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Abstract—There is a class of line drawings, called impossible
objects, that are perceived as 3D structures but are impossible
to completely construct in 3D space. Sugihara [1] proposes a
systematic method for creating a type of impossible objects. This
method provides a way to judge the existence of possible three-
dimensional (3D) coordinate for a line drawing, and a way to
compute it, if possible. There are, however, some technical dif-
ficulties in using Sugihara’s method. Firstly, Sugihara’s method
requires to introduce a large number of variables for use in a set
of equations, which requires some intense labor for a designer
of impossible objects when programming. Secondly, in theory,
there are an infinite number of possible 3D coordinates for the
same line drawing, but Sugihara’s method can only determine
one of them for a pre-defined set of parameters. In practice, a
designer of impossible objects may also wish to arrange the 3D
coordinates’ undetermined degree of freedom for a given two-
dimensional (2D) line drawing. Given these technical issues in
Sugihara’s method, we propose a new method for explore not
just some but all 3D coordinates for a 2D line drawing that the
designer can use at will. The proposed method requires both
a minimal number of variables in its computation, resulting in
it being computationally cheap, and less manual programming.
Moreover, the proposed method provides a user interface that
the designer can use to manually adjust the degree of freedom
in the class of constructible impossible objects. This allows the
designer to create impossible objects that reflect their tastes.

Index Terms—impossible objects, line drawing, three dimen-
sional (3D) perception, computational geometry

I. INTRODUCTION

We can perceive the shape of a three-dimensional (3D)
object from a two-dimensional (2D) picture on a flat surface.
There is a special class of 2D drawings, called impossible
objects, that can be perceived as a 3D object locally but cannot
be perceived as a 3D object as a whole. Each part of the
picture is drawn as a 3D structure that makes sense locally,
resulting in it being perceived as 3D, but, as a whole, there
are contradictions that cause it to be seen as an impossible
3D structure. Many artists have used impossible objects as
motifs in their works, including “Penrose triangle” (Figure 1)
and “Penrose stairs” (Figure 2), which were formulated by
the mathematician Penrose, who was inspired by the works of
Escher.

Although these impossible objects often induce the per-
ception of impossible 3D structures, some of them can be
reconstructed as 3D objects. By replacing right angles in a
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Fig. 1. Penrose triangle

Fig. 2. Penrose staircase

figure with acute or obtuse angles or by changing sections that
appear to be continuous so that they appear discontinuous, it
is possible to create 3D objects that appear to be impossible
objects but only when viewed from a certain perspective.
These impossible line drawings, that can be built as 3D
objects, are called impossible objects.

On the other hand, it is not clearly understood whether these
impossible objects people perceive can be created using the
coordinates for 3D space. The method for constructing them
has been treated as a geometric problem [1] and has also been
studied as a model for the 3D perceptual mechanism [2].

For impossible objects, Sugihara devised a method for label-
ing line drawings that is based on Huffman’s vertex dictionary
[3][3], in which the feasibility of creating impossible objects
is determined by linear programming problems [4]. However,



this method has some technical and practical issues. Firstly,
Sugihara’s method requires to introduce an additional set of
variables that are more than the minimum requirement to
represent a 3D object. These additional variables obscure the
essential mathematical structure used for designing a 3D object
and results in more manual effort being required to design the
impossible object. Secondly, Sugihara’s method can be used
to obtain one 3D object out of an infinite number of possible
3D objects that can havea 2D line drawing as their projections.
Thus, the designer of the 3D object cannot freely adjust and
choose a possible configuration of the impossible object.

In this study, we propose a new method of creating a
3D structure that addresses these technical problems. In this
proposed method, the only unknown set of variables is the
set of 3D coordinates of the vertices, which are the minimal
set of variables, so there is no need to introduce unnecessary
variables. Specifically, the equations representing the vertices
on the same plane are expressed as determinants, and, by
using singular value decomposition, the number of vertices
N of a 3D object is divided into the (N − K)-dimensional
constrained subspace and the K-dimension that can be freely
designed. Here, the (N − K)-dimension is constrained by
the given planer projection of the 3D object, and the other
K–dimension is the degree of freedom in a 3D figure that
keeps the specific 2D line drawing invariant. Therefore, by
adjusting these degrees of freedom manually, the designer can
draw an object that reflects their tastes, independent of the
constraints imposed.

II. RELATED WORKS

A. Modeling of Impossible Objects

In their work on impossible Objects, Wu et al. [5] propose
an optimization method for modeling and rendering impossible
objects. The method is inspired by the ways in which users
build physical 3D models to generate impossible objects.
When provided with a 3D section of a locally possible object,
this method automatically optimizes a 3D model according to
the 3D constraints needed to render the impossible object in
the desired viewpoint.

Although this method allows for the construction of a 3D
object from a 2D image of an impossible object, it can only
create a discontinuous object by cutting some part that are
perceptually connected on the 2D drawing. Our method, in
contrast, has no such limitations and can design a 3D im-
possible object without any additional cutting of perceptually
connected components.

B. Converting a 2D Image to 3D

There is research on creating 3D images. Hu et al. [6]
propose a method for generating a 3D scene from a single
image that can reproduce depth and move the viewpoint back
and forth. Synthesizing a 3D structure from a single 2D-RGB
image is difficult because it requires an understanding of the
3D structure of the 2D image and texture mapping to generate
both visible and invisible regions in the relevant viewpoint.
In this study, a convolutional neural network was used to

understand the 3D structure by attaching planar mesh in a way
that matched the estimated depth. The texture was mapped
to the shape of the mesh, allowing the texture to be placed
naturally, even when the viewpoint changed.

This technique is important in its own right, but it requires
shading or textural structure of a surface in order to reconstruct
a 3D structure. Thus, without these visual cues, this type
of method would not work optimally for the abstract line
drawings.

C. Gestalt Psychology

Gestalt psychology is a field of psychology that focuses on
the wholeness and structure of human psychology rather than
on a collection of parts or elements [7]. Gestalt refers to a
coherent structure that has a sense of wholeness. According
to Gestalt psychology, when people look at something, they
tend to grasp the whole from the beginning; they understand
the figure as simply and coherently as possible rather than
recognizing the whole by accumulating an understanding of
the parts. An impossible object is a figure that looks 3D
because each part of the picture is drawn as a 3D structure
makes sense locally but contains contradictions as a whole. As
object perception, including of impossible figures, is one of
central subjects of Gestault psychology, our proposed method
may serve as a tool to create and explore such local and global
nature of the human perception.

III. THEORETICAL FORMULATION

In this chapter, we briefly describe Sugihara’s method [4],
which can be used to create impossible objects from a 2D
line drawing. Next, the proposed method for solving its
technical problems is described. In this paper, we focus on
line drawings, which are defined as figures that are drawn
only with line segments. We do not deal with color shades or
tones; only with the presence or absence of points (black or
white). The same method is employed in [4].

The line drawing used in this chapter is in the xy-plane,
and the line drawing is an orthogonal projection of an object
placed in 3D space that is coordinated by (x, y, z) ∈ R3.
The set of nodes in the line drawing is denoted by U, and
the nodes are numbered serially from 1 to |U| ; for example,
u1,u2, · · · ,u|U|. ui = (xi, yi) ∈ R2 are the coordinates of
the ith node ui on the line drawing. As the line drawing is
provided, xi andyi are known real values. vi = (xi, yi, zi)
denotes the 3D coordinate of the ith vertex of an object that
may have this node in its projection. Since the values of xi

and yi are fixed, only zi is inderterminate.

A. Sugihara’s Method

This subsection introduces Sugihara’s method [4].
1) Interpretation as a Planar-Panel Scene: The set of faces

in the line drawing is denoted by F; the faces are numbered
serially from 1 to |F|, and they are denoted by f1, f2, · · · , f|F|.
The jth plane fj is a planar polygon. If there is an assumption
that the viewpoint is generally positioned, in that the lines
and faces in a 3D space are the lines and faces on a 2D



view, respectively, a point (x, y, z) on a plane fj satisfies the
following equation:

ajx+ bjy + z + cj = 0, (1)

where aj , bj , cj ∈ R (1 ≤ j ≤ |F|) are unknown constants
specific to fj . In this equation, we assume that there is no
plane parallel to the z-axis, so the coefficient of z can be set
to 1. When the ith vertex Vi is on the j-face Fj , the equation
is:

ajxi + bjyi + zi + cj = 0. (2)

The same linear equation can be obtained for all pairs of
vertices and the faces on which they are located. Putting them
all together, we have

Aw = 0, (3)

where A is a constant matrix and w is a vector of the
unknowns:

w = (z1, · · · , z|U|, a1, b1, c1, · · · , a|F|, b|F|, c|F|)T. (4)

Next, the constraints imposed by the occlusion between
faces of the object are considered. Using the vector of un-
knowns w outlined in Equation (4), the linear inequality
without equality

Bw > 0 (5)

or linear inequality with an equal sign

Cw ≥ 0 (6)

are used in the form employed by Sugihara, which he derived
from the labels of line drawings that were based on Huffman’s
vertex dictionary [3].

2) Computation as a Linear Programming Problem:
Whether a line drawing represents an object can be determined
by the presence or absence of solutions to equations (3), (5),
and (6). In order to adapt this problem to the standard form
of a linear programming problem, the inequality (5) can be
written without the equality sign for a positive number e, as
in:

Bw ≥ (e · · · e)T. (7)

In this case, the existence of a solution that satisfies equations
(3), (5), and (6) is equivalent to the existence of a solution that
satisfies equations (3), (6), and (7). Equations (3), (6), and
(7) are constraints on the linear programming problem, and
the unknowns ai, bi, ci, zj can be used to make it a standard
problem in linear programming, where the slack variables are:

a+j , a
−
j , b

+
j , b

−
j , c

+
j , c

−
j , z

+
i , z

−
i ≥ 0 (8)

and the set is:

aj = a+j − a−j , bj = b+j − b−j ,

cj = c+j − c−j , zi = z+i − z−i
. (9)

The constraint obtained by such a transformation is denoted
as:

n∑
j=1

pijsj = qi ≥ 0, i = 1, 2, · · · ,m (10)

sj ≥ 0, j = 1, 2, · · · , n (11)

In this case, it will be rewritten in standard form, wherein the
number of equality constraints and the number of variables
are represented by m and n, respectively. The existence
of a solution that satisfies this constraint is equivalent to
the original system of restoring equations and perspective
inequalities having a solution.

Lastly, we introduce the new artificial variables:

sn+1, sn+2, · · · , sn+m

to this constraint equation to solve the linear programming
problem.

Minimize: w ≡
m∑
j=1

sn+j (12)

Subject to:
n∑

j=1

pijsj + sn+i = qi, i = 1, 2, · · · , n (13)

sj ≥ 0, j = 1, 2, · · · , n+m (14)

If we solve this linear programming problem and obtain the
optimal solution value for w∗ minimizing (12), if w∗ > 0,
then the original linear programming problem has no feasible
solution. In other words, there is no object with a line drawing
as its basis. On the other hand, if w∗ = 0, there are several
solutions, with all of them constituting a feasible solution to
the original linear programming problem. Thus, the object
can be recovered. In this way, we can create an artificial
linear programming problem and determine the possibility of
recovering the object from the value of the optimal solution.

B. Proposed Method

Our method reduces the amount of computational proce-
dures in Sugihara’s method by focusing only on the vertex-
face relationship; some of the vertices labelled as the set U,V
are on a plane in F. However, we do not introduce unknown
coefficients aj , bj , cj for each face fj as in (2) but represent
it in an equivalent form without these coefficients.

If and only if there are four points

v1 = (x1, y1, z1), . . . , v4 = (x4, y4, z4) ∈ R3

in three dimensions that are on the same plane, we have the
following identity:

∆1,2,3,4 :=

∣∣∣∣∣∣∣∣
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

∣∣∣∣∣∣∣∣ = 0. (15)



Expanding the above determinant by a cofactor series results
in:

∆1,2,3,4 = z1∆2,3,4 − z2∆1,3,4 + z3∆1,2,4 − z4∆1,2,3,
(16)

where

∆i,j,k :=

∣∣∣∣∣∣
xi xj xk

yi yj yk
1 1 1

∣∣∣∣∣∣ .
For each quadraple (i, j, k, l) sharing the same plane, Equation
(16) becomes:

(∆j,k,l,−∆i,k,l,∆i,j,l,−∆i,j,k)(zi, zj , zk, zl)
T = 0. (17)

Therefore, for each plane i (i = 1, · · · ,m) with no three
colinear points, we provide the (|fi| − 3) equations of (17).
The number of equations denote the following:

m̂ :=

m∑
i=1

(|fi| − 3). (18)

Including all the m̂ equations, the plane equations as a whole
can be written as:

Qz = 0, (19)

where Q ∈ Rm̂×n is a constant matrix and z ∈ Rn is z =
(z1, z2, . . . , zn). For this Q, there exists an orthogonal matrix
G ∈ Rm̂×m̂,H ∈ Rn×n that satisfies the following singular
value decomposition:

Q = GSHT. (20)

Here, S ∈ Rm̂×n is denoted as:

S =
(∑

0
)
,

∑
= diag(σ1, σ2, · · · , σr), (21)

where σk(k = 1, · · · , r) is the singular value of σ1 ≥ σ2 ≥
· · · ≥ σr > 0, r ≤ rankQ. This results in the following:

GSHTz = 0, (22)

where each of G,H is a unitary matrix. Let Ĥ ∈ Rn×(n−m̂)

be the submatrix from m̂+ 1 to n columns of H, that spans
the kernel of Q. Using the vector r ∈ Rn−m̂ with arbitrary
values, the solution z = (z1, z2, . . . , zn) ∈ Rn of (19) can be
expressed as follows:

z = Ĥr. (23)

By changing the value of r, we can change the 3D structure of
the object while maintaining the projection on the constrained
plane.

The algorithm of the proposed method is summarized in
TABLE I.

TABLE I
THE ALGORITHM FOR DESIGNING THE IMPOSSIBLE OBJECT

Algorithm 1 Designing the impossible object
Input: U = (x1, y1), (x2, y2), · · · , (xn, yn)
Output: z = (z1, z2, · · · , zn)
1: Compute the matrix Q in (19) for U.
2: Compute the matrix Ĥ in (23) by singular decomposition of Q.
3: Create a graphical user interface to manipulate the parameter r and

visualize the 3D structure of V, with z = Ĥr for the parameter r, as
specified by the user’s choice.

4: Output the z of the user’s choice.

IV. DEMONSTRATION

Here, we discuss two cases in which the proposed method
was used. Firstly, we consider an “impossible triangle,” the
line drawing of which is shown in Figure 3. Figure 4 shows an
impossible triangle, the faces of which are colored to specify
which face is occluded. This figure consists of 15 vertices,
19 line segments, and five faces. For this input, the matrix
Q ∈ R33×15 has rankQ = 9 and Ĥ ∈ R6×15. Thus, there
are six degrees of freedom for the designer to manually adjust
r ∈ R6. To demonstrate the impact of a designer’s choice of
parameter, a 3D instantiation of the impossible triangle with
a different parameter is provided, as shown in Figure 5 and
Figure 6. In terms of the parameter controlling the depth of
each vertex, the brown face is over the pink face, resulting in
a “possible” triangle.

Fig. 3. Input line drawing of the impossible triangle.

Next, we demonstrate the application of the proposed
method in another example: the “impossible cube,” the line
drawing of which is shown in Figure 7 and the colored version
of which is shown in Figure 8. The impossible cube consists
of 38 vertices, 54 line segments, and 15 faces. For this input,
the matrix Q ∈ R222×38 has rankQ = 27 and Ĥ ∈ R11×38.
Thus, there are 11 degrees of freedom for the designer to
manually adjust; r ∈ R11. To demonstrate the impact of
a designer’s choice of parameter, a 3D instantiation of the



Fig. 4. Line drawing of the impossible triangle with its faces in color.

Fig. 5. A 3D impossible triangle.

impossible triangle is shown in Figure 9, and an example
of 3D instantiation of the impossible cube with a different
parameter is shown in Figure 10.

Note that our method does not require unnecessary cutting
(discontinuation) of the 3D object, unlike the study previ-
ously discussed [5]. The connected faces in the line drawing
(Figure 7) are also connected in 3D example (Figure 5 and
Figure 6).

V. DISCUSSION

In this study,motivated by Sugihara’s work, we propose a
minimally reduced method or designing impossible objects [4].
This method introduces a minimal number of variables for
the depth coordinate of each vertex and provides a manually
controllable set of parameters of impossible objects from
which the designer can choose. This amount of control offers
the possibility of designing some figural pattern of the same

Fig. 6. The 3D impossible triangle with a different parameter to that shown
in Figure 5.

Fig. 7. Input line drawing of the impossible cube.

3D object from another view, and it also makes it easier
to control a single 3D object that is in a certain context of
the designer’s choice. Thus, the proposed method is not just
another method for building an impossible object, but it is also
a new computational tool that allows the further exploration
of 3D planer-faced objects.

With an unnecessary cut on the 3D structure, such as the
previous method [5], introduces multiple points in 3D, which
are projected onto the same point on the constrained plane.
Our method holds both 3D object and its 2D projection have
the same number of points, line segments, and planes. Due to
this difference, our method would give a more robust planer
view against the change of view point than the previous one.

One issue that needs to be addressed in future studies is
the choice of coordinate systems for the kernel space of Q̂,
spanned by the bases Ĥ. One variable in the parameter r̂ that



Fig. 8. Line drawing of the impossible cube with its faces colored.

Fig. 9. A 3D impossible cube.

moves all the planes of a 3D object while designing is a “bad”
choice in this coordinate system. In contrast, a “good” choice
in this coordinate system results in simpler manual adjustment
of the parameter, in that one variable in the parameter r̂ moves
only one or a few of the impossible object’s planes. It is crucial
to select a good coordinate system for a complex object, such
as an impossible cube with a large number of degrees of
freedom, as shown in Figure 8. If the coordinate system is not
natural, the manual designing efforts increase exponentially
according to the degrees of freedom.

One of the challenges when choosing the coordinate system
results from each line drawing (as the input) possibly having
different degrees of freedom and a different structure that
is dependent on the variables. A good user interface for

Fig. 10. The 3D impossible cube with a different parameter to that shown in
Figure 9.

manipulating 3D objects would provide a good understanding
of its 3D structure. Thus, it is necessary to understand humans
perceive and understand 3D objects in order to allow for the
automatic construction of a custom-made natural interface for
each 3D object.
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