SAKAI Hidetaka

J-GLOBAL         Last updated: May 14, 2011 at 22:29
SAKAI Hidetaka

Published Papers

Problem: Discrete Painlevé equations and their Lax forms
Sakai H.
RIMS Kôkyûroku Bessatsu   B2 195-208   2007   [Refereed]
Studies on the Painlevé equations, V, Third Painlevé equations of special type Tex and Tex
Y. Ohyama, H. Kawamuko, H. Sakai, K. Okamoto
J. Math. Sci. Univ. Tokyo   13 145-204   2006   [Refereed]
Lax form of the Tex-Painlevé equation associated with the Tex surface
Sakai H.
J. Phys. A: Math. Gen.   39 12203-12210   2006   [Refereed]
Folding transformations of the Painlevé equations
T. Tsuda, K. Okamoto, H. Sakai
Math. Annalen   331 713-738   2005   [Refereed]
Sakai H.
Funkcial. Ekvac.   48(2) 273-297   2005   [Refereed]
Hypergeometric solution of Tex-Schlesinger system of rank two
Sakai H.
Lett. Math. Phys.   73 237-247   2005   [Refereed]
Michio Jimbo, Hidetaka Sakai
Lett. Math. Phys.   38(2) 145-154   1996   [Refereed]
A Tex-difference analog of the sixth Painlevé equation is presented. It
arises as the condition for preserving the connection matrix of linear
Tex-difference equations, in close analogy with the monodromy preserving
deformation of linear differe...
Mikio Murata, Hidetaka Sakai, Jin Yoneda
J. Math. Phys.,   44(3) 1396-1414   2003   [Refereed]
We present a special solutions of the discrete Painlevé equations
associated with Tex, Tex and Tex-surface. These
solutions can be expressed by solutions of linear difference equations. Here
the Tex-surface dis...
M. Jimbo, H. Sakai, A. Rammani, B. Grammaticos
Phys. Lett. A   217(2/3) 111-118   1996   [Refereed]
Rational surfaces associated with affine root systems and geometry of the Painleé equations
Sakai H.
Commun. Math. Phys.   220 165-229   2001   [Refereed]
B. Grammaticos, Y. Ohta, A. Rammani, H. Sakai
J. Phys. A : Math. Gen.   31(15) 3545-3558   1998   [Refereed]
Sakai H.
Nonlinearity   11(4) 823-833   1998   [Refereed]