, 2) digraph D whose phylogeny graph P(D) contains K5 as a subgraph.
Let v1, v2, v3, v4, v5 be the vertices of K5. Let D1 be the subdigraph of D induced by {v1, . . . , v5}. Since D1 is acyclic, there
is a vertex of indegree 0 in D1. Without loss of generality, we may assume that v1 has indegree 0. Now consider the
edges v1v2, v1v3, v1v4, v1v5 in P(D). At most two of them are cared edges by Corollary 2.9. Therefore, at least two of
v1v2, v1v3, v1v4, v1v5 belong to U(D). By the way, they must be arcs outgoing from v1 since v1 has indegree 0 in D1. Since v1
has outdegree at most two in D, v1 has outdegree exactly two in D. Therefore exactly two of v1v2, v1v3, v1v4, v1v5 belong to
U(D) and, consequently, the remaining two edges are cared edges in P(D).

Without loss of generality, we may assume that v1v2 and v1v3 are cared edges. Then v4 and v5 are the out-neighbors of
v1 in D. Since a vertex taking care of v1v2 (resp. v1v3) is an out-neighbor of v1, v1v2 (resp. v1v3) is taken care of by v4 or v5.
Without loss of generality, we may assume that v4 is a common out-neighbor of v1 and v2 in D. Then, by Corollary 2.7, v5
is a common out-neighbor of v1 and v3. However, since both v4 and v5 have indegree two, the edge v4v5 cannot belong to
U(D) and so is a cared edge in P(D). Since (v1, v4), (v2, v4), (v1, v5), and (v3, v5) are arcs of D, none of v1, v2, v3 is a common
out-neighbor of v4 and v5 by the acyclicity ofD. Therefore, the edge v4v5 is taken care of by a vertexw1 distinct from v1, v2, v3
(see Fig. 6).

We show that at least one of v3v4, v2v5 is a cared edge. Suppose to the contrary that both v3v4 and v2v5 are not cared
edges. Then v3v4 and v2v5 are inherited from arcs (v4, v3) and (v5, v2), respectively, since the indegrees of v4 and v5 are at
most two. Therefore v2 → v4 → v3 → v5 → v2 is a directed cycle, which contradicts the hypothesis that D is acyclic. Thus
at least one of v3v4, v2v5 is a cared edge. Without loss of generality, we may assume that v3v4 is a cared edge. Since none of
v2 and v5 can be an out-neighbor of v4, neither v2 nor v5 takes care of v3v4. Since the indegree of v1 is 0, v1 does not take
care of v3v4 either. Since w1 has in-neighbors v4 and v5, w1 cannot take care of the edge v3v4 due to the degree condition
imposed on D. Therefore the edge v3v4 is taken care of by a vertex w2 distinct from v1, v2, v5, w1. Recall that v3v4 and v3v1
are cared edges. Since v3 cannot be incident to three cared edges by Corollary 2.9, the edge v2v3 belongs to U(D). Then v2 is
an in-neighbor of v3 since the outdegree of v3 is at most two.

Finally we take a look at the edge v2v5. Since the indegree of v5 is two that is achieved by v1 and v3, v2 cannot be an
in-neighbor of v5. If v2 is an out-neighbor of v5, then it results in the directed cycle v2 → v3 → v5 → v2, which is a
contradiction. Therefore v2v5 is a cared edge. Since v3 and v4 are the only out-neighbors of v2, v3 or v4 takes care of v2v5.
Since v5 is an out-neighbor of v3, v3 cannot take care of the edge v2v5. Since the edge v4v5 is a cared edge, v4 cannot take
care of the edge v2v5 either. Hence we have reached a contradiction. □

3.2. A necessary condition for the phylogeny graph of a (2, 2) digraph being chordal

Properties of (2, 2) digraphs make us speculate that a sufficiently long hole in the underlying graph of a (2, 2) digraph D
might give rise to a hole in the phylogeny graph of D as chords cannot be produced enough to fill in it. This motivates us to
find the length of a shortest hole among holes in the underlying graph of a (2, 2) digraph whose phylogeny graph is chordal.

Lemma 3.3. Let D be a (2, 2) digraph. If the underlying graph of D contains a hole H of length at least 7, then the subgraph of the
phylogeny graph of D induced by V (H) is not chordal.
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Fig. 7. AW -configuration of G∗ . The gray edges are cared edges.

Proof. Let H = v1v2 · · · vnv1 (n ≥ 7) be a hole of length at least 7 in U(D) and let G1 be the subgraph of P(D) induced by
V (H) = {v1, . . . , vn}. Note that no edges onH are cared edgeswhile the edges ofG1 not onH are cared edges in P(D). Suppose
to the contrary that G1 is chordal. If there exists a vertex v with degG1 (v) ≥ 5, then v is incident to at least three cared edges
in G1 and so in P(D), which contradicts Corollary 2.9. Therefore dG1 (v) ≤ 4 for every vertex v in G1.

Since G1 is a hamiltonian chordal graph with at least seven vertices, there exists a vertex on G1 opposite to a chord by
Proposition 2.4. Without loss of generality, we may assume that v2 is such a vertex. Let G2 be the graph obtained by deleting
v2 from G1. Since v2 is a vertex opposite to a chord, G2 is a hamiltonian chordal graph with n− 1 vertices with a hamiltonian
cycle v1v3v4 · · · vnv1. Since n − 1 ≥ 6, we may apply Proposition 2.4 again to have a vertex on G2 which is opposite to a
chord. We delete one of such vertices from G2 to obtain a hamiltonian chordal graph with n − 2 vertices. We continue this
process until we obtain a hamiltonian chordal graph G∗ with 7 vertices. Let vn1vn2 · · · vn7vn1 be a hamiltonian cycle of G∗

with n1 < n2 < · · · < n7, which exists by the definition of G∗. By Proposition 2.5, G∗ is a W -configuration. Without loss of
generality, we may assume that it is labeled as in Fig. 7.

If the end vertices of an edge in G∗ are not on the hamiltonian cycle vn1vn2 · · · vn7vn1 , then the index difference of them
is neither 1 nor n − 1 since n1 < n2 < · · · < n7. Noting that an edge vmvk (1 ≤ m, k ≤ n) is on H if and only if |m − k| = 1
or |m − k| = n − 1, we may conclude that vn4vn1 , vn4vn2 , vn5vn1 , and vn5vn7 are cared edges. Let w1, w2, w3, w4 be caring
vertices of the edges vn4vn1 , vn4vn2 , vn5vn1 , vn5vn7 , respectively. Then w1, w2, w3, w4 are all distinct by Corollary 2.7, and w1,
w2 (resp. w3, w4) are out-neighbors of vn4 (resp. vn5 ). Since D is a (2, 2) digraph, there cannot exist an arc between vn4 and
vn5 . Therefore vn4vn5 should be a cared edge. Then vn4 is incident to three cared edges, which contradicts Corollary 2.9. Hence
G1 is not chordal. □

By Lemma 3.3 and Proposition 2.1, the following theorem holds.

Theorem 3.4. Let D be a (2, 2) digraph. If the underlying graph of D contains a hole of length at least 7, then the phylogeny graph
of D is not a chordal graph.

3.3. Forbidden subdigraphs for the class of (2, 2) digraphs whose phylogeny graphs are chordal

LetD be a class of digraphs. A digraphD0 is called a forbidden subdigraph forD ifD ̸∈ D holds for any digraphD containing
D0 as an induced subdigraph. Note that, by Lemma3.3, the orientations of cycles of length at least 7 are forbidden subdigraphs
for the classD∗ of (2, 2) digraphs whose phylogeny graphs are chordal. In this subsection, we determine the non-isomorphic
orientations of cycles of length 4 or 5 or 6 that are forbidden subdigraphs for D∗.

Theorem 3.5. Let D∗ be the class of (2, 2) digraphs whose phylogeny graphs are chordal. Then the digraphs given in Fig. 8 are
the forbidden subdigraphs among orientations of cycles of length at most six for D∗.

Proof. Suppose that a (2, 2) digraph D contains an orientation C of a cycle with length six given in Fig. 8 as an induced
subdigraph. (We provided the chordal phylogeny graph of a (2, 2) digraph containing each of orientations of cycles of length
4 or 5 or 6 in Figs. 9–11 other than the ones given in Fig. 8.) Let S be the subgraph of the phylogeny graph P(D) of D induced
by V (C). To reach a contradiction, suppose that P(D) is chordal. Then, in case of (a)–(c), the subgraph of P(D) induced by the
vertex set of a cycle H1 of length five is contained in S, so it has at least two adjacent chords which are taken care of by two
caring vertices. Since each vertex in D has indegree at most two, the two caring vertices must be distinct. In case of (d), (e),
S contains the subgraph of P(D) induced by the vertex set of a cycle H2 of length four, so it has a chord which is taken care
of by a caring vertex. Since C is an induced subdigraph of D, neither the vertices taking care of chords of H1 nor the vertices
taking care of chords of H2 can be on C . Therefore, in case of (a)–(c), the vertex common to the two adjacent chords of H1
must have two out-neighbors not on C and in case of (d), (e), there are two nonadjacent vertices on H2 each of which has an
out-neighbor not on C . However, by the structure of C , each vertex on H1 has an out-neighbor on C and especially in case
of (d), (e), there are two adjacent vertices on H2 each of which has two out-neighbors on C in D. Hence, in either case, we
obtain a vertex of outdegree at least three, which is a contradiction. □
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Fig. 8. The forbidden subdigraphs among orientations of cycles of length at most six for the class of (2, 2) digraphs whose phylogeny graphs are chordal.

Fig. 9. The non-isomorphic orientations of cycles of length 4 and their corresponding phylogeny graphs which are chordal.

Fig. 10. Acyclic digraphs including the non-isomorphic (acyclic) orientations of the 5-cycle v1v2v3v4v5v1 as induced subdigraphs and their chordal
phylogeny graphs.

3.4. Holes in the underlying graph and the phylogeny graph of a (2, 2) digraph

As the edges on holes in the underlying graph of a digraph are inherited to its phylogeny graph, one may expect that the
phylogeny graph cannot have a hole longer than the ones in the underlying graph. Contrary to this expectation, each hole
in the underlying graph of D in Fig. 12(a) has length 4 while the hole H = v1v2v3v6v7v4v1 in its phylogeny graph P(D) in
Fig. 12(b) has length 6. However, the phylogeny graph of a (2, 2) digraph lives up to the expectation as long as its underlying
graph is chordal. Before we prove it, we derive the following statements to be used in the proof.

Proposition 3.6. Suppose that the phylogeny graph of a (2, 2) digraph D contains a hole H. If v is a vertex taking care of an edge
on H, then v is not on H.
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Fig. 11. The non-isomorphic acyclic orientations of the 6-cycle v1v2v3v4v5v6v1 satisfying the property that there exists an acyclic digraph including one of
them as an induced subdigraph such that its phylogeny graph is chordal. Each of the bottom graphs is the phylogeny graph of the digraph above it.

Fig. 12. (a) A (2, 2) digraph D, (b) The phylogeny graph of D.

Fig. 13. (a) A (2, 2) digraph D having a hole H = v1v2v3v4v5v1 in P(D). (b) The subgraph obtained from H by {w1, w2}.

Proof. Suppose to the contrary that there exists a vertex v on H taking care of an edge xy on H . Then the edge xv or the edge
yv is a chord of H , which is a contradiction. □

Given a (2, 2) digraph D, suppose that the phylogeny graph P(D) has a hole H of length n for n ≥ 4 and e1, e2, . . . , em are
the cared edges of H . Let w1, w2, . . . , wm be vertices taking care of e1, e2, . . . , em, respectively, andW = {w1, w2, . . . , wm}.
We callW a set extending H . ThenW ⊆ V (D)− V (H) by Proposition 3.6. Wemay obtain a cycle in U(D) from H by replacing
each edge ei with a path of length two from one end of ei to the other end of ei with the interior vertex wi. We call such a
cycle the cycle obtained from H by W . Let L be the subgraph of U(D) induced by V (H) ∪ W . We call L the subgraph of U(D)
obtained from H byW . By definition, the cycle obtained from H byW is a hamiltonian cycle of the subgraph obtained from H
byW . For example the graph in Fig. 13(b) is the subgraph obtained from H by {w1, w2} (see Fig. 13(a) for the corresponding
digraph).

Lemma 3.7. Suppose that the phylogeny graph of a (2, 2) digraph D contains a hole H. If L is the subgraph of the underlying graph
U(D) of D obtained from H by a set W extending H, then there is no edge joining two vertices belonging to W in U(D).
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Fig. 14. The arcs of D corresponding to v1vn, v1w1, v2v3, v2w1, w1vn, w1v3 in U(D).

Proof. Suppose to the contrary that there exist verticesw1, w2 ∈ W that are adjacent in U(D). Without loss of generality, we
may assume that (w1, w2) ∈ A(D). Since L is obtained fromH byW ,w2 is a vertex taking care of an edge onH . Thusw2 has two
in-neighbors in D which belong to V (H). Since (w1, w2) ∈ A(D), w2 has indegree at least three, which is a contradiction. □

Lemma 3.8. Let H be a hole in the phylogeny graph P(D) of a (2, 2) digraph D, and L be the subgraph of the underlying graph
U(D) of D obtained from H by a set W extending H. If L is chordal and xy ∈ E(H) is an edge in P(D) taken care of by w ∈ W, then
there exists a vertex z on H such that z is adjacent to both x and w in L.

Proof. Let C be the cycle obtained fromH byW . Then C is a hamiltonian cycle of L. Since L is obtained fromH byW containing
w, the edge xw is on C . Since L is chordal, there exists a vertex z ∈ V (C) − {x, w} that is adjacent to both x and w in L by
Proposition 2.3. Since L is a subgraph of U(D), w and z are adjacent in U(D). By Lemma 3.7, z ̸∈ W and so z belongs to H ,
which completes the proof. □

Theorem 3.9. Let H be a hole of the phylogeny graph P(D) of a (2, 2) digraph D. Then there is a hole φ(H) in the underlying graph
U(D) of D such that

• φ(H) equals H if H is a hole in U(D);
• φ(H) is a hole in U(D) only containing vertices in the subgraph obtained from H by a set extending H otherwise.

Moreover, if the holes of P(D) are mutually vertex-disjoint and no hole in U(D) has length 4 or 6, then there exists an injective
map from the set of holes in P(D) to the set of holes in U(D).

Proof. Let H = v1v2 · · · vnv1 be a hole in P(D). If no edge of H is taken care of, then H is a hole in U(D) and we let φ(H) = H .
Suppose that at least one edge of H is taken care of. Let e1, . . . , em be the cared edges of H and let wi be a vertex taking

care of ei for each i = 1, . . . ,m. Let L be the subgraph of U(D) obtained from H by {w1, . . . , wm}.
To reach a contradiction, suppose that L is chordal. Without loss of generality, we may assume that v1 and v2 are the end

vertices of e1. By Lemma 3.8, v1 and w1 have a common neighbor in L, say z, on H . Since v1v2 is a cared edge, z ̸= v2. Since
H is a hole in P(D), the edge v1z cannot be a chord of H and so z = vn. Therefore vnw1 and vnv1 are edges in L. Since L is a
subgraph of U(D), vnw1 and vnv1 are edges in U(D). Since w1 has v1 and v2 as in-neighbors and D is a (2, 2) digraph, vn must
be an out-neighbor ofw1 in D. Since D is acyclic, vn is an out-neighbor of v1. Similarly, v3 is a common out-neighbor of v2, w1
in D (see Fig. 14).

Nowwe consider the graph L∗ obtained by deleting v1 and v2 from L. We note thatH∗
:= w1v3v4 · · · vnw1 is a hole in P(D)

and that L∗ is the subgraph of U(D) obtained from H∗ by {w2, w3, . . . , wn}. By applying Proposition 2.1 to L, we can conclude
that the subgraph L∗ is chordal. For an edge w1v3 on L∗, there exists a vertex z∗

∈ V (H∗) that is adjacent to both w1 and v3 in
U(D) by Lemma 3.8. Since z∗w1 and z∗v3 are edges of L∗ and L∗ is a subgraph of U(D), they are edges in U(D). Then z∗

= vn
since z∗

∈ NU(D)(w1) = {v1, v2, v3, vn} and z∗
̸∈ {v1, v2, v3}. Therefore the edge z∗v3 in U(D) is now vnv3. Thus either (v3, vn)

or (vn, v3) is an arc in D. However vn ̸∈ {v2, w1} = N−

D (v3) and v3 ̸∈ {v1, w1} = N−

D (vn), which is a contradiction. Thus L
contains a hole, that is, there exists a hole all of whose vertices are in L. We take one of such holes as φ(H). Then φ defines a
map from the set of holes in P(D) to the set of holes in U(D).

To show the second part of the theorem,we assume that the holes of P(D) aremutually vertex-disjoint and no hole inU(D)
has length 4 or 6.We take φ∗ whose image has the largest size among themaps that can be obtained by the way described in
the previous argument. Then we take two distinct holes H1 and H2 in P(D). By the hypothesis, H1 and H2 are vertex-disjoint.
Let L1 and L2 be the subgraphs of U(D) obtained from H1 and H2 by sets W1 and W2 extending H1 and H2, respectively. By
the above argument, φ∗(H1) (resp. φ∗(H2)) is a hole whose vertices are on L1 (resp. L2). Suppose φ∗(H1) = φ∗(H2) =: H∗. If
H∗ contains a vertex neither on H1 nor on H2, then it is a vertex taking care of an edge on H1 and an edge on H2 at the same
time, which contradicts the hypothesis that D is a (2, 2) digraph. Thus H∗ consists of vertices on H1 or H2. Suppose that H∗

contains two consecutive vertices both of which are on H1 (resp. H2). Then they are adjacent by an arc a in D. Since they
belong to H1 (resp. H2), they are vertices taking care of edges on H2 (resp. H1) since H1 and H2 are vertex-disjoint. Therefore
each of them has two in-neighbors on H2 (resp. H1). However, due to a, one of them must have indegree at least three in D
and we reach a contradiction. Thus the vertices on H∗ belong alternatively to H1 and H2 and so H∗ is a hole of an even length.
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By the hypothesis, H∗ has length at least 8. Then, by applying Theorem 3.4 to the subgraph of P(D) induced by V (H∗), there
exists a hole in P(D) all of whose vertices are on H∗. Since each vertex on H∗ belongs to H1 or H2, by the hypothesis that the
holes in P(D) are vertex-disjoint, this hole is either H1 or H2. Without loss of generality, we may assume that it is H1. Let C
be the cycle obtained from H2 by W2. Then

V (H1) ⊆ V (H∗) ⊆ V (C) = V (L2) = V (H2) ∪ W2.

Now, since H1 and H2 are vertex-disjoint, V (H1) ⊆ W2 and so each vertex on H1 takes care of an edge on H2. Moreover, since
|V (H2) ∩ V (H∗)| is the same as the number of edges on H1, each edge on H1 is taken care of by a vertex in V (H2) ∩ V (H∗).

Take a vertex u on H1. Then u is adjacent to two vertices, say z1 and z2, on H1. As we claimed that each vertex both on H∗

andH2 takes care of each edge ofH1, there are out-neighbors v andw of u such that v andw are on V (H∗)∩V (H2) and (z1, v),
(u, v), (z2, w), (u, w) are arcs in D. Since v and w are caring vertices, they are not adjacent in U(D) by Lemma 3.7. Since u
belongs toH∗, u is a vertex taking care of an edge xy onH2. Then x and y are in-neighbors of u inD. We take the (v, w)-section
P of C that does not contain u. Then x and y, which are consecutive on H2, do not belong to P since xuy is a section of C by the
way in which C is obtained. Thus, by the degree restriction on D, u is not adjacent to any vertex on P other than v and w in
U(D).We take a shortest (v, w)-path P∗ in the subgraph ofU(D) induced by the vertex set of P . Since v andw are not adjacent
in U(D), uP∗u is a hole in U(D). Suppose uP∗u = H∗. Then the vertex z1, which is on H∗, is on P∗. If x and v are adjacent in
U(D), then, since v has already two in-neighbors z1 and u, the edge xv in U(D) has orientation (v, x) to form a directed cycle
u → v → x → u, which is impossible. Thus x and v are not adjacent in U(D). Hence, for the (u, v)-section Q of C containing
x, Qu contains a hole H∗∗ in U(D) containing u and x since u is not adjacent to any vertex other than x and v on Q . Since x is
not on P , it is not on uP∗u. Then, since uP∗u = H∗, x does not belong to H∗ and therefore H∗∗ is distinct from H∗. Therefore
we can conclude that uP∗u or H∗∗ is a hole different from H∗ containing u in U(D). We change φ∗(H2) into uP∗u if H∗

̸= uP∗u
and into H∗∗ otherwise. By the degree restriction on D, u belongs to only L1 and L2. Thus the new φ∗(H2) does not equal any
of φ∗-values of other holes in P(D) and we have obtained a map from the set of holes in P(D) to a set of holes in U(D) with
image larger than φ∗, which contradicts the choice of φ∗. □

Remark 3.10. The ‘‘Moreover’’ part of Theorem 3.9 does not hold in general. For the digraph D given in Fig. 13, the holes in
P(D) are v1v2v3v4v5v1 and v1v2v3w2v5v1 while the hole in U(D) is v1w1v2v3w2v5v1.

Corollary 3.11. Let D be a (2, 2) digraph. Suppose that the holes of P(D) are mutually vertex-disjoint and no holes in U(D) has
length 4 or 6. Then the number of holes in U(D) is greater than or equal to that of holes in P(D).

Corollary 3.12. Let D be a (2, 2) digraph. If U(D) is chordal, then P(D) is also chordal.

4. Concluding remarks

In this paper, we obtained the complete list of orientations of cycles that are forbidden subdigraphs for the class of (2, 2)
digraphs whose phylogeny graphs are chordal. Furthermore, we showed that if the holes of the phylogeny graph P(D) of
a (2, 2) digraph D are mutually vertex-disjoint and no holes in the underlying graph U(D) of D has length 4 or 6, then the
number of holes in U(D) is greater than or equal to that of holes in P(D), which implies the following: If the underlying graph
of a (2, 2) digraphD is chordal, then the phylogeny graph ofD is also chordal. It would be interesting to give a good necessary
and sufficient condition for (2, 2) digraphs having chordal phylogeny graphs.
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