Lower decker sets and triple points for surface-knots

Tsukasa Yashiro

Department of Mathematics and Statistics Sultan Qaboos University

Friday Seminar on Knot Theory, Osaka City University, Osaka, Japan 20 June 2014

Surface-knots

- 1957 R. H. Fox and J. W. Milnor gave an example of a 2-knot.
- 1965 E. C. Zeeman introduced a construction method of a 2-knot called an m-twist spinning.
- 1982 A. Kawauchi, T. Shibuya and S. Suzuki described a surface-knot with a normal form.
- 1980's Roseman proposed geometric approach to describe surface in 4 -space and introduced elementary deformations called Roseman moves.
- 1990's with the development of algebraic structure for this area such as racks and quandles, geometric approaches have been used and developed.
- 1999 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito applied quandle co-homology to knots and surface-knots.

Surface-knots

- 2002 S. Satoh and A. Shima determined triple point numbers for 2-twist and 3-twist spun trefoils.
- 2005 E. Hatakenaka gave a lower bound of triple point number for 2-twist spun $(2,5)$-torus knot.

In this talk we discuss about the number of non-degenerate triple points of a surface diagram.

Zeeman's twist spinning

Let B^{3} be a 3-ball in \mathbb{R}_{+}^{3} such that $\partial B^{3} \cap T(K)$ is the pair of antipodal points of ∂B^{3}. An m-twist-spun knot obtained from K is defined by rotating the tangle $B^{3} \cap T(K)$ about the axis through the antipodal points m times while \mathbb{R}_{+}^{3} spins. We denote this 2-knot by $T_{m}(K)$.

Theorem (Zeeman, 1965)

Every m-twist spun knot $T_{m}(K)$ obtained from K is fibred ($m \geq 1$); the fibre is the one-punctured m-fold branched covering space of S^{3} along K.

Corollary (Zeeman, 1965)

For any knot K, 1-twist spun knot obtained from K is trivial.

Surface Diagrams

A surface-knot is a connected oriented closed surface embedded in 4-space. Let $F \subset \mathbb{R}^{4}$ be a surface-knot. Let $\pi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$; $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}, x_{3}\right)$, be the orthogonal projection. A surface diagram of F is a union of the following local diagrams.

Branch point

Roseman moves

Two surface diagrams are equivalent if they are projected image of the same type of a surface-knot. Two equivalent surface diagrams are modified from one to the other by a finite sequence of local moves called Roseman moves.

Roseman moves

Roseman moves

Triple point numbers

For a surface-knot F, the minimal number of triple points for all possible surface diagrams is called the triple point number of F denoted by $t(F)$. A surface diagram D_{F} of F with $t(F)$ triple points is called a t-minimal surface diagram.

Theorem (T. Y. 2005)
Let K be the $(2, k)$-torus knot. Then the following holds.

Triple point numbers

For a surface-knot F, the minimal number of triple points for all possible surface diagrams is called the triple point number of F denoted by $t(F)$. A surface diagram D_{F} of F with $t(F)$ triple points is called a t-minimal surface diagram.

Theorem (T. Y. 2005)

Let K be the $(2, k)$-torus knot. Then the following holds.

$$
t\left(T_{m}(K)\right) \leq m(k-1),(m>1)
$$

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil (D. Roseman, S. Satoh). We can deform this diagram by a finite sequence of Roseman moves:

Lower Bounds of Triple Point Numbers

Theorem (Satoh-Shima 2002, 2004)
 Let K be a trefoil knot. Let $T_{m}(K)$ be m-twist-spinning of K. Then $t\left(T_{2}(K)\right)=4, t\left(T_{3}(K)\right)=6$.

Theorem (S. Satoh 2005)
 For every 2 -knot F with $t(F) \neq 0,4 \leq t(F)$

Theorem (E. Hatakenaka (2004))

For a 2-twist spun $(2,5)$-torus knot F, $6 \leq t(F)$

Lower Bounds of Triple Point Numbers

Theorem (Satoh-Shima 2002, 2004)
 Let K be a trefoil knot. Let $T_{m}(K)$ be m-twist-spinning of K. Then $t\left(T_{2}(K)\right)=4, t\left(T_{3}(K)\right)=6$.

Theorem (S. Satoh 2005)

For every 2-knot F with $t(F) \neq 0,4 \leq t(F)$.

Lower Bounds of Triple Point Numbers

> Theorem (Satoh-Shima 2002,2004$)$
> Let K be a trefoil knot. Let $T_{m}(K)$ be m-twist-spinning of K. Then $t\left(T_{2}(K)\right)=4, t\left(T_{3}(K)\right)=6$.

Theorem (S. Satoh 2005)

For every 2-knot F with $t(F) \neq 0,4 \leq t(F)$.

Theorem (E. Hatakenaka (2004))

For a 2-twist spun (2,5)-torus knot $F, 6 \leq t(F)$.

Lower Bounds of Triple Point Numbers

Theorem (S. Satoh 2005)
For every 2-knot F with $t(F) \neq 0,4 \leq t(F)$

Theorem (E. Hatakenaka (2004))

For a 2-twist spun $(2,5)$-torus knot $F, 6 \leq t(F)$.

$$
6 \leq t(F) \leq 8
$$

Quandles

In 1980s to 1990s concepts of racks and quandles were introduced by many people, Joyce (1982), Matveev (1988), Brieskorn (1988), Fenn and Rourke (1992).

■ (Co)homology theory for racks and quandles were introduced by Fenn, Rouuke and Sanderson (1995) and

- the state-sum invariants for knots and surface-knots were defined by Carter, Jelsovsky, Kamada, Langford, Saito (1999).

Quandles

A quandle X is a non-empty set with a binary operation $(a, b) \mapsto a * b$ such that
1 For any $a \in X, a * a=a$,
2 For any $a, b \in X$, there is a unique $c \in X$ such that $c * b=a$.
3 For any $a, b, c \in X,(a * b) * c=(a * c) *(b * c)$.

Example

The dihedral quandle $(X, *)$ of order $n>0$ denoted by R_{n} is a quandle $X=\{0, \ldots, n-1\}$ with the binary operation $(i, j) \mapsto 2 j-i(\bmod n)$.
The triple point in the left diagram is coloured by $R_{3} ;(0,1,2)$ and the orientation is determined by orientation normals to D_{T}, D_{M}, D_{B} respectively.

Quandle Chain Complex

Let $C_{n}(X)(n \geq 1)$ be a free abelian group generated by n-tuples $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$. Let $C_{n}^{D}(X)$ be a sub group of $C_{n}(X)$ generated by $\left(x_{1}, \ldots, x_{n}\right)$ such that $x_{i}=x_{j}$ for some $1 \leq i, j, \leq n$ and $(|i-j|=1)$. We denote the quotient group $C_{n}(X) / C_{n}^{D}(X)$ by $C_{n}^{Q}(X)$.

Quandle Cocylce

We fix the colouring \mathcal{C} on the surface diagram. Let A be an Abelian group. A mapping $\theta: C_{3}(X) \rightarrow A$ is a quandle 3 cocycle if for any $p, q, r, s \in X$, the following holds.
$1 \theta(p, p, r)=\theta(p, q, q)=0$
$2 \theta(q, r, s) \cdot \theta(p * q, r, s)^{-1} \cdot \theta(p, q, s)^{-1}$.

$$
\theta(p * r, q * r, s) \cdot \theta(p, q, r) \cdot \theta(p * s, q * s, r * s)^{-1}=1
$$

Let τ be a triple point in D_{F} coloured by the quandle X. Let $A=\langle t\rangle$. Define $B(\tau, \mathcal{C})=\theta(\tau)^{\epsilon(\tau)}$. Then we define the following

$$
\Phi_{\theta}(F)=\sum_{\mathcal{C}} \prod_{\tau} B(\tau, \mathcal{C}) \in \mathbb{Z}\langle t\rangle
$$

This is a surface-knot invariant called a quandle cocycle invariant.

Roseman move R_{3}^{+}create six triple point around a triple point (x, y, z).

Suppose the colour of the moving disc is d. Then the six triple points are given by either $\partial(d, x, y, z)$ or $\partial(x, d, y, z)$ or $\partial(x, y, d, z)$ or $\partial(x, y, z, d)$.

Twist Spun Trefoil (Reduced diagram)

The following diagram is coloured by R_{3}.

The total diagram of the double twist-spun trefoil has triple points $(1,2,0)^{-},(0,2,1)^{+},(1,0,2)^{-}$and $(2,0,1)^{+}$.
Define $\theta \in Z^{3}\left(X ; \mathbb{Z}_{3}\right)$ by

$$
\theta=t^{-\chi_{(0,1,0)}-\chi_{(0,2,1)}+\chi_{(0,2,0)}+\chi_{(1,0,1)}+\chi_{(1,0,2)}+\chi_{(2,0,2)}+\chi_{(2,1,2)}}
$$

where $\chi_{\alpha}(\beta)=1$ if $\alpha=\beta$ otherwise 0 . Then

$$
\prod B(\tau, \mathcal{C})=\prod \theta(\tau)^{\epsilon(\tau)}=t
$$

The numbers of non-trivial and trivial colourings are 6 and 3 respectively. Thus

$$
\Phi_{\theta}(F)=3+6 t
$$

Pre-images of Multiple Points

Let F be a closed orientable surface and let $f: F \rightarrow \mathbb{R}^{3}$ be a generic map. The pre-image of the singular set of f is:

$$
S(f)=\left\{x \in F \mid \# f^{-1}(f(x))>1\right\}
$$

$S(f)$ the union of two families of immersed circles or immersed intervals: $\mathcal{S}_{a}=\left\{s_{a}^{1}, s_{a}^{2}, \ldots, s_{a}^{k}\right\}$ and $\mathcal{S}_{b}\left\{s_{b}^{1}, s_{b}^{2}, \ldots, s_{b}^{k}\right\}$ with $f\left(s_{a}^{i}\right)=f\left(s_{b}^{i}\right),(i=1,2, \ldots, k)$.
The pre-image of a triple point consists of three cossings. If the crossing is formed by two curves $s_{x} \in \mathcal{S}_{x}$ and $s_{y} \in \mathcal{S}_{y} x, y \in\{a, b\}$, then the crossing is of type (x, y).

Lemma (Carter-Saito (1998))

Let F be a closed orientable surface. Let $f: F \rightarrow \mathbb{R}^{3}$ be a generic map. Then f has an embedding $g: F \rightarrow \mathbb{R}^{4}$ such that proj $\circ g=f$ if and only if
$1 S(f)=\bigcup \mathcal{S}_{a} \cup \bigcup \mathcal{S}_{b}$.
2 For each triple point, the pre-images are crossings of types $(a, a),(a, b)$ and (b, b).

(a, a)

(a, b)

(b, b)

The closure of the pre-image of double curves in D_{F} is a union of two families of arcs called the double decker set (Carter-Saito). The blue arcs represent the upper decker set and the red arcs represent the lower decker set.

Pre-images of Multiple Points

We denote the lower decker set by $S_{b} . F \backslash S_{b}=\left\{R_{0}, \ldots, R_{n}\right\}$. Let $N\left(S_{b}\right)$ be a small neighbourhood of S_{b} in F.
$F \backslash N\left(S_{b}\right)=\left\{V_{0}, \ldots, V_{n}\right\} ; V_{i} \subset R_{i}(i=0, \ldots, n)$.

Pre-images of Multiple Points

We denote the lower decker set by $S_{b} . F \backslash S_{b}=\left\{R_{0}, \ldots, R_{n}\right\}$. Let $N\left(S_{b}\right)$ be a small neighbourhood of S_{b} in F.
$F \backslash N\left(S_{b}\right)=\left\{V_{0}, \ldots, V_{n}\right\} ; V_{i} \subset R_{i}(i=0, \ldots, n)$.

Pre-images of Multiple Points

The quotient map $q: F \rightarrow F / \sim$ is defined by $q\left(V_{i}\right)=v_{i}$, $(i=0, \ldots, n)$.
The quotient space is a 2-dimensional complex. We will denote the complex by $K_{D_{F}}$. A subcomplex of $K_{D_{F}}$ induced from a simple closed curve in S_{b} is called a bubble.

Pre-images of Multiple Points

A subcomplex of $K_{D_{F}}$ corresponding to a connected component of the lower decker set S_{b} is called a parcel.
Each parcel is a bubble or a subcomplex consisting of some rectangles and loop discs.

Pre-images of Multiple Points

Each double segment corresponds to an edge of the complex $K_{D_{F}}$. Each edge has a weight, which is a vertex of the complex.

The lower decker set $S_{b} \subset\left|K_{D_{F}}\right|$ is a union of edges of $K_{D_{F}}$.

2-dimensional complexes for surface diagrams

$K_{D_{F}}$ can be decomposed into parcels K_{1}, \ldots, K_{n} such that

$$
\begin{aligned}
K_{D_{F}} & =K_{1}+\cdots+K_{n} \\
& =R_{D_{F}}+B_{D_{F}}
\end{aligned}
$$

where $R_{D_{F}}$ is the union of rectangles and $B_{D_{F}}$ be the union of bubbles.

2-dimensional complexes for surface diagrams

We define a chain group $C_{2}\left(K_{D_{F}}\right)$ of $K_{D_{F}}$. A homomorphism $\mathrm{Col}_{\sharp}: C_{2}\left(K_{D_{F}}\right) \rightarrow C_{3}^{Q}(X)$ is induced from the colouring of D_{F}.

Connectedness of the Lower Decker Set

Theorem (A.M.-T. Y. (2011))
 Let F be a surface-knot. Let D_{F} be a surface diagram of F. If the lower decker set S_{b} is connected and the number of triple points of D_{F} is at most two, then $\pi F \cong \mathbb{Z}$.

Self-contained parcels

Let D_{F} be a surface diagram of a surface-knot F. Let $K_{D_{F}}$ be a cell-complex induced from D_{F} :

$$
K_{D_{F}}=R_{1}+R_{2}+\cdots+R_{r}+B_{1}+\cdots+B_{s},
$$

where R_{i} consists of rectangles and B_{j} is a bubble. Each of $\left|R_{i}\right|$ and $\left|B_{j}\right|(i=1, \ldots, r, j=1, \ldots, s)$ contains a connected component of the lower decker set S_{b}.
The connected component $s_{i} \subset S_{b}$ induces a 1-dimensional subcomplex $L\left(s_{i}\right)$ of $K_{D_{F}}$. A parcel R_{i} is self-contained if

$$
e \in L\left(s_{i}\right) \Longrightarrow e \in R_{i}
$$

For a parcel K as a chain in $C_{2}\left(K_{D_{\digamma}}\right)$, if $\operatorname{Col}_{\sharp}(K)=0$, then K is said to be degenerate, otherwise non-degenerate.
The number of non-degenerate parcels of $K_{D_{F}}$ will be denoted by $\nu\left(K_{D_{F}}\right)$.

Theorem

Let F be a surface-knot and let D_{F} be a surface diagram of F. Let $K_{D_{F}}=R_{1}+R_{2}+\cdots+R_{r}+B_{D_{F}}$ be a cell-complex induced from D_{F}. If each of $R_{i} i=1, \ldots, r$ is self contained, then the following holds:

$$
4 \nu\left(K_{D_{F}}\right) \leq t\left(D_{F}\right)
$$

For a parcel K of $K_{D_{F}}$, if $[K] \in H_{2}\left(K_{D_{F}}\right), \operatorname{Col}_{*}[K] \in H_{3}^{Q}(X)$ vanishes, then $[K]$ is homologically degenerate otherwise homologically non-degenerate. Let $\nu(F)$ denote the number of homologically non-degenerate parcels of $K_{D_{F}}$.

Theorem

Let F be a surface-knot and let D_{F} be a surface diagram of F with coloured by some quandle X. Then

$$
4 \nu(F, X) \leq t(F)
$$

One rectangle

Let R be a parcel consisting of rectangles in $K_{D_{F}}$. If there is only one triangle (rectangle + loop disc), then it is not closed. So, it must be a rectangle. There are 3 cases:

For the left case, $v_{0}=v_{2}, v_{1}=v_{3}$.

One rectangle

R contains two loop discs; two branch ponits are joined by simple arc in s_{b}. This shows $v_{0}=v_{1}$. Thus all vertices are the same, so $\mathrm{Col}_{\sharp}\left(K_{i}\right)=0$.

Therefore, there is no self-contained parcel with exactly one rectangle.

Two rectangles

If there are two rectangles, then there is no possibility to have one rectangle and one triangle as the number of all edges of the parts is odd $(3+4=7)$.
There are two cases:

Black dots are places where a loop disc can be placed otherwise it has the cross.

Two rectangles

$A(1,3)$ has two triangles sharing the same vertices with opposite orientations; that is the cancelling pair.

Two rectangles

$A(1,4)$ has $c_{b}=v_{2} x+v_{0} x$. Then x must be v_{2}. This implies:

$$
\operatorname{Col}\left(v_{0}\right) * \operatorname{Col}\left(v_{2}\right)=\operatorname{Col}\left(v_{2}\right)
$$

Thus $\operatorname{Col}\left(v_{0}\right)=\operatorname{Col}\left(v_{2}\right)$. The the parcel is degenerate.

Two rectangles

Other cases are similar and there is no self-contained parcel with two rectangles.

Two rectangles

For $A, c_{b}=x x$ but there is no loop in R. Thus R is not self-contained. For $B, \operatorname{Col}_{\sharp}\left(\tau_{1}+\tau_{2}\right)=0$. Therefore, there is no such R.

Three rectangles

Two triangles + one rectangle. Conventions:

A_{1}

A_{2}

Three rectangles

$$
A_{1}(1,4)
$$

$A_{1}(2,4)$

$A_{1}(2,4)^{*}$
$A_{1}(1,4)$. From the diagram, $\operatorname{Col}\left(v_{3}\right)=\operatorname{Col}\left(v_{2}\right) * \operatorname{Col}\left(v_{2}\right)=\operatorname{Col}\left(v_{2}\right)$.

Three rectangles

$A_{1}(1,4)$

$A_{1}(2,4)$

$A_{1}(2,4)^{*}$

Thus $\operatorname{Col}\left(v_{1}\right)=\operatorname{Col}\left(v_{2}\right)$ also $\operatorname{Col}\left(v_{0}\right)=\operatorname{Col}\left(v_{1}\right)$.
$\therefore \operatorname{Col}_{\sharp}(K)=0$.

Three rectangles

$A_{1}(1,4)$

$A_{1}(2,4)$

$A_{1}(2,4)^{*}$

$$
A_{1}(2,4) \cdot \operatorname{Col}\left(v_{0}\right) * \operatorname{Col}\left(v_{2}\right)=\operatorname{Col}\left(v_{1}\right)=\operatorname{Col}\left(v_{2}\right)
$$

Three rectangles

$A_{1}(2,4)$

$A_{1}(2,4)^{*}$
$\operatorname{Col}\left(v_{0}\right)=\operatorname{Col}\left(v_{2}\right)$ and $\operatorname{Col}\left(v_{1}\right)=\operatorname{Col}\left(v_{2}\right)=\operatorname{Col}\left(v_{3}\right)$.

Three rectangles

$A_{1}(1,4)$

$A_{1}(2,4)$

$A_{1}(2,4)^{*}$
$\therefore \quad$ all vertices have the same colour. $\operatorname{Col}_{\sharp}(R)=0$.

$A_{2}(1,2)$

$A_{2}(1,2)^{*}$
$A_{2}(1,2) . \mathrm{Col}_{\sharp}\left(\tau_{1}+\tau_{2}+\tau_{3}\right)=0$.

The same argument can be applied to $A_{2}(1,2) *, A_{2}(3,4)$ and $A_{2}(3,4) *$. Thus there is no parcel of type A_{2}.

Three rectangles without loop discs. There are two types:

B_{1}

B_{2}

$c_{b}=x y+y z+z x$. As R is self-contained, this triangle does not exist in R. Thus there are no parcels of type B_{1} and B_{2}.

