
Lower decker sets and triple points for
surface-knots

Tsukasa Yashiro

Department of Mathematics and Statistics
Sultan Qaboos University

Friday Seminar on Knot Theory,
Osaka City University, Osaka, Japan

20 June 2014

Tsukasa Yashiro Department of Mathematics and Statistics Sultan Qaboos University

Lower decker sets and triple points for surface-knots



Surface-knots

1957 R. H. Fox and J. W. Milnor gave an example of a 2-knot.

1965 E. C. Zeeman introduced a construction method of a
2-knot called an m-twist spinning.

1982 A. Kawauchi, T. Shibuya and S. Suzuki described a
surface-knot with a normal form.

1980’s Roseman proposed geometric approach to describe
surface in 4-space and introduced elementary deformations
called Roseman moves.

1990’s with the development of algebraic structure for this
area such as racks and quandles, geometric approaches have
been used and developed.

1999 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and
M. Saito applied quandle co-homology to knots and
surface-knots.
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Surface-knots

2002 S. Satoh and A. Shima determined triple point numbers
for 2-twist and 3-twist spun trefoils.

2005 E. Hatakenaka gave a lower bound of triple point
number for 2-twist spun (2, 5)-torus knot.

In this talk we discuss about the number of non-degenerate triple
points of a surface diagram.
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Zeeman’s twist spinning

Let B3 be a 3–ball in R
3
+ such

that ∂B3 ∩ T (K ) is the pair of
antipodal points of ∂B3.
An m-twist-spun knot

obtained from K is defined by
rotating the tangle B3 ∩ T (K )
about the axis through the
antipodal points m times while
R
3
+ spins. We denote this

2-knot by Tm(K ).

R
3
+

B
3

∂R3
+R

4
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Theorem (Zeeman, 1965)

Every m-twist spun knot Tm(K ) obtained from K is fibred

(m ≥ 1); the fibre is the one-punctured m-fold branched covering

space of S3 along K.

Corollary (Zeeman, 1965)

For any knot K, 1-twist spun knot obtained from K is trivial.
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Surface Diagrams

A surface-knot is a connected oriented closed surface embedded
in 4-space. Let F ⊂ R

4 be a surface-knot. Let π : R4 → R
3;

(x1, x2, x3, x4) 7→ (x1, x2, x3), be the orthogonal projection. A
surface diagram of F is a union of the following local diagrams.

Triple point

DT

DM

DB

Branch point
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Roseman moves

Two surface diagrams are equivalent if they are projected image of
the same type of a surface-knot. Two equivalent surface diagrams
are modified from one to the other by a finite sequence of local

moves called Roseman moves.

R
±
1

R
±
2

R
±
3
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Roseman moves

R
±
5

R6R
±
4

Tsukasa Yashiro Department of Mathematics and Statistics Sultan Qaboos University

Lower decker sets and triple points for surface-knots



Roseman moves

R
±
5

R
±
4

R6
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Triple point numbers

For a surface-knot F , the minimal number of triple points for all
possible surface diagrams is called the triple point number of F
denoted by t(F ). A surface diagram DF of F with t(F ) triple
points is called a t-minimal surface diagram.

Theorem (T. Y. 2005)

Let K be the (2, k)-torus knot. Then the following holds.

t(Tm(K )) ≤ m(k − 1), (m > 1).
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Diagrams of Twist Spun Trefoil

The following diagram is a partial diagram of a twist-spun trefoil
(D. Roseman, S. Satoh). We can deform this diagram by a finite
sequence of Roseman moves:
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Lower Bounds of Triple Point Numbers

Theorem (Satoh-Shima 2002, 2004)

Let K be a trefoil knot. Let Tm(K ) be m-twist-spinning of K.

Then t(T2(K )) = 4, t(T3(K )) = 6.

Theorem (S. Satoh 2005)

For every 2-knot F with t(F ) 6= 0, 4 ≤ t(F ).

Theorem (E. Hatakenaka (2004))

For a 2-twist spun (2, 5)-torus knot F , 6 ≤ t(F ).

6 ≤ t(F ) ≤ 8.
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Quandles

In 1980s to 1990s concepts of racks and quandles were
introduced by many people, Joyce (1982), Matveev (1988),
Brieskorn (1988), Fenn and Rourke (1992).

(Co)homology theory for racks and quandles were introduced
by Fenn, Rouuke and Sanderson (1995) and

the state-sum invariants for knots and surface-knots were
defined by Carter, Jelsovsky, Kamada, Langford, Saito (1999).
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Quandles

A quandle X is a non-empty set with a binary operation
(a, b) 7→ a ∗ b such that

1 For any a ∈ X , a ∗ a = a,

2 For any a, b ∈ X , there is a unique c ∈ X such that c ∗ b = a.

3 For any a, b, c ∈ X , (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

ba

a ∗ b a a a a

a b c a b c

c

b aab b ∗ c
b ∗ c

(a ∗ c) ∗ (b ∗ c) (a ∗ b) ∗ c

c
c

c ∗ bb
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Example

(0, 1, 2)+

x

y
z

0

1

2

The dihedral quandle (X , ∗) of
order n > 0 denoted by Rn is a
quandle X = {0, . . . , n − 1} with the
binary operation
(i , j) 7→ 2j − i (modn).
The triple point in the left diagram is
coloured by R3; (0, 1, 2) and the
orientation is determined by
orientation normals to DT ,DM ,DB

respectively.
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Quandle Chain Complex

Let Cn(X ) (n ≥ 1) be a free abelian group generated by n-tuples
(x1, . . . , xn) ∈ X n. Let CD

n (X ) be a sub group of Cn(X ) generated
by (x1, . . . , xn) such that xi = xj for some 1 ≤ i , j ,≤ n and
(|i − j | = 1). We denote the quotient group Cn(X )/CD

n (X ) by
CQ
n (X ).
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Quandle Cocylce

We fix the colouring C on the surface diagram. Let A be an
Abelian group. A mapping θ : C3(X ) → A is a quandle 3 cocycle if
for any p, q, r , s ∈ X , the following holds.

1 θ(p, p, r) = θ(p, q, q) = 0

2 θ(q, r , s) · θ(p ∗ q, r , s)−1 · θ(p, q, s)−1·
θ(p ∗ r , q ∗ r , s) · θ(p, q, r) · θ(p ∗ s, q ∗ s, r ∗ s)−1 = 1

Let τ be a triple point in DF coloured by the quandle X . Let
A = 〈t〉. Define B(τ, C) = θ(τ)ǫ(τ). Then we define the following

Φθ(F ) =
∑

C

∏

τ

B(τ, C) ∈ Z〈t〉

This is a surface-knot invariant called a quandle cocycle

invariant.
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Roseman move R+
3 create six triple point around a triple point

(x , y , z).

R
±

3

Suppose the colour of the moving disc is d . Then the six triple
points are given by either ∂(d , x , y , z) or ∂(x , d , y , z) or
∂(x , y , d , z) or ∂(x , y , z , d).
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Twist Spun Trefoil (Reduced diagram)

The following diagram is coloured by R3.

S

b3

b2

N

τ3

τ2
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The total diagram of the double twist-spun trefoil has triple points
(1, 2, 0)−, (0, 2, 1)+, (1, 0, 2)− and (2, 0, 1)+.
Define θ ∈ Z 3(X ;Z3) by

θ = t−χ(0,1,0)−χ(0,2,1)+χ(0,2,0)+χ(1,0,1)+χ(1,0,2)+χ(2,0,2)+χ(2,1,2) ,

where χα(β) = 1 if α = β otherwise 0. Then

∏
B(τ, C) =

∏

τ

θ(τ)ǫ(τ) = t.

The numbers of non-trivial and trivial colourings are 6 and 3
respectively. Thus

Φθ(F ) = 3 + 6t
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Pre-images of Multiple Points

Let F be a closed orientable surface and let f : F → R
3 be a

generic map. The pre-image of the singular set of f is:

S(f ) = {x ∈ F | #f −1(f (x)) > 1 }

S(f ) the union of two families of immersed circles or immersed
intervals: Sa = {s1a , s

2
a , . . . , s

k
a } and Sb{s

1
b , s

2
b , . . . , s

k
b } with

f (s ia) = f (s ib), (i = 1, 2, . . . , k).
The pre-image of a triple point consists of three cossings. If the
crossing is formed by two curves sx ∈ Sx and sy ∈ Sy x , y ∈ {a, b},
then the crossing is of type (x , y).
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Lemma (Carter-Saito (1998))

Let F be a closed orientable surface. Let f : F → R
3 be a generic

map. Then f has an embedding g : F → R
4 such that

proj ◦ g = f if and only if

1 S(f ) =
⋃
Sa ∪

⋃
Sb.

2 For each triple point, the pre-images are crossings of types

(a, a), (a, b) and (b, b).

(a, a) (a, b) (b, b)
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Pre-image of DK DK

The closure of the pre-image of double curves in DF is a union of
two families of arcs called the double decker set (Carter-Saito).
The blue arcs represent the upper decker set and the red arcs
represent the lower decker set.
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Pre-images of Multiple Points

We denote the lower decker set by Sb. F \ Sb = {R0, . . . ,Rn}. Let
N(Sb) be a small neighbourhood of Sb in F .
F \ N(Sb) = {V0, . . . ,Vn}; Vi ⊂ Ri (i = 0, . . . , n).
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Pre-images of Multiple Points

The quotient map q : F → F/∼ is defined by q(Vi ) = vi ,
(i = 0, . . . , n).
The quotient space is a 2-dimensional complex. We will denote the
complex by KDF

. A subcomplex of KDF
induced from a simple

closed curve in Sb is called a bubble.
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Pre-images of Multiple Points

A subcomplex of KDF
corresponding to a connected component of

the lower decker set Sb is called a parcel.
Each parcel is a bubble or a subcomplex consisting of some
rectangles and loop discs.

v0

vj

vk

vi

v1 v3vk

v0 v2 v0
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Pre-images of Multiple Points

Each double segment corresponds to an edge of the complex KDF
.

Each edge has a weight, which is a vertex of the complex.

vjv1v0

vk

v0

v1

vi

v2

v3

vk

v1 v3

v2v0

vk

vi vjv1vk

v0 vk

The lower decker set Sb ⊂ |KDF
| is a union of edges of KDF

.
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2-dimensional complexes for surface diagrams

KDF
can be decomposed into parcels K1, . . . ,Kn such that

KDF
= K1 + · · ·+ Kn,

= RDF
+ BDF

.

where RDF
is the union of rectangles and BDF

be the union of
bubbles.

parcels

RDF

BDF
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2-dimensional complexes for surface diagrams

We define a chain group C2(KDF
) of KDF

. A homomorphism
Col♯ : C2(KDF

) → CQ
3 (X ) is induced from the colouring of DF .

CQ
3 (X )

Col♯
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Connectedness of the Lower Decker Set

Theorem (A.M.-T. Y. (2011))

Let F be a surface-knot. Let DF be a surface diagram of F . If the

lower decker set Sb is connected and the number of triple points of

DF is at most two, then πF ∼= Z.
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Self-contained parcels

Let DF be a surface diagram of a surface-knot F . Let KDF
be a

cell-complex induced from DF :

KDF
= R1 + R2 + · · ·+ Rr + B1 + · · ·+ Bs ,

where Ri consists of rectangles and Bj is a bubble.
Each of |Ri | and |Bj | (i = 1, . . . , r , j = 1, . . . , s) contains a
connected component of the lower decker set Sb.
The connected component si ⊂ Sb induces a 1-dimensional
subcomplex L(si ) of KDF

. A parcel Ri is self-contained if

e ∈ L(si ) =⇒ e ∈ Ri .
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For a parcel K as a chain in C2(KDF
), if Col♯(K ) = 0, then K is

said to be degenerate, otherwise non-degenerate.
The number of non-degenerate parcels of KDF

will be denoted by
ν(KDF

).

Theorem

Let F be a surface-knot and let DF be a surface diagram of F . Let

KDF
= R1 + R2 + · · ·+ Rr + BDF

be a cell-complex induced from

DF . If each of Ri i = 1, . . . , r is self contained, then the following

holds:

4ν(KDF
) ≤ t(DF )
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For a parcel K of KDF
, if [K ] ∈ H2(KDF

), Col∗[K ] ∈ HQ
3 (X )

vanishes, then [K ] is homologically degenerate otherwise
homologically non-degenerate. Let ν(F ) denote the number of
homologically non-degenerate parcels of KDF

.

Theorem

Let F be a surface-knot and let DF be a surface diagram of F with

coloured by some quandle X . Then

4ν(F ,X ) ≤ t(F )
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One rectangle

Let R be a parcel consisting of rectangles in KDF
. If there is only

one triangle (rectangle + loop disc), then it is not closed. So, it
must be a rectangle. There are 3 cases:

x

v1

v0 v2

v3

x

v1

v0 v2

v3

x

v1

v0 v2

v3

For the left case, v0 = v2, v1 = v3.

Tsukasa Yashiro Department of Mathematics and Statistics Sultan Qaboos University

Lower decker sets and triple points for surface-knots



One rectangle

R contains two loop discs; two branch ponits are joined by simple
arc in sb. This shows v0 = v1. Thus all vertices are the same, so
Col♯(Ki ) = 0.

v0 = v2

v1 = v3

Therefore, there is no self-contained parcel with exactly one
rectangle.
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Two rectangles

If there are two rectangles, then there is no possibility to have one
rectangle and one triangle as the number of all edges of the parts
is odd (3 + 4 = 7).
There are two cases:

v0

v2

v1

v0

v2

v11

2

4

1

3

2

A B3
4

Black dots are places where a loop disc can be placed otherwise it
has the cross.
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Two rectangles

v0

v2

v1

v2

v1

v2v0 v0

v2

v1

v2

v0x

x

A(1, 4)A(1, 3) A(2, 3)

A(1, 3) has two triangles sharing the same vertices with opposite
orientations; that is the cancelling pair.
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Two rectangles

v0

v2

v1

v2

v1

v2v0 v0

v2

v1

v2

v0x

x

A(1, 4)A(1, 3) A(2, 3)

A(1, 4) has cb = v2x + v0x . Then x must be v2. This implies:

Col(v0) ∗ Col(v2) = Col(v2)

Thus Col(v0) = Col(v2). The the parcel is degenerate.
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Two rectangles

v0

v2

v1

v2

v1

v2v0 v0

v2

v1

v2

v0x

x

A(1, 4)A(1, 3) A(2, 3)

Other cases are similar and there is no self-contained parcel with
two rectangles.
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Two rectangles

v2v0
y

x

y v4v1

v2v0
y

x x

y v4v1

τ1

τ2

τ1

τ2

A B

z

For A, cb = xx but there is no loop in R . Thus R is not
self-contained. For B , Col♯(τ1 + τ2) = 0. Therefore, there is no
such R .
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Three rectangles

Two triangles + one rectangle. Conventions:

v1 v2

v3

v2v1

v3

v0 v0

A1 A2

1

2

3

4 3

4

2

1
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Three rectangles

v0

A1(1, 4)

v2

v3

∗

v2

v2

v0

v2v1

v3

∗

v2

v2

A1(2, 4)
∗

x

y

y

A1(2, 4)

v0

v2v1

v3

∗

v2

v2

x

v3

τ1

τ3

τ2

v1

x

y

z

A1(1, 4). From the diagram,
Col(v3) = Col(v2) ∗ Col(v2) = Col(v2).
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Three rectangles

v0

A1(1, 4)

v2

v3

∗

v2

v2

v0

v2v1

v3

∗

v2

v2

A1(2, 4)
∗

x

y

y

A1(2, 4)

v0

v2v1

v3

∗

v2

v2

x

v3

τ1

τ3

τ2

v1

x

y

z

Thus Col(v1) = Col(v2) also Col(v0) = Col(v1).
∴ Col♯(K ) = 0.
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Three rectangles

v0

A1(1, 4)

v2

v3

∗

v2

v2

v0

v2v1

v3

∗

v2

v2

A1(2, 4)
∗

x

y

y

A1(2, 4)

v0

v2v1

v3

∗

v2

v2

x

v3

τ1

τ3

τ2

v1

x

y

z

A1(2, 4). Col(v0) ∗ Col(v2) = Col(v1) = Col(v2).
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Three rectangles

v0

A1(1, 4)

v2

v3

∗

v2

v2

v0

v2v1

v3

∗

v2

v2

A1(2, 4)
∗

x

y

y

A1(2, 4)

v0

v2v1

v3

∗

v2

v2

x

v3

τ1

τ3

τ2

v1

x

y

z

Col(v0) = Col(v2) and Col(v1) = Col(v2) = Col(v3).
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Three rectangles

v0

A1(1, 4)

v2

v3

∗

v2

v2

v0

v2v1

v3

∗

v2

v2

A1(2, 4)
∗

x

y

y

A1(2, 4)

v0

v2v1

v3

∗

v2

v2

x

v3

τ1

τ3

τ2

v1

x

y

z

∴ all vertices have the same colour. Col♯(R) = 0.
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v0

v3

∗

y

v1
v1

v1x

v1 v2

A2(1, 2)
∗

τ1

τ2

τ3

τ1

τ2

τ3

v0

v3

∗

A2(1, 2)

y

v1
v1

v1x

v1 v2

A2(1, 2). Col♯(τ1 + τ2 + τ3) = 0.
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v0

v3

∗

y

v1
v1

v1x

v1 v2

A2(1, 2)
∗

τ1

τ2

τ3

τ1

τ2

τ3

v0

v3

∗

A2(1, 2)

y

v1
v1

v1x

v1 v2

The same argument can be applied to A2(1, 2)∗, A2(3, 4) and
A2(3, 4)∗. Thus there is no parcel of type A2.
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Three rectangles without loop discs. There are two types:

B1 B2
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v0

v1

v2

v3

v4

x

zz

y

x

y

B2

τ2

τ1

τ3

B1

v0

v1

v2

v3

v4

x

zz

y

x

y

cb = xy + yz + zx . As R is self-contained, this triangle does not
exist in R . Thus there are no parcels of type B1 and B2.
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