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Recent natural language processing technologies are based on the vector space models of lan-
guage, in which each word is represented with a vector in high dimensional space. One of
the earliest successes using the vector space models is the four-term analogical reasoning task.
A certain quadruple of word vectors forms a “parallelogram” in the vector space, with which
the fourth word vector is inferred as an answer to a given triplet of query words. Despite the
large body of successful applications of the vector space models, it has remained unknown what
the parallelogram means. This study aims to reveal this mystery. Our analysis suggested that
analogical reasoning is possible by decomposition of the bigram co-occurrence matrix, and we
demonstrated the formation of a parallelepiped by creating a miniature corpus and its word
vectors. This analysis and demonstration imply a sort of symmetry or exchangeability in word-
word co-occurrence structure.

1. Introduction: Distributional Models of Language

‘Evolution’ of the language processing capability of the machine is dramatic in
this decade. The accuracy of machine translation has reached the human level or
perhaps more than educated non-native speakers. These successes of machine-
learning language models have suggested how natural languages are organized.

Language is usually considered as an organized system that exhibits the ca-
pability of determining a class of words given the context of a word to be deter-
mined. This theoretical idea is called the distributional hypothesis (Harris, 1954).
The distributional hypothesis postulates that words that occur in similar contexts
tend to have similar meanings. For example, ‘an apple’ and ‘a banana’ both are
allowed to appear in similar contexts, e.g., “she eats ___ every morning” and
“__ 1is a fruit”. However, they may not appear in similar contexts of ‘a bus*
and ‘atrain’, e.g., “she takes __ home”. When we think of the fill-in-the-blank
problem “she eats _ every morning”, the words that refer to something edi-
ble, women like, and common in breakfast would be coming up with, like those
specified by the context of the blank to be filled.

One of the pervasive methods to implement the distributional hypothesis is
counting the co-occurrence of words in the pairs, triplets, or n-grams. Such naive
co-occurrence counting has, however, a few technical issues: the combinatorial



space of word pairs is too large to sample sufficiently (e.g., a bigram (pair) ta-
ble has 10'2 cells for 10° word types), and it causes underestimation on the co-
occurrence probability. Thus, one needs further compressed representations of
the co-occurrence table, that compressed representations hopefully preserve the
distributional structure of the words in the table and the language. Latent Seman-
tic Analysis (LSA) (Landauer & Dumais, 1997) is one of such earliest attempts.
The underlying idea of LSA is that a sparse co-occurrence matrix M can be ap-
proximated by vector representation of words, called word vectors. It has been
demonstrated that word-vector algorithms can solve semantic tasks, although their
performances were limited (see Lenci (2018) for review).

More recently, Mikolov et al. (2013) discovered that four-term analogy prob-
lems can be solved accurately by their artificial neural network called skip-gram,
which is an instance of the word2vec class of models. Four-term analogy prob-
lem questions “what is d to c as b is to a?” denoted by, a : b :: ¢ : d. Formally,
the model needs to predict word d given the triple of query words a, b, and c.
For example, the question, man : woman :: king : _ , should be answered
with ‘queen’. Importantly, the word2vec was not optimized to solve the four-
term analogy questions, but it was optimized to predict the context words for each
word. However, with the learned word vectors, €.g., Vking, Uman, Uwoman, ONE can
answer the analogy task by vector arithmetic vking — Uman + Vwoman = VUgueen. Since
analogical reasoning requires not only syntactic but also semantic aspects of lan-
guage, their successes in the analogy task have been viewed as strong support for
the distributional hypothesis. And since analogy was considered to be ‘uniquely’
humans, this discovery gave a strong impact on a variety of research fields.

To solve such analogical questions, word2vec needs to successfully extract la-
tent and distributional structures of the language, which is represented in the vec-
tor form. Since then, researchers of related fields have been attracted to resolve
this “mystery” of word2vec, e.g., (Levy et al., 2015; Arora et al., 2015; Hashimoto
et al., 2016). Most of them have concluded that the emergence of parallelograms
is due to the sophisticated learning algorithm. The current consensus (see, e.g.,
(Lenci, 2018)) is the conclusion by (Levy et al., 2015) that the analogy perfor-
mance of word2vec can be explained as a result of a factorization of the PPMI
(positive pointwise mutual information), one of the most popular preprocess of
co-occurrence matrix in natural language processing (NLP).

In this paper, we take a different approach to the mystery of word2vec. We
hypothesized that the word co-occurrence matrix itself, rather than some transfor-
mation of it such as PPMI, has sufficient information required to solve linguistic
tasks. Namely, we take one of the simplest forms of implementation of the distri-
butional hypothesis. This approach has been rarely taken in the existing literature.

Connecting the co-occurrence matrix to analogical parallelograms directly
naturally leads constructive approach — simulation to test which type of co-
occurrence may embed a parallelogram in the word vector space. Thus, we take



the two types of approaches, data-driven analysis of co-occurrence matrix and
constructive simulation creating and manipulating a small corpus.

In what follows, we briefly introduce the word2vec model in Section 2, fol-
lowed by an analysis of a co-occurrence matrix in Section 3, and the constructive
approach in Section 4. Lastly, we discuss future directions toward the understand-
ing of the semantic nature of underlying word co-occurrence.

2. word2vec: The Word Embedding Algorithm

We briefly introduce the key ideas of word2vec, specifically of the skip-gram ar-
tificial neural network architecture. The skip-gram model consists of the three
layers, n input units, d hidden units, and n output units, where n is the vocabu-
lary size. Initially, every word w in vocabulary W is represented by a so-called
one-hot vector e,, of length n. Given a long sequence of words represented by
one-hot vectors, the goal of optimization is to obtain a d dimensional compressed
representation v,,, called word vector, for every word w € W, where d < n.
Denote by w; a word at the position ¢ in the corpus. The skip-gram seeks the
corpus to identify every subsequence (wi_g, ..., Wi_1, Ws, Wet1, - - ., Witk ), the
k preceding and k following context words around the centre word w;. The skip-
gram model is trained, to optimize the latent word vectors {vy, }wew , for each wy
to predict their all context words Wy = (Wi—g, ..., Wt—1, Wii1, ..., Wetp) simul-
taneously throughout the corpus. Mikolov et al. (2013) defined for the skip-gram
model the conditional probability of occurring y in the context of x as follows:

exp(vy - vg)
ZweW exp(vy + V) '
where vy, - v, is the inner product of word vectors v, and v,,.

Using a trained word2vec, Mikolov et al. (2013) demonstrated that it can solve
their four-term analogy questions. Consider, for example, the problem, man :
woman :: king: _, and the correct answer is ‘queen’. Given the word vectors
Uman, Uwoman Uking 10T the cue words, decide the most likely word y by calculating
the cosine similarity measure cosine(v,, v,) = m for all words a:

Pylz) = (1

vy = argmax cosine(Vking — Uman + Uwoman; Uz) - 2)
vyt x€W
It is defined correct, if the word vector vy is vgueen. The overall percentage of
correct answers is about 66% for the 19,544 questions.
If any model answers correctly for a quadruple using Equation (2), these four
word vectors need to form a parallelogram in the vector space. Indeed, Mikolov
et al. (2013) graphically showed parallelograms in a lower-dimensional subspace.

3. Analogical Reasoning with Raw Co-occurrence Matrix

The past studies exploring the analogical reasoning based on the word2vec or oth-
ers (Levy & Goldberg, 2014; Hashimoto et al., 2016; Arora et al., 2015) have es-



sentially hypothesized and concluded that word2vec or other transformation such
as PPMI is crucial to have a good analogy performance. In this study, however,
we hypothesize that a raw co-occurrence matrix itself or its matrix decomposition
would be sufficient for analogical reasoning.

3.1. Method

To test our hypothesis, we directly counted the frequencies of pairwise co-
occurrence of all words in the English Wikipedia dump corpus 20171001. The
text data contains approximately 7.9 billion words, of which 2.6 million words are
unique. The window size for word pair counting was k£ = 5. Although we counted
them all, algebraic operations using the full co-occurrence matrix were impossible
due to our computational power. Hence, for the analogical task, we only used the
sub-matrices composed of the top 1,000 (or 10,000) unique words, in addition to
the 905 unique words in the question set. Denote this co-occurrence matrix by
M e RZ;™ with vocabulary size n.

In NLP, it is commonly recognized that application of singular-value decom-
position (SVD) to the co-occurrence matrix improves performance of linguistic
tasks. Technically, SVD is a method for decomposition of a real matrix M of
arbitrary finite size to the form M = U VT, where matrix U and V are real
orthogonal matrices and the diagonal matrix ¥ contains singular values in its di-
agonal elements. By taking the first d dimensions, the d dimensional word vectors
for n words are obtained as Uy E;/ 2 ¢ R"*4_ Since the word2vec was trained to
construct 300 dimensional word vectors, d = 300 was used in this paper.

We trained our word2vec (skip-gram) model using the sample code of Python
library Gensim (Rehurek & Sojka, 2010). We used instead our own preprocessed
text data as described above. The window size k = 5 is the same. Only the words
that occur more than or equal to 100 times in the corpus were used for training the
model. The number of unique words was approximately 0.32 million.

3.2. Results

Figure 1 shows the performance for the four-term analogy task using the distribu-
tional models. As shown by Mikolov et al. (2013), the performance of word2vec
is 66%. We treat this as a benchmark. For the models freq, the rows of the co-
occurrence frequency matrix M were directly used as word vectors. The models
showed accuracy below 5%. For the models logfreq, the logarithms of the rows
of M were used as word vectors. By taking the logarithms, the model perfor-
mances got significantly increased about 40% and 35%. We think the logarithm
worked as a smoothing against the Zipf’s law. This partially supports our hypoth-
esis that information required to solve linguistic tasks is inside the corpus data.
However, there is room for further improvement (could be) induced by word2vec.
To eliminate this possibility, we applied SVD, a classic word embedding method,
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Figure 1. Four-term analogy performances of distributional models

to the log-frequency matrices of M. Since SVD is linear, although the word2vec
is nonlinear, it would be helpful to resolve the mystery of word2vec. Surpris-
ingly, the performances of the logfreq svd models are above 60% comparable to
word2vec. This result supports the other half of our hypothesis that there is no
latent structure that can be discovered only when using word2vec.

3.3. Discussion: Why the Decomposed Co-occurrence Matrix Suffices

If the original word2vec (skip-gram) were successfully trained, the word vectors
V € R"*? determines conditional co-occurrence probability matrix P(y|x) in
Equation (1). By taking logarithm, V VT € R"*" is extracted (the normalizing
term was ignored), and thus the skip-gram model could be viewed as an approx-
imate matrix decomposition of the form V VT a M for unknown M. Given
the results in Section 3.2, it suggests that “up-to-d™-rank matrix decomposition
of the logarithm of M” is essentially what the word2vec models do. This hy-
pothesis differs from the previous study (Levy et al., 2015), which concluded that
word2vec is equivalent to the PPMI-like smoothing, or a matrix decomposition of
the PPMI-smoothed matrix of M. Our view, that word2vec as a co-occurrence
matrix decomposition, can be viewed as one of the simplest and most straightfor-
ward implementations of the distributional hypothesis (Harris, 1954).

4. Constructive Approach to the Parallelograms

The analysis has suggested that there is a subspace of the co-occurrence matrix, in
which a parallelogram is formed by a particular set of word vectors as each word
may have multiple aspects. For example, king is more similar with queen on the
is-royal axis, but is more similar with man on the is-male axis. Such a multi-aspect
structure of the word king is supposed to be captured by a parallelepiped, rather
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Figure 2. A hidden Markov model generating the 24 sentences in the toy corpus. Any hidden state X
other than the verbs generates the word X by probability 1. For example, the state “king” generates the
word “king”. On the other hand, the two hidden states corresponding to the two verbs may generate
the same word. For example, both states “live_in(R)” and “live_in(C)” generate the word “live_in”.

than a parallelogram. Although an analogy task tests a parallelogram, a collection
of analogy tasks would test a parallelepiped or more complex geometric object.

In this section, we take a constructive approach to address how this paral-
lelepiped structure is involved with the syntactic or semantic nature of a lan-
guage. Specifically, we construct a small toy corpus, that forms an idealized par-
allelepiped structure among the word vectors, and analyzed what condition would
be essential to form some parallelepiped of word vectors.

4.1. Demonstrating Parallelepiped Embedded in Co-occurrence Matrix

Toy Corpus. We created a corpus of 24 artificial sentences, which are not strictly
grammatical, but with a minimal syntactic and semantic structure. Each of the
sentences in this corpus consists of four words in the form of Subject-Verb-Object-
Adverbial, such as “king live-in palace today”. There are eight subjects, three
verbs, six objects, and one adverb — in total 18 words. The corpus does not have
all the possible sentences out of these 18 words, 144 = 8 x 3 x 6, but it has only
24 sentences (Figure 2), which implicitly represents the hypothetical semantic
relationship between underlying concepts to which these words refer.

First, we analyzed the co-occurrence matrix constructed for the toy corpus
with each of the sentences generated by the equal probability 1/24. In this case,
the co-occurrence matrix (up to scale and permutation similarity) can be written

with the two block matrices Cy € R8*10 and ¢} € RIO*10 by C = ((gf g?)
Note that each row vector of the block matrix C is the non-zero part of word
vectors of the eight subject nouns. Cj has the rank 4, and it lives in 3 dimensional
affine space. Namely, there is some linearly independent basis of three vectors
bo,b1,b2,b3 € Rg, such that Cy = (b1, b, bg)A + b011710 with a unique matrix
A € R3*10 for each choice of the affine basis B = (bg, by, b2, b3). Let B =
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Figure 3. (Non-)parallelepipeds embedded in the co-occurrence matrix of (a) uniform toy corpus, (b)
non-uniform toy corpus, and (c) a natural corpus.

(b1, b2, b3) has by, by, by € RS of non-zero vectors of the column vectors of Cp :=
Cy — %0 1110Cy . Then the three dimensional coordinates of the 8 points are
given by the column vectors of (BT B)~*(BT(Cy), in which a “parallelepiped” is
embedded (Figure 3(a)). Thus, this uniform toy corpus gives a sufficient condition
or the existence of a way to embed a parallelepiped in the co-occurrence matrix.

4.2. Symmetry Breaker Against parallelepiped

It is also important to demonstrate on which condition the parallelepiped embed-
ded in a co-occurrence matrix is broken, as such a demonstration gives a necessary
condition for the parallelepiped formation. To do so, we consider a variation of the
toy corpus, called non-uniform toy corpus, in which a certain randomly assigned
probability p; to sample the i sentence to build the co-occurrence matrix. Figure
3(b) shows the same set of the eight word vectors visualized in the same way as
Figure 3(a), for a set of non-uniform random probabilities p;. These eight word
vectors form neither a parallelepiped nor parallelograms. As the only difference
between the uniform and non-uniform toy corpus is their sampling probability,
this result suggests that a certain symmetric relationship in the probability distri-
butions is needed to hold the parallelepiped.

4.3. A Parallelepiped in Natural Co-occurrence

The demonstration with the toy corpus above suggests that a certain class of word
vectors would form a parallelepiped relationship, if the class of vectors two or
more show independent syntactic-semantic statistical regularities on its word us-
age. We test this prediction by searching whether such a parallelepiped for a class
of word vectors embedded in a natural co-occurrence matrix (logfreq svd, size
1000). Figure 3(c) shows an example that we found in the set of 8-tuple word
vectors of the question words in the Family category (Mikolov et al., 2013) visu-
alized by a two-dimensional subspace of the principal component analysis. This
confirms our prediction.



5. Conclusion

This study attempted to give a theoretical account of what the parallelogram means
in the vector space model. Our analysis of the co-occurrence matrix suggests a sort
of co-occurrence matrix decomposition can give such a parallelogram useful for
analogical reasoning. This empirical observation leads us to a constructive ap-
proach to building a toy corpus that may or may not embed a parallelepiped in the
co-occurrence matrix. This numerical simulation suggests that the parallelepiped
is tightly related to a certain class of the sentence probability distribution, perhaps
less restricted than uniform but more restricted than arbitrary.

The biolinguistic enterprise of seeking cognitive precursors to human lan-
guage depends on hypotheses or views on the structure of language. Our ‘par-
allelotope hypothesis’ may provide yet another characterization of the structure of
language: word representations being structured are at least utilized for analogical
reasoning among words. This hypothesis makes a strong connection between the
mental representation of words of a language and relational reasoning on words.
This hypothesis may motivate comparative psychology research on precursors to
language in terms of the ability of relational reasoning.
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