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A B S T R A C T

It has been suggested that resting-state functional connectivity (rs-FC) between the primary motor area (M1)
region of the brain and other brain regions may be a predictor of motor learning, although this suggestion is still
controversial. In the work reported here, we investigated the relationship between M1 seed-based rs-FC and
motor learning. Fifty-three healthy volunteers undertook random button-press and sequential motor learning
tasks. Five-minute resting-state data acquisition was performed between the two tasks. Oscillatory neural activ-
ities during the random task and the rest period were measured using magnetoencephalography. M1 seed-based
rs-FC was calculated for the alpha and beta bands using amplitude envelope correlation, in which the seed
location was defined as an M1 position with peak event-related desynchronization value. The relationship be-
tween rs-FC and the performance of motor learning was examined using whole brain correlation analysis. The
results showed that beta-band resting-state cross-network connectivity between the sensorimotor network and the
core network, particularly the theory of mind network, affected the performance of subsequent motor learning
tasks. Good learners could be distinguished from poor learners by the strength of rs-FC between the M1 and the
left superior temporal gyrus, a part of the theory of mind network. These results suggest that cross-network
connectivity between the sensorimotor network and the theory of mind network can be used as a predictor of
motor learning performance.
1. Introduction

The primary motor area (M1) is the one of the most important regions
of the brain for motor function and motor learning (Baker, 2007; Cheyne
et al., 2008; Crone et al., 1998; Mawase et al., 2017; Muthukumar-
aswamy, 2010; Uehara et al., 2017). Low-frequency components of brain
activity, such as alpha and beta bands, have been reported to be impor-
tant neurophysiological factors in motor functions (Cheyne, 2013; Miller
et al., 2010; Muthukumaraswamy, 2010; Sugata et al., 2014). Recent
studies have reported that oscillatory neural activities in the beta-band
ealth Science, Oita University, 7
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over the M1 are associated with motor learning (Krause et al., 2016;
Pollok et al., 2014). Oscillatory neural activities in the alpha and beta
bands have been observed to be modulated following motor learning
(Gentili et al., 2015; Mehrkanoon et al., 2016). In addition, alpha and
beta oscillations in the sensorimotor cortex are observed in relation to
motor execution (Leocani et al., 2001; Salmelin and Hari, 1994), motor
preparation (Pfurtscheller et al., 1997), motor imagery (Pfurtscheller
et al., 2006), andmotor learning (Pollok et al., 2014) and is considered as
a mechanism to improve information processing during these tasks
(Basar et al., 2001; Palva and Palva, 2007; Sabate et al., 2012).
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Fig. 1. Experimental procedure. Before the motor learning task, participants
undertook a random button-press task (R0) to define the M1 seed region for
subsequent seed-based functional connectivity analysis. Then, 5-min resting-
state data were acquired. Participants then performed a 12-digit motor
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Furthermore, functional connectivity within the range of alpha and beta
band activities are suggested to be related to physical and mental fitness
(Douw et al., 2014). Such neurophysiological aspects have been proposed
as useful predictors of motor learning performance (Manuel et al., 2018;
Mary et al., 2016, 2017; Wu et al., 2014). However, some studies have
reported that capacity for motor learning shows significant variability
between individuals (Golenia et al., 2014; King et al., 2012). In addition,
improvement in the prediction accuracy of motor learning ability may be
valuable for evaluating prognoses with respect to the therapeutic effects
of rehabilitation for patients with stroke, trauma, and other neural con-
ditions (Burke and Cramer, 2013).

Motor learning refers to improvement in the performance of sensory-
guided motor behavior through practice (Krakauer and Mazzoni, 2011).
The acquisition of new skills through motor practice is essential for the
interaction with the environment and to make adjustments in which
multiple elements of movement are integrated. To quantitatively eval-
uate the acquisition of a new skill, the serial reaction time task (SRTT),
which involves implicit and explicit learning of a finger movement
sequence, was used (Nojima et al., 2018; Sugata et al., 2018). Implicit
motor learning refers to improvement in the performance of a sequence
without knowledge of the sequence (Robertson, 2009), whereas explicit
motor learning involves conscious recollection with knowledge of the
sequence. There are multiple different memory systems in the neural
substrates. For example, the contralateral primary motor cortex (M1) has
been identified as an important region for implicit motor learning
(Muellbacher et al., 2002; Robertson et al., 2005).

Functional connectivity is manifested as a temporal synchronization
of neural activity between anatomically separated brain regions (Aertsen
et al., 1989; Friston, 2001). Spontaneous fluctuations of brain activity at
rest, termed resting-state functional connectivity (rs-FC), are highly
organized phenomena (Fox et al., 2005). Such inter-regional interactions
reflect signal transduction between brain regions and are associated with
behavioral performance (Guggisberg et al., 2015; Hipp et al., 2011).
Several studies have attempted to predict motor learning ability using
temporal synchronization by neural oscillations or functional MRI (fMRI)
blood oxygenation level-dependent changes in distinct brain regions
(Bonzano et al., 2015; Mary et al., 2017; Mehrkanoon et al., 2016;
Stillman et al., 2013). A recent study reported that beta-band rs-FC be-
tween M1 and the parietal area is positively associated with motor
learning (Wu et al., 2014), whereas another study showed a negative
correlation between rs-FC in the M1-parietal area and motor learning
(Mary et al., 2016). Alpha band rs-FC has also been reported to be
associated with motor learning (Manuel et al., 2018). Considering that
the M1 forms functional networks with several motor association areas,
such as the premotor cortex, supplementary motor area, and the parietal
area during movement (Herz et al., 2012), functional connectivity
involving M1 as the seed region may be a strong predictor of motor
learning. However, as described above, the relationship between M1
seed-based rs-FC and motor learning has not yet been clarified, and the
relationship is still controversial.

In the present study, we hypothesized that M1 seed-based rs-FC is a
strong predictor of motor learning. To investigate this hypothesis, we
examined the relationship between M1 seed-based rs-FC and motor
learning ability. Magnetoencephalography (MEG) was used because it
has advantages for the analysis of neurophysiological signals over elec-
troencephalograms (EEG) and fMRIs. MEG has higher spatial resolution
than EEG and can record direct correlates of neural activity with higher
temporal resolution than fMRI (Baillet, 2017; Palva and Palva, 2012;
Singh, 2012). In the present study, participants performed a sequential
motor learning task after recording 5-min resting-state MEG data. The
M1 seed-based rs-FC was calculated in the alpha and beta bands using
amplitude envelope correlation (AEC). The relationship between rs-FC
and performance of motor learning was then examined using whole
brain correlation analysis.
2

2. Materials and methods

2.1. Participants

Fifty-three healthy volunteers (32.9 � 6.7 years; 22 females) partic-
ipated in this study. All participants were right-handed, as determined by
the Edinburgh Handedness Inventory Test (Oldfield, 1971). No partici-
pant had a history of neurological or psychiatric disease, and all had a
normal or corrected-to-normal vision. In accordance with the Declaration
of Helsinki, we explained the purpose and possible consequences of this
study to all participants and obtained their informed consent before the
study commenced. The Ethical Review Boards of Oita University Faculty
of Medicine and Junwakai Memorial Hospital approved the protocols of
this study (No.982 and No.0524–2).
2.2. Experimental design and procedure

All participants were naïve to the present study. The participants
performed a 12-digit motor sequence learning task, i.e., SRTT, in which
participants were required to react with their four right-hand fingers
(index, middle, ring, and little fingers; Fig. 1) (Nissen and Bullemer,
1987). Four horizontal bars were displayed on the screen. When the color
of a bar changed from gray to blue, participants were instructed to press
the corresponding button as quickly and accurately as possible. If a
participant pressed the correct button, the next stimulation was pre-
sented after 1 s. If a participant pressed an incorrect button, the stimu-
lation was unchanged until the participant pressed the correct button.
This motor learning task consisted of six sequence blocks (S1–S6) and two
random blocks (R1, R2). Random blocks were set before (R1) and after the
six sequence blocks (R2). Prior to the motor learning task, all participants
underwent a random button-press task, which consisted of two random
blocks (192 button presses) to define the M1 seed region for subsequent
seed-based functional connectivity analysis. The sequence blocks
comprised eight repeats of twelve stimuli in the same sequence. Thus, a
total of 576 button presses were performed in a sequence block, whereas
192 button presses were performed in a random block. Five-minute
resting-state data were acquired between the random task and the
motor learning task. A previous study has shown that the eyes-closed
resting condition is better identified as a convenient arousal baseline,
with the eyes-open resting condition serving as a convenient activation
baseline, particularly for tasks that involve visual processing (Barry et al.,
2007). Therefore, we applied the eyes-closed condition to the
resting-state MEG recordings in the present study. All participants were
instructed to stay awake and still with their eyes closed during
sequence learning task consisting of six sequence blocks (S1–S6) and two
random blocks (R1, R2).
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resting-state MEG recordings.
In the random button-press task and motor learning tasks, the visual

stimuli were displayed using a visual presentation system (Presentation,
Neurobehavioral Systems, Albany, CA, USA) and a DLP projector
(TAXAN KG-PH1005, Kaga Micro Solution Co., Ltd, Tokyo, JPN) on a
rear projection screen (ELEKTA, Helsinki, FIN) located 1.5 m from the
participants’ eyes. Response times were collected using a completely
non-magnetic and non-electronic response device (PKG-932, Current
Designs, Philadelphia, USA).

2.3. MEG measurements

MEG measurements were made using a 306-channel whole-head
MEG system (Vector-view, ELEKTA Neuromag, Helsinki, FIN) during
the random button-press task and under resting conditions in a
magnetically-shielded room. During MEG measurement, the participant
was seated in a comfortable chair. MEG signals were digitally recorded
using an online 500 Hz low-pass filter at a sampling rate of 1020 Hz. To
remove eye movement artifacts after offline analysis, electrooculogram
(EOG) was simultaneously recorded.

We acquired structural MRIs using a 3.0 T MRI system (Achieva 3T,
Philips Inc., Amsterdam, NLD). At least 50 head- and face-surface points
were determined by a 3D digitizer (FastSCAN Corba, Polhemus, Col-
chester, VT, USA), and three head localization coils attached to the
participant’s head were used to align the MEG data with the individual
brain MRI results. The data from the 3D digitizer were superimposed on
each individual’s MRI data with an anatomical accuracy of a few
millimeters.

2.4. MEG data preprocessing

In order to eliminate environmental noise, we applied signal space
separation to the MEG data in the random button-press task and resting
condition (Taulu et al., 2005). MEG data were analyzed using Brainstorm
software (Tadel et al., 2011). Data were resampled to 1000 Hz, and an
offline band-pass filter between 0.1 and 100 Hz and a band-elimination
filter between 58 and 62 Hz were applied to eliminate the environ-
mental noise. Eye-blink artifacts in the MEG data were separated using
EOG and rejected by signal–space projection, a method for removing
external disturbances (Tadel et al., 2011). In the random button-press
task, we defined the onset time of the button-press as 0 ms. The time
window of an epoch was defined as �1000 to 1000 ms. Among the 192
button presses, unsuitable epochs were excluded from the analysis. These
epochs were defined as those that included error responses, anticipatory
responses, responses outside the mean value � 2 SD for each block, and
contamination by excessive muscle activity. In the resting task, MEG data
were segmented into 30 non-overlapping 10-s epochs.
Artifact-contaminated epochs were manually detected and excluded
from the analysis.

2.5. MEG source estimation

In order to estimate the source model, a source-level analysis was
performed using 204 planar-type gradiometers, which are powerful
enough to detect the largest signal just over local cerebral sources
(Otsuru et al., 2014). Reconstruction and segmentation of the cortical
surfaces were performed using Freesurfer software (https://surfer.nmr
.mgh.harvard.edu/) for each participant’s anatomical MRI. Vertices of
the cortical surface were set as 15,000 points. Tomographic reconstruc-
tion of the data was created by generating an overlapping-sphere head
model based on the shape of the head obtained from the structural MRI of
each participant. A noise covariance matrix was computed from 3-min
empty-room recordings taken before each session. The inverse imaging
model estimated the distribution of brain currents that accounted for
data recorded at the sensors. In order to compute the source distribution,
the minimum norm estimate was applied to MEG data in the random
3

button-press task and resting condition using the Brainstorm default
parameters.

Then, source data were divided into the following two frequency
bands: alpha (8–13 Hz); beta (13–25 Hz), using a finite impulse response
filter. A Hilbert transformation was performed on the filtered signals to
obtain complex-valued analytic signals. To avoid filtering edge effects,
source data from �700 ms to 700 ms were set as the analysis time win-
dow. The source power spectral density of each frequency band was
calculated from the square of the absolute value of the complex-valued
signals. The resulting oscillatory powers were normalized by the base-
line time window (�700 to �500 ms, in dB). Considering that a previous
study showed that the patterns of functional connectivity in MEG show
high variability when using a common seed for all subjects (Wens et al.,
2014), individual peak event-related desynchronization (ERD) (Engel
and Fries, 2010; Pfurtscheller and Aranibar, 1979; Salmelin and Hari,
1994) value was detected in M1, which was defined by the
Desikan-Killiany Atlas (Desikan et al., 2006), between �500 and 500 ms
and set as a seed region.

2.6. rs-FC

The rs-FC analysis was carried out with a seed-based design using the
Brainstorm default parameters. To estimate the AEC, orthogonalization
was performed to eliminate the pairwise effect of linear signal mixing on
the long-range temporal correlations and to allow the assessment of the
relationship between local cortical scaling exponents without the artifi-
cial coupling of these regions (Blythe et al., 2014; Zhigalov et al., 2017).
Seed location was individually defined for each participant, based on the
peak ERD around the M1 in the random button-press task. Then, M1
seed-based rs-FC was estimated using AEC analysis. AEC is calculated by
correlating the amplitude envelopes of two oscillatory brain activities,
which are defined as the absolute value of the Hilbert transform of a
cortical oscillation. High AEC values indicate synchronous amplitude
envelope fluctuations between oscillations. Thus, AEC can detect syn-
chronization between functional brain networks within frequency bands
(Bruns et al., 2000; Doron et al., 2012; Hipp et al., 2012; Zamm et al.,
2018). In the present study, the Hilbert transformation was applied to the
filtered signals, i.e., alpha (8–13 Hz) and beta (13–25 Hz) bands, to
obtain complex-valued analytic signals. Thereafter, Pearson’s correlation
coefficients were calculated using AEC in each frequency band. The rs-FC
maps were projected on the default anatomy (ICBM152) in order to share
the same rs-FC maps between individuals.

2.7. Motor learning index

In order to examine motor performance in the sequential motor
learning task, response time was calculated as the time from the stimulus
onset to that of a correct button-press and was averaged for each block.
Anticipatory responses and responses outside the mean value � 2 SD for
each block were excluded from all analyses. To examine the extent of
improvement in sequential motor learning, differences in response time
among eight blocks were computed using two-way analysis of variance in
SPSS (version 25). Referring to the previous studies using SRTT (Pollok
et al., 2014; Sugata et al., 2018), motor learning index was defined by
calculating the difference in response time between the R1 block and the
last block (S6) in the sequence learning. Thus, motor learning index in
this work has higher values indicating greater decreases in response time.

2.8. Correlation analysis between motor learning index and rs-FC

To examine whether rs-FC is associated with motor learning, we
calculated the correlation coefficient between the M1 seed-based rs-FC
and the motor learning index among the 53 participants using Pearson’s
correlation coefficient over the whole brain. To control for multiple
comparisons, the statistical p-value was corrected for false discovery rate
(FDR) over the whole brain. Although a previous study used FDR
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Fig. 2. Mean response time during the random button-press task and sequence
motor learning task. Response times were significantly different among the
blocks (p ¼ 0.001), and multiple comparison showed significant differences
between R1 and S6 (*p ¼ 0.027). Error bars indicate the standard error.

Fig. 3. (A) Grand averaged oscillatory neural activity in the alpha and beta
bands during the random button-press task (R0). Robust ERDs in the alpha and
beta bands were observed over the left sensorimotor areas. White circles indi-
cate averaged localization of the M1 seed regions. (B) Seed-based rs-FC between
left M1 (white circles) and the whole brain. The sensorimotor network was
observed in both alpha and beta bands.
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correction with q-thresholds as high as 0.2 (Genovese et al., 2002), we
employed statistical testing with FDR correction at a q-value of 0.001, to
strictly control the p-value. The statistically significant level of p was
therefore 9.36e-05. Voxels with significant values were considered to be
statistically significant and were superimposed on the template anatomy.
In order to examine oscillatory neural activity and the motor learning
index, the relationship between individual peak ERD values in the alpha
and beta bands during the random button-press task and the motor
learning index was also examined using Pearson’s correlation.

2.9. Prediction of motor learning ability

We performed decoding analysis to examine whether good learners
can be distinguished from poor learners based on the brain areas with a
significant correlation between M1 seed-based rs-FC and the motor
learning index. In the present study, good learners and poor learners
could be separated by the median value of motor learning index. Par-
ticipants with a motor learning index above the median value were
defined as good learners and those with a median value of motor learning
index or below the median value were defined as poor learners.

To classify good and poor learners, a linear support vector machine
(SVM) (Kamitani and Tong, 2005) was applied in each brain region with
significant correlation between the motor learning index and rs-FC. The
peak strength of rs-FC between M1 and brain regions with significant
correlations between rs-FC and motor learning index was used as a
decoding feature, respectively. Prediction accuracy was evaluated using
10-fold cross-validation. Each dataset was divided into 10 parts, and the
classifiers were constructed based on 90% of the dataset—the training
set—and tested on the remaining 10% so that the testing dataset was
independent of the training dataset for each iteration (Sugata et al.,
2012). This procedure was repeated ten times. The averaged percentage
of correct results over all runs was used as a measure of decoder
performance.

Furthermore, we performed multiple regression analysis to predict
good learners and poor learners using the strength of peak rs-FC value in
the brain regions with significant correlations between rs-FC and the
motor learning index. The motor learning index was set as a dependent
valuable, and the strength of the peak rs-FC value between the M1 region
and brain regions with significant correlations between rs-FC and the
motor learning index was defined as the explanatory variable.

3. Results

3.1. Motor learning task

We examined motor performance during the motor learning task. The
results showed significant differences between blocks (F(7,416) ¼ 3.516, p
¼ 0.001, η2p ¼ 0.056). In order to further investigate the differences
between R1 and other blocks, post hoc analysis was performed. The re-
sults showed significant differences between R1 and S6 (p ¼ 0.027)
(Fig. 2). Thus, the delta response time between R1 and S6 was defined as
the motor learning index in this work.

3.2. Correlation between motor learning index and rs-FC

In order to define the seed region for M1 seed-based functional con-
nectivity analysis, the M1 location with the peak ERD value was detected
between �500 ms and 500 ms in individual participants. Fig. 3A shows
the averaged oscillatory neural activities and seed locations (white cir-
cles) defined by peak ERD values in the alpha and beta bands. Seed-based
rs-FC analyses were performed for the relationship between M1 seed
locations and the whole brain. The results showed clear sensorimotor
networks (Brookes et al., 2011; Mantini et al., 2007) in both alpha and
beta bands (Fig. 3 B).

After calculating the M1 seed-based rs-FC in individuals, the corre-
lation coefficient between the strength of rs-FC in the alpha and beta
4

bands and the motor learning index was computed for all participants.
Fig. 4 shows the correlation map between beta-band rs-FC and motor
learning index over the whole brain (p < 0.001, FDR-corrected). Signif-
icant negative correlations were localized mainly to the left temporal



Fig. 4. Spatial distribution of significant correlations between M1 seed-based rs-FC and motor learning index. Significant negative correlations were observed in the
left temporal gyri, bilateral sensorimotor areas, opercular inferior frontal gyri, and parietal areas. The strongest correlation was obtained from the left superior
temporal gyrus, indicating that subjects with strong rs-FC between left M1 and the left superior temporal gyrus had low performance in the subsequent motor learning
task. STG; superior temporal gyrus, cMFG; caudal middle frontal gyrus, IPL; inferior parietal lobule, PCun; precuneus, SMG; supramarginal gyrus, OpIFG; opercularis
inferior frontal gyrus.
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gyri, bilateral sensorimotor areas, opercular inferior frontal gyri, and
parietal areas (Fig. 4, Table 1). The strongest correlation was observed in
the left superior temporal gyrus, indicating that subjects with strong rs-
FC between the left M1 and the left superior temporal gyrus had low
performance in the subsequent motor learning task. No significant cor-
relations were observed in the alpha band between rs-FC and motor
learning index.

To further examine the relationship between themotor learning index
and neurophysiological aspects, we examined the magnitude of ERD
values in the individual seed locations and motor learning index using
Pearson’s correlation coefficients. However, there was no significant
relationship between ERD values and motor learning index in either
alpha or beta bands (Fig. 5). In addition, we performed correlation
5

analyses between the peak magnitudes of ERD and the motor learning
index in the brain regions with significant correlations between rs-FC and
the motor learning index. However, no significant relationships were
observed between the ERD value and motor learning index in either the
alpha or beta bands of each brain region (Supplementary Fig. 1).
3.3. Prediction of good learners and poor learners

To examine whether good learners can be distinguished from poor
learners based on the rs-FC, we carried out classification analysis using
SVM. Classification analysis was performed on the data from the beta-
band rs-FC because significant correlations between rs-FC and motor
learning were obtained only in the beta-band rs-FC. The strength of rs-FC



Table 1
Coordinates of significant correlation coefficients between M1 seed-based rs-FC
and motor learning index.

Brain region Hemisphere MNI coordinates Correlation
coefficient

X y z

Superior Temporal
Gyrus

Left �53.2 �51.0 17.9 �0.64

Middle Temporal
Gyrus

Left �60.8 �517 11.5 �0.61

Inferior Parietal
Lobule

Left �42.2 �63.7 28.5 �0.61

Supramarginal Gyrus Left �46.8 �44.5 43.2 �0.60
Supramarginal Gyrus Right 41.6 �41.9 43.4 �0.59
Caudal Middle
Frontal Gyrus

Left �26.0 �8.3 48.0 �0.58

Superior Parietal
Lobule

Left �40.8 �45.2 37.3 �0.58

Opercularis Inferior
Frontal Gyrus

Left �44.2 7.1 22.6 �0.57

Postcentral Gyrus Left �61.9 �14.9 11.9 �0.57
Postcentral Gyrus Right 68.4 �16.2 24.5 �0.57
Precentral Gyrus Left �45.1 1.3 34.4 �0.57
Inferior Parietal
Lobule

Right 37.4 �58.5 45.2 �0.56

Superior Parietal
Lobule

Right 33.6 �55.9 44.8 �0.55

Transverse Temporal
Gyrus

Left �51.7 �21.4 11.8 �0.55

Opercularis Inferior
Frontal Gyrus

Right 47.9 17.8 29.2 �0.54

Precentral Gyrus Right 49.6 4.1 37.3 �0.54
Precuneus Left �9.6 �77.9 47.4 �0.53
Lateral Occipital
Gyrus

Left �41.0 �64.4 10.9 �0.52

Precuneus Right 10.1 �59.5 51.3 �0.52

Fig. 5. Scatter diagrams showing the motor learning index and ERD values in
the individual M1 seed locations. There was no significant relationship between
motor learning index and ERD values in either alpha or beta bands.
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in the 19 locations with significant correlations between motor learning
index and rs-FC (Table 1) was used as a decoding feature to classify good
and poor learners. The boundary of the motor learning index between
good learners and poor learners was set to 23.7, based upon the median
value of the motor learning index. Participants with a motor learning
index above the boundary were defined as good learners (n ¼ 26; age
33.4 � 7.2 years), and participants with scores below the boundary were
defined as poor learners (n ¼ 27; age 32.0 � 6.1 years).

The classification analysis showed that good and poor learners could
be clearly distinguished by the strength of the rs-FC between the M1 and
the left superior temporal gyrus (75.7%), right post central gyrus
(76.0%), right superior parietal lobule (74.2%), and right opercular
inferior frontal gyrus (70.1%; Fig. 6).

We also performed multiple regression analysis to determine whether
good and poor learners could be predicted using the peak strength of the
rs-FC in the brain regions with significant correlations between rs-FC and
the motor learning index. However, good and poor learners could not be
predicted (Supplementary Table 1).

4. Discussion

The present study examined the relationship between M1 seed-based
rs-FC and motor learning ability. In addition, alpha and beta oscillations
in the sensorimotor cortex are observed in relation to motor performance
variables, motor execution (Leocani et al., 2001; Salmelin and Hari,
1994), motor preparation (Pfurtscheller et al., 1997), and motor learning
(Krause et al., 2016; Pollok et al., 2014). We focused the rs-FC on the
alpha and beta bands. The results showed significant correlations be-
tween beta-band M1 seed-based rs-FC and motor learning index. Good
learners could be clearly distinguished from poor learners using the
strength of the rs-FC between the M1 and the left superior temporal gyrus
as a classification feature. These results suggest that M1 seed-based rs-FC
in the beta-band can be a strong predictor of motor learning.

Previous resting-state fMRI studies have shown that hemodynamic
6

activity during rest is spatially organized in highly structured networks of
brain regions (Beckmann et al., 2005; Damoiseaux et al., 2006). The
rs-FC has been reported to involve several brain regions, termed senso-
rimotor (Biswal et al., 1995; Fox et al., 2006), default-mode (Damoiseaux
et al., 2006; Mantini et al., 2007), core (Buckner and Carroll, 2007;
Buckner et al., 2013; Spreng et al., 2009), visual, and auditory networks
(Damoiseaux et al., 2006; Mantini et al., 2007), which interact with each
other (Baker et al., 2014; de Pasquale et al., 2012).

Recently, the relationship between neural and hemodynamic resting-
state networks has been demonstrated using AEC of oscillatory alpha and
beta activities and topography from fMRI (Brookes et al., 2011; de Pas-
quale et al., 2012). Hipp et al. (2012) reported that AEC across cortical
regions is strongest in the alpha to the beta range. Another study reported
that alpha and beta fluctuations correlate with default-mode networks,
whereas beta and gamma fluctuations are related to sensorimotor net-
works (Mantini et al., 2007). These results indicate that alpha and beta
AECs reflect long-range neuronal interactions within large-scale cortical



Fig. 6. Classification accuracy of motor learning index between good learners
and poor learners. Good and poor learners were clearly distinguished by the
strength of the rs-FC between the M1 and the left superior temporal gyrus, right
post central gyrus, right superior parietal lobule, and right opercular inferior
frontal gyrus (*p < 0.05). The highest value was obtained in the left superior
temporal gyrus. Error bars indicate 95% confidence intervals of classification
accuracy. Horizontal dotted line donates chance level. STG; superior temporal
gyrus, MTG; middle temporal gyrus, IPL; inferior parietal lobule, SMG; supra-
marginal gyrus, cMFG; caudal middle frontal gyrus, OpIFG; opercularis inferior
frontal gyrus, PoG; postcentral gyrus, PrG; precentral gyrus, SPL; superior pa-
rietal lobule, TTG; transverse temporal gyrus, LOC; lateral occipital gyrus,
PCun; precuneus.
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networks. A recent study using MEG reported that the strength of AEC
cross-network interaction between sensorimotor networks and
default-mode networks is related to motor learning ability (Mary et al.,
2016). While this work provides the first evidence demonstrating a
relationship between the strength of the AEC cross-network interaction
and motor learning ability, these researchers could not rule out the
possibility that other cross-network interaction effects on motor learning
ability were overlooked due to the small sample size.

In the present study, we observed strong negative correlations be-
tween beta-band seed-based rs-FC and motor learning index in the left
temporal gyri, bilateral sensorimotor areas, opercular inferior frontal
gyri, and parietal areas. These brain regions overlapped significantly
with parts of the core network, particularly the “theory of mind” network
(Buckner et al., 2008; Carrington and Bailey, 2009; Patel et al., 2019; ;
Spreng et al., 2009). The theory of mind is the ability to think about
mental states, such as thoughts and beliefs in oneself and others, and
underlies social interactions (Koster-Hale and Saxe, 2013). Its network is
thought to overlap significantly with the default-mode network (Christoff
et al., 2016; Raichle et al., 2001; Yang et al., 2015). Buckner et al. (2013)
have recently suggested that rest is an internal task state with potential
performance differences. Considering that resting-state may be just
7

another arbitrary task state (Deco and Corbetta, 2011), it is not surprising
if cross-network interactions between sensorimotor networks and theory
of mind networks are induced during the resting condition. A recent
study has suggested that mentalizing networks, including the theory of
mind networks, may be grounded in sensorimotor networks (Paracampo
et al., 2017). From the viewpoint of motor learning, Mary et al. (2016)
reported that lower cross-network connectivity between resting-state
sensorimotor networks and parts of the default-mode network facilitate
motor learning. However, as described above, these researchers could
not rule out the possibility that other cross-network interactions related
to motor learning were overlooked due to the small sample size. In the
present study, we recruited 53 participants, and showed a strong nega-
tive correlation betweenM1 seed-based resting-state beta AEC and motor
learning index. Spectrally, beta oscillations are thought to be informative
regarding the performance of motor learning (Ozdenizci et al., 2017) and
the mechanisms related to motor maintenance (Brovelli et al., 2004;
Engel and Fries, 2010). In addition, stronger beta oscillations have been
observed if maintenance of the current motor status is intended or pre-
dicted (Engel and Fries, 2010). Furthermore, default-mode network in
the beta band has relation with self-related and internal processes (Mary
et al., 2016; Raichle, 2015), suggesting that higher beta-band cross-net-
work interactions between the sensorimotor network and parts of the
theory of mind network during resting state may inhibit implicit
sequential motor learning and lower beta-band cross-network in-
teractions between them conversely facilitate it. Indeed, default-mode
network is affected by motor training such as motor imagery (Ge et al.,
2015; Zhang et al., 2014).

Good learners and poor learners were well distinguished by the
strength of rs-FC between the M1 and the left superior temporal gyrus,
right postcentral gyrus, superior parietal lobule, and opercular inferior
frontal gyrus. Among these brain regions, the superior temporal gyrus
and opercular inferior frontal gyrus are involved in the core network,
particularly the theory of mind network (Carrington and Bailey, 2009;
Spreng et al., 2009). In addition, the superior parietal lobule is associated
with dorsal-attention network, which also belongs to core network
(Spreng et al., 2009) and relates on voluntary or goal-directed orientation
of attention (Fox et al., 2006), suggesting that specific cross-network
connectivity between the sensorimotor network and the core network
may contain important information, which can be used to predict good
and poor learners in the sequential motor learning task. The right post-
central gyrus belongs not to the core network but the sensorimotor
network (Brookes et al., 2011; Mantini et al., 2007), suggesting that parts
of the sensorimotor network may also contain important information for
the prediction of motor learning ability. In the present study, we also
performed multiple regression analysis to determine whether good and
poor learners can be predicted using the peak strength of rs-FC in the
brain regions with significant correlations between rs-FC and motor
learning index. However, we could not predict good and poor learners
using regression analysis, suggesting that rs-FC is not likely to become a
predictor for motor learning level.

The present study also examined whether the magnitude of ERDs in
the alpha and beta bands during a random button-press task can be a
predictor of performance of the subsequent motor learning task because
of its strong relation to motor function (Engel and Fries, 2010;
Pfurtscheller and Aranibar, 1979; Sugata et al., 2017). However, there
was no significant correlation between the two variables. Previous
studies have demonstrated the relationship between the magnitude of
beta ERD during motor skill acquisition and motor learning (Boonstra
et al., 2007; Houweling et al., 2008; Pollok et al., 2014), whereas the
present study examined the relationship between ERD during the random
button-press task and performance in a subsequent motor learning task,
and no significant correlation was observed. This result suggests that
ERDs recorded prior to the motor learning task cannot be used as pre-
dictors of subsequent motor learning ability.

In the present study, we examined the relationship between M1 seed-
based rs-FC values and motor learning in the alpha and beta bands. Our
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findings demonstrated that beta-band resting-state cross-network con-
nectivity between the sensorimotor network and the core network
affected the performance of subsequent motor learning tasks. On the
other hand, a recent study reported the relationship between alpha/
gamma phase amplitude coupling over the parietal and frontal cortex and
sequential motor learning (Tzvi et al., 2016). Other studies have sug-
gested a relationship between gamma oscillation and motor learning
(Joundi et al., 2012; Miller et al., 2010; Pogosyan et al., 2009; Sugata
et al., 2018), indicating that gamma oscillation may contain important
information related to motor learning. Therefore, neural oscillations of
the gamma frequency may provide neural profiles for predicting motor
learning capacity and further studies are warranted.

In summary, the present study raises the possibility that beta-band
resting-state cross-network connectivity between the sensorimotor
network and the theory of mind network affects performance in a sub-
sequent motor learning task. By using the strength of the rs-FC between
the M1 and the left superior temporal gyrus as a classification feature,
good learners could be distinguished from poor learners. These results
suggest that specific cross-network connectivity between sensorimotor
networks and the theory of mind networks may contain important in-
formation for predicting motor learning ability.
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