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a b s t r a c t

In this paper, we introduce the notion of the double competition hypergraph of a digraph.
We give characterizations of the double competition hypergraphs of arbitrary digraphs,
loopless digraphs, reflexive digraphs, and acyclic digraphs in terms of hyperedge labelings
of the hypergraphs.
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1. Introduction

A digraph D is a pair (V (D), A(D)) of a set V (D) of vertices and a set A(D) of ordered pairs of vertices, called arcs. An arc
of the form (v, v) is called a loop. For a vertex x in a digraph D, we denote the out-neighborhood of x in D by N+

D (x) and the
in-neighborhood of x in D by N−

D (x), i.e., N+

D (x) := {v ∈ V (D) | (x, v) ∈ A(D)} and N−

D (x) := {v ∈ V (D) | (v, x) ∈ A(D)}.
A graph G is a pair (V (G), E(G)) of a set V (G) of vertices and a set E(G) of unordered pairs of vertices, called edges. The
competition graph of a digraph D is the graph which has the same vertex set as D and has an edge between two distinct
vertices x and y if and only if N+

D (x) ∩ N+

D (y) ≠ ∅. In other words, the competition graph of a digraph is the intersection
graph of the family of the out-neighborhoods of the vertices of the digraph (see [4] for intersection graphs). This notion was
introduced by J.E. Cohen [1] in 1968 in connection with a problem in ecology, and several variants and generalizations of
competition graphs have been studied.

In 1987, D.D. Scott [8] introduced thenotion of double competition graphs as a variant of the notion of competition graphs.
The double competition graph (or the competition-common enemy graph or the CCE graph) of a digraph D is the graph which
has the same vertex set as D and has an edge between two distinct vertices x and y if and only if both N+

D (x) ∩ N+

D (y) ≠ ∅

and N−

D (x) ∩ N−

D (y) ≠ ∅ hold. See [2,3,7,13] for recent results on double competition graphs.
A hypergraph H is a pair (V (H), E(H)) of a set V (H) of vertices and a set E(H) of nonempty subsets of V (H), called

hyperedges. A hyperedge of the form {v} is called a loop. We assume that all hypergraphs in this paper have no loops. So all
the hyperedges of a hypergraph contain at least two vertices. The notion of competition hypergraphs was introduced by M.
Sonntag and H.-M. Teichert [9] in 2004 as another variant of the notion of competition graphs. The competition hypergraph
of a digraph D is the hypergraph which has the same vertex set as D and in which e ⊆ V (D) is a hyperedge if and only if
|e| ≥ 2 and there exists a vertex v of D such that e = N−

D (v). See [5,6,10–12] for recent results on competition hypergraphs.
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In this paper, we introduce the notion of the double competition hypergraph of a digraph, and we give characterizations
of the double competition hypergraphs of arbitrary digraphs, loopless digraphs, reflexive digraphs, and acyclic digraphs in
terms of hyperedge labelings of the hypergraphs.

2. Main results

We define the double competition hypergraph of a digraph as follows.

Definition 1. Let D be a digraph. The double competition hypergraph of D is the hypergraph which has the same vertex
set as D and in which e ⊆ V (D) is a hyperedge if and only if |e| ≥ 2 and there exist vertices u and v of D such that
e = N+

D (u) ∩ N−

D (v). �

For a positive integer n, let [n] denote the set {1, 2, . . . , n}.

Theorem 1. Let H be a hypergraph with n vertices. Then, H is the double competition hypergraph of an arbitrary digraph if and
only if there exist an ordering (v1, . . . , vn) of the vertices of H and an injective labeling L : E(H) → [n] × [n] of the hyperedge
set of H such that the following condition holds:

(⋆) for any i, j ∈ [n], if |Xi ∩ Yj| ≥ 2, then Xi ∩ Yj = eij,

where eij denotes the hyperedge e such that L(e) = (i, j) if such e exists, and eij = ∅ otherwise, and Xi and Yj are the sets
defined by

Xi :=


p∈[n]

eip


∪ {vb | vi ∈ eab (a, b ∈ [n])}, (1)

Yj :=


q∈[n]

eqj


∪ {va | vj ∈ eab (a, b ∈ [n])}. (2)

Proof. First,we show the only-if part. LetH be the double competitionhypergraphof an arbitrary digraphD. Let (v1, . . . , vn)
be an ordering of the vertices of D. For i, j ∈ [n], we define

eij := N+

D (vi) ∩ N−

D (vj). (3)

Then eij is a hyperedge of H if |eij| ≥ 2. Let E∗ be the family of eij’s whose sizes are at least two, i.e.,

E∗
:= {eij | i, j ∈ [n], |eij| ≥ 2}. (4)

By the definition of a double competition hypergraph, E∗ is the hyperedge set of H . Let L : E(H) → [n] × [n] be the map
defined by L(eij) = (i, j). Then L is injective.

We show that condition (⋆) holds. Fix i and j in [n] and let Xi and Yj be sets as defined in (1) and (2). Let

Vi∗ :=


p∈[n]

eip, W+

i := {vb | vi ∈ eab (a, b ∈ [n])},

V∗j :=


q∈[n]

eqj, W−

j := {va | vj ∈ eab (a, b ∈ [n])},

for convenience. Then Xi = Vi∗ ∪W+

i and Yj = V∗j∪W−

j . Since eij ⊆ Xi and eij ⊆ Yj, it holds that eij ⊆ Xi∩Yj. Nowwe assume
that |Xi ∩ Yj| ≥ 2 and take any vertex vk ∈ Xi ∩ Yj. There are four cases for vk arising from the definitions of Xi and Yj as
follows: (i) vk ∈ Vi∗ ∩V∗j; (ii) vk ∈ Vi∗ ∩W−

j ; (iii) vk ∈ W+

i ∩V∗j; (iv) vk ∈ W+

i ∩W−

j . To show Xi∩Yj ⊆ eij, wewill check that
vk ∈ eij for each case. Consider the case (i). Since vk ∈ Vi∗, there exists p ∈ [n] such that vk ∈ eip. Since vk ∈ V∗j, there exists
q ∈ [n] such that vk ∈ eqj. By (3), we have vk ∈ eip ∩ eqj = N+

D (vi) ∩ N−

D (vp) ∩ N+

D (vq) ∩ N−

D (vj) ⊆ N+

D (vi) ∩ N−

D (vj) = eij.
Consider the case (ii). Since vk ∈ Vi∗, there exists p ∈ [n] such that vk ∈ eip. Since vk ∈ W−

j , there exists b ∈ [n] such
that vj ∈ ekb. By (3), we have vk ∈ eip = N+

D (vi) ∩ N−

D (vp) ⊆ N+

D (vi) and vj ∈ ekb = N+

D (vk) ∩ N−

D (vb) ⊆ N+

D (vk),
i.e., vk ∈ N−

D (vj). Therefore vk ∈ N+

D (vi) ∩ N−

D (vj) = eij. Consider the case (iii). Since vk ∈ W+

i , there exists a ∈ [n] such
that vi ∈ eak. Since vk ∈ V∗j, there exists q ∈ [n] such that vk ∈ eqj. By (3), we have vi ∈ eak = N+

D (va) ∩ N−

D (vk) ⊆ N−

D (vk),
i.e., vk ∈ N+

D (vi), and vk ∈ eqj = N+

D (vq) ∩ N−

D (vj) ⊆ N−

D (vj). Therefore vk ∈ N+

D (vi) ∩ N−

D (vj) = eij. Consider the case (iv).
Since vk ∈ W+

i , there exists a ∈ [n] such that vi ∈ eak. Since vk ∈ W−

j , there exists b ∈ [n] such that vj ∈ ekb. By (3), we
have vi ∈ eak = N+

D (va) ∩ N−

D (vk) ⊆ N−

D (vk), i.e., vk ∈ N+

D (vi), and vj ∈ ekb = N+

D (vk) ∩ N−

D (vb) ⊆ N+

D (vk), i.e., vk ∈ N−

D (vj).
Therefore vk ∈ N+

D (vi) ∩ N−

D (vj) = eij. Thus we obtain Xi ∩ Yj ⊆ eij, and so Xi ∩ Yj = eij. Hence condition (⋆) holds.
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Next, we show the if part. Let H be a hypergraph with n vertices, and suppose that there exist an ordering (v1, . . . , vn)
of the vertices of H and an injective labeling L : E(H) → [n] × [n] such that condition (⋆) holds. We define a digraph D by

V (D) := V (H) and A(D) :=


i,j∈[n]


vk∈eij

{(vi, vk), (vk, vj)}


. (5)

Then, it holds that eij = N+

D (vi) ∩ N−

D (vj) for any i, j ∈ [n]. Thus it follows from the definition of a double competition
hypergraph and the assumption that hypergraphs have no loops that the double competition hypergraph of D is the
hypergraph H . �

A digraph D is said to be loopless if D has no loops, i.e., (v, v) ∉ A(D) holds for any v ∈ V (D).

Theorem 2. Let H be a hypergraph with n vertices. Then, H is the double competition hypergraph of a loopless digraph if and
only if there exist an ordering (v1, . . . , vn) of the vertices of H and an injective labeling L : E(H) → [n] × [n] of the hyperedge
set of H such that the following conditions hold:

(⋆) for any i, j ∈ [n], if |Xi ∩ Yj| ≥ 2, then Xi ∩ Yj = eij,
(L) for any i, j ∈ [n], vi ∉ eij and vj ∉ eij,

where eij denotes the hyperedge e such that L(e) = (i, j) if such e exists, and eij = ∅ otherwise, and Xi and Yj are the sets defined
by (1) and (2).

Proof. First, we show the only-if part. Let H be the double competition hypergraph of a loopless digraph D. Let (v1, . . . , vn)
be an ordering of the vertices of D. Let eij (i, j ∈ [n]) be the sets defined by (3), and let E∗ be the set defined by (4). Then
eij is a hyperedge of H if |eij| ≥ 2, and E∗ is the hyperedge set of H . Let L : E(H) → [n] × [n] be the map defined by
L(eij) = (i, j). Then L is injective. Moreover, we can show, as in the proof of Theorem 1, that condition (⋆) holds. Now we
show that condition (L) holds. Take any vertex vk ∈ eij. Then vk ∈ N+

D (vi) ∩ N−

D (vj), i.e., (vi, vk), (vk, vj) ∈ A(D). Since D is
loopless, we have vi ≠ vk and vj ≠ vk. Therefore it follows that vi ∉ eij and vj ∉ eij. Thus condition (L) holds.

Next, we show the if part. Let H be a hypergraph with n vertices, and suppose that there exists an ordering (v1, . . . , vn)
of the vertices of H and an injective labeling L : E(H) → [n] × [n] such that conditions (⋆) and (L) hold. We define a
digraph D by (5). By condition (L), it follows from the definition of D that (vi, vi) ∉ A(D) for any i ∈ [n]. Therefore D is
a loopless digraph. Moreover we can show, as in the proof of Theorem 1, that H is the double competition hypergraph
of D. �

A digraph D is said to be reflexive if all the vertices of D have loops, i.e., (v, v) ∈ A(D) holds for any v ∈ V (D).

Theorem 3. Let H be a hypergraph with n vertices. Then, H is the double competition hypergraph of a reflexive digraph if and
only if there exist an ordering (v1, . . . , vn) of the vertices of H and an injective labeling L : E(H) → [n] × [n] of the hyperedge
set of H such that the following conditions hold:

(⋆) for any i, j ∈ [n], if |Xi ∩ Yj| ≥ 2, then Xi ∩ Yj = eij,
(R) for any i ∈ [n], vi ∈


p∈[n] eip


∪


p∈[n] epi

,

where eij denotes the hyperedge e such that L(e) = (i, j) if such e exists, and eij = ∅ otherwise, and Xi and Yj are the sets defined
by (1) and (2).

Proof. First, we show the only-if part. LetH be the double competition hypergraph of a reflexive digraphD. Let (v1, . . . , vn)
be an ordering of the vertices ofD. Let eij (i, j ∈ [n]) be the sets defined by (3), and let E∗ be the family defined by (4). Then eij is
a hyperedge ofH if |eij| ≥ 2, and E∗ is the hyperedge set ofH . Let L : E(H) → [n]×[n] be themap defined by L(eij) = (i, j).
Then L is injective.Moreover,we can show, as in theproof of Theorem1, that condition (⋆) holds. Nowwe show that condition
(R) holds. SinceD is reflexive,wehave (vi, vi) ∈ A(D) for any i ∈ [n]. Then it follows that vi ∈ N+

D (vi)∩N−

D (vi) = eii. Therefore
vi ∈


p∈[n] eip


∪


p∈[n] epi

. Thus condition (R) holds.

Next, we show the if part. LetH be a hypergraphwith n vertices, and suppose that there exist an ordering (v1, . . . , vn) of
the vertices of H and an injective labeling L : E(H) → [n] × [n] such that conditions (⋆) and (R) hold. We define a digraph
D by (5). Fix any i ∈ [n]. By condition (R), there exists p ∈ [n] such that vi ∈ eip or vi ∈ epi. Then it follows from the definition
of D that (vi, vi) ∈ A(D). Therefore D is a reflexive digraph. Moreover we can show, as in the proof of Theorem 1, that H is
the double competition hypergraph of D. �

A digraphD is said to be acyclic ifD has no directed cycles. An ordering (v1, . . . , vn) of the vertices of a digraphD, where n
is the number of vertices of D, is called an acyclic ordering of D if (vi, vj) ∈ A(D) implies i < j. It is well known that a digraph
D is acyclic if and only if D has an acyclic ordering.

Theorem 4. Let H be a hypergraph with n vertices. Then, H is the double competition hypergraph of an acyclic digraph if and
only if there exist an ordering (v1, . . . , vn) of the vertices of H and an injective labeling L : E(H) → [n] × [n] of the hyperedge
set of H such that the following conditions hold:
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(⋆) for any i, j ∈ [n], if |Xi ∩ Yj| ≥ 2, then Xi ∩ Yj = eij,
(A) for any i, j, k ∈ [n], vk ∈ eij implies i < k < j,

where eij denotes the hyperedge e such that L(e) = (i, j) if such e exists, and eij = ∅ otherwise, and Xi and Yj are the sets defined
by (1) and (2).

Proof. First, we show the only-if part. Let H be the double competition hypergraph of an acyclic digraph D. Let (v1, . . . , vn)
be an acyclic ordering of the vertices of D. Let eij (i, j ∈ [n]) be the sets defined by (3), and let E∗ be the family defined by
(4). Then eij is a hyperedge of H if |eij| ≥ 2, and E∗ is the hyperedge set of H . Let L : E(H) → [n] × [n] be the map defined
by L(eij) = (i, j). Then L is injective. Moreover, we can show, as in the proof of Theorem 1, that condition (⋆) holds. Now we
show that condition (A) holds. Suppose that vk ∈ eij. Then (vi, vk), (vk, vj) ∈ A(D). Since (v1, . . . , vn) is an acyclic ordering
of D, (vi, vk) ∈ A(D) implies i < k and (vk, vj) ∈ A(D) implies k < j Therefore i < k < j. Thus condition (A) holds.

Next, we show the if part. LetH be a hypergraphwith n vertices, and suppose that there exist an ordering (v1, . . . , vn) of
the vertices of H and an injective labeling L : E(H) → [n] × [n] such that conditions (⋆) and (A) hold. We define a digraph
D by (5). By condition (A), it follows from the definition of D that (v1, . . . , vn) is an acyclic ordering of D. Therefore D is an
acyclic digraph. Moreover we can show, as in the proof of Theorem 1, thatH is the double competition hypergraph ofD. �
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