Tsukasa Yashiro

Department of Mathematics and Statistics Sultan Qaboos University

TAPU-KOOK Seminar, Osaka City University, Osaka, Japan 27 July 2015

伺下 イヨト イヨト

Introduction

Background and motivation

- 1957 R. H. Fox and J. W. Milnor gave an example of a 2-knot.
- 1965 E. C. Zeeman introduced a construction method of a 2-knot called an *m*-twist spinning.
- 1982 A. Kawauchi, T. Shibuya and S. Suzuki described a surface-knot with a normal form.
- 1980s Roseman proposed diagrammatic approach to describe surface in 4-space and introduced elementary deformations called Roseman moves (1998).
- 1980s-1990s with the development of algebraic structure for this area such as racks and quandles, geometric approaches have been used and developed.
- 1992 S. Kamada introduced braid surfaces and charts.
- 1998 J. S. Carter and M. Saito introduced the double decker set.

Introduction

Surface-knots

- 1999 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito applied quandle co-homology to knots and surface-knots.
- 2002 S. Satoh and A. Shima determined triple point numbers for 2-twist and 3-twist spun trefoils.
- 2005 E. Hatakenaka gave a lower bound of triple point number for 2-twist spun (2, 5)-torus knot.

Motivation

 Can we symbolize geometric objects? (example: tangles, surface braid charts, etc.).

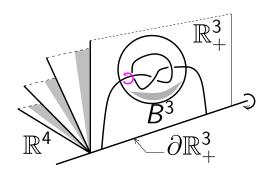
In this talk

Discuss about the number of essential connected components of the lower decker set of a surface diagram.

Zeeman's twist spinning

Let B^3 be a 3-ball in \mathbb{R}^3_+ such that it contains a tangle T(K) of a knot K, and $\partial B^3 \cap T(K)$ is the pair of antipodal points of ∂B^3 .

An *m*-twist-spun knot obtained from *K* is defined by rotating $B^3 \cap T(K)$ about the axis through the antipodal points *m* times while \mathbb{R}^3_+ spins denoted by $T_m(K)$.



Theorem (Zeeman, 1965)

Every m-twist spun knot $T_m(K)$ obtained from K is fibred $(m \ge 1)$; the fibre is the one-punctured m-fold branched covering space of S^3 along K.

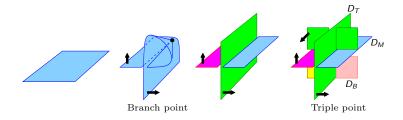
Corollary (Zeeman, 1965)

For any knot K, 1-twist spun knot obtained from K is trivial.

(ロ) (同) (E) (E) (E)

Surface Diagrams

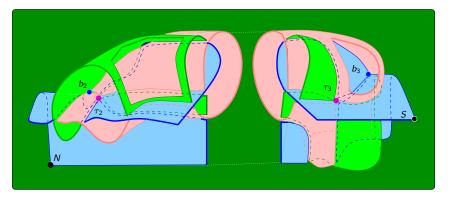
A **surface-knot** is a connected oriented closed surface embedded in 4-space. Let $F \subset \mathbb{R}^4$ be a surface-knot. Let $\text{proj} : \mathbb{R}^4 \to \mathbb{R}^3$; $(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2, x_3)$, be the orthogonal projection. A **surface diagram** of F is a union of the following local diagrams.



・ 回 と ・ ヨ と ・ ヨ と

Example(Double twist spun trefoil)

S. Satoh (2002) constructed a diagram of twist span knots. The following is a reduced diagram obtained by a sequence of Roseman moves from Satoh's construction.



The preimage of singularities of the projection proj is:

$$S = \{x \in F \mid \#((\text{proj}|_F)^{-1}(\text{proj}(x)) > 1\}$$

The set S is the union of two families of immersed circles and immersed open intervals:

$$S_{a} = \{s_{a1}, s_{a2}, \dots, s_{al}\}$$

$$S_{b} = \{s_{b1}, s_{b2}, \dots, s_{bl}\}$$

where for $x \in s_{ai}$, $y \in s_{bi}$ (i = 1, 2, ..., l), if proj(x) = proj(y), then h(x) > h(y).

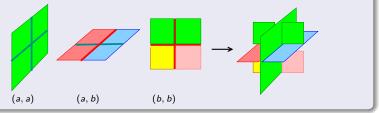
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Lemma (Carter-Saito (1998))

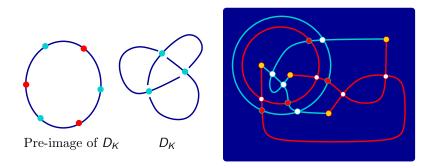
Let F be a closed orientable surface. Let $f : F \to \mathbb{R}^3$ be a generic map. Then there is an embedding $g : F \to \mathbb{R}^4$ such that $\operatorname{proj} \circ g = f$ if and only if

$$I S(f) = \bigcup S_a \cup \bigcup S_b.$$

2 For each triple point, the pre-images are crossings of types (a, a), (a, b) and (b, b).



- 4 回 2 4 日 2 4 日 2



The closure of the pre-image of double curves in D_F is a union of two families of arcs called the **double decker set** (Carter-Saito). The blue arcs represent the **upper decker set** and the red arcs represent the **lower decker set**.

・ 同 ト ・ ヨ ト ・ ヨ ト

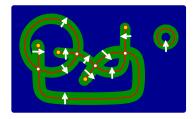
Rectangular-cell complexes



We denote the lower decker set by S_b . $F \setminus S_b = \{R_0, \dots, R_n\}$. Let $N(S_b)$ be a small neighbourhood of S_b in F. $F \setminus N(S_b) = \{V_0, \dots, V_n\}$; $V_i \subset R_i \ (i = 0, \dots, n)$.

・回・ ・ヨ・ ・ヨ・

Rectangular-cell complexes



We denote the lower decker set by S_b . $F \setminus S_b = \{R_0, \dots, R_n\}$. Let $N(S_b)$ be a small neighbourhood of S_b in F. $F \setminus N(S_b) = \{V_0, \dots, V_n\}$; $V_i \subset R_i \ (i = 0, \dots, n)$.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

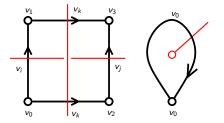
Rectangular-cell complexes

The quotient map $q: F \to F/_{\sim}$ is defined by $q(V_i) = v_i$, (i = 0, ..., n). The quotient space is a 2-dimensional complex. We will denote the complex by K_{D_F} . A subcomplex of K_{D_F} induced from a simple closed curve in S_b is called a **bubble**.

通 とう きょう うちょう

Rectangular-cell complexes

A subcomplex of K_{D_F} corresponding to a connected component of the lower decker set S_b is called a **parcel**. Each parcel is a bubble or a subcomplex consisting of some rectangles and loop discs:

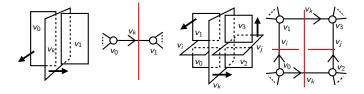


We denote the rectangle by $(v_0; v_0v_1, v_0v_2; v_3)$ and the loop by $\widehat{v_0v_0}$.

向下 イヨト イヨト

Rectangular-cell complexes

Each double segment corresponds to an edge of the complex K_{D_F} . Each edge has a **weight**, which is a vertex of the complex.



The lower decker set $S_b \subset |K_{D_F}|$ is a union of edges of K_{D_F} .

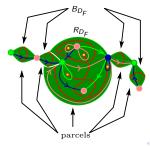
Rectangular-cell complexes

 K_{D_F} can be decomposed into parcels K_1, \ldots, K_n such that

$$K_{D_F} = K_1 + \dots + K_n,$$

= $Rec_{D_F} + Bub_{D_F}.$

where Rec_{D_F} is the union of rectangles and loop discs, and Bub_{D_F} be the union of bubbles.



Quandle colorings

A **quandle** X is a non-empty set with a binary operation $(a, b) \mapsto a * b$ such that

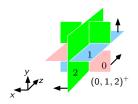
1 For any
$$a \in X$$
, $a * a = a$,

2 For any $a, b \in X$, there is a unique $c \in X$ such that c * b = a.

3 For any
$$a, b, c \in X$$
, $(a * b) * c = (a * c) * (b * c)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Quandle colorings



The **dihedral quandle** (X, *) of order n > 0 denoted by R_n is a quandle $X = \{0, ..., n - 1\}$ with the binary operation $i * j = 2j - i \pmod{n}$.

The triple point in the left diagram is coloured by R_3 ; (0, 1, 2)and the orientation is determined by orientation normals to D_T , D_M , D_B respectively.

Quandle colorings

Let \mathcal{R} be the set of connected components of $F - S_b$. For a quandle X, a **quandle coloring** of a diagram is a mapping $\operatorname{Col} : \mathcal{R} \to X$ such that if

- **1** V_1 and V_2 in \mathcal{R} have a common boundary arc *c* corresponding to an upper sheet $V_3 \in \mathcal{R}$ and
- 2 the orientation normal to $\operatorname{proj}(V_3)$ directs from $\operatorname{proj}(V_1)$ to $\operatorname{proj}(V_2)$,

then $\operatorname{Col}(V_1) * \operatorname{Col}(V_3) = \operatorname{Col}(V_2).$

Quandle colorings

The coloring Col can be interpreted in terms of the rectangular-cell complex K_{D_F} . If an edge *e* is incident with vertices v_1 and v_2 , oriented from v_1 to v_2 and with weight v_3 , then the mapping from the 1-skeleton to X

$$\operatorname{Col}: K^{(1)}_{D_F} \to X$$

is defined satisfying $\operatorname{Col}(v_1) * \operatorname{Col}(v_3) = \operatorname{Col}(v_2)$. We call this mapping also a **quandle coloring**.

・吊り ・ヨン ・ヨン ・ヨ

Chain groups

Quandle chain groups

Let $C_n(X)$ $(n \ge 1)$ be a free abelian group generated by *n*-tuples $(x_1, \ldots, x_n) \in X^n$. Let $C_n^D(X)$ be a sub group of $C_n(X)$ generated by (x_1, \ldots, x_n) such that $x_i = x_j$ for some $1 \le i, j, \le n$ and (|i - j| = 1). We denote the quotient group $C_n(X)/C_n^D(X)$ by $C_n^Q(X)$.

Chain groups of K_{D_F}

The chain group $C_k(K_{D_F})$ is defined as a free abelian group generated by k-dimensional elements of K_{D_F} . For k = 2, it is generated by the rectangular cells, loop discs and bubbles in K_{D_F} . For k = 1, it is generated by edges in K_{D_F} . For k = 0, it is generated by vertices of K_{D_F} .

Chain groups

Quandle chain groups

Let $C_n(X)$ $(n \ge 1)$ be a free abelian group generated by *n*-tuples $(x_1, \ldots, x_n) \in X^n$. Let $C_n^D(X)$ be a sub group of $C_n(X)$ generated by (x_1, \ldots, x_n) such that $x_i = x_j$ for some $1 \le i, j, \le n$ and (|i - j| = 1). We denote the quotient group $C_n(X)/C_n^D(X)$ by $C_n^Q(X)$.

Chain groups of K_{D_F}

The chain group $C_k(K_{D_F})$ is defined as a free abelian group generated by k-dimensional elements of K_{D_F} . For k = 2, it is generated by the rectangular cells, loop discs and bubbles in K_{D_F} . For k = 1, it is generated by edges in K_{D_F} . For k = 0, it is generated by vertices of K_{D_F} .

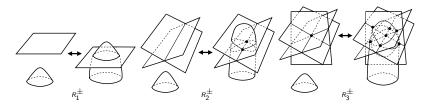
Coloring homomorphisms

The quandle coloring Col can be extended to a homomorphism $\operatorname{Col}_{\sharp} : C_2(\mathcal{K}_{D_F}) \to C_3^Q(X)$ defined as follows. For $\sigma = (v_0; v_0v_1, v_0v_2; v_3),$ $\operatorname{Col}_{\sharp}(\sigma) = (\operatorname{Col}(v_0), \operatorname{Col}(v_0v_1), \operatorname{Col}(v_0v_2) \in C_3^Q(X).$

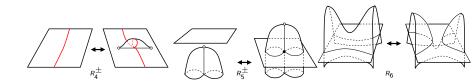
$$\overset{\operatorname{Col}_{\sharp}}{\longrightarrow} C_{3}^{Q}(X)$$

伺い イヨト イヨト ニヨ

Two surface diagrams are equivalent if they are projected image of the same type of a surface-knot. Two equivalent surface diagrams are modified from one to the other by a **finite sequence of local moves** called Roseman moves.

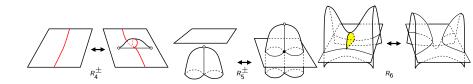


Roseman moves



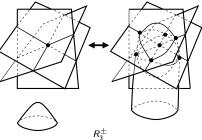
・ロト ・回ト ・ヨト ・ヨト

Roseman moves



・ロト ・回ト ・ヨト ・ヨト

Roseman move R_3^+ create six triple point around a triple point (x, y, z).



Suppose the colour of the moving disc is *d*. Then the six triple points are given by either $\partial(d, x, y, z)$ or $\partial(x, d, y, z)$ or $\partial(x, y, d, z)$ or $\partial(x, y, z, d)$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

-Pseudo cycles

Pseudo cycles

Definition

Let c be a chain of $C_2(K_{D_F})$. If c satisfies the following conditions, (i) $2C_2(c) = 0$ and

(i) $\partial \operatorname{Col}_{\sharp}(c) = 0$ and

(ii)
$$[\operatorname{Col}_{\sharp}(c)] \neq 0 \in H_3^Q(X)$$
,

then c is called a **pseudo cycle**.

Theorem

The number of pseudo-cycles in K_{DF} is an invariant under Roseman moves up to homology.

Proof. A proof can by done by checking that each Roseman move does not change the number of pseudo cycles.

(ロ) (同) (E) (E) (E)

Pseudo cycles

Pseudo cycles

Definition

Let c be a chain of $C_2(K_{D_F})$. If c satisfies the following conditions,

(i) $\partial \operatorname{Col}_{\sharp}(c) = 0$ and

(ii)
$$[\operatorname{Col}_{\sharp}(c)] \neq 0 \in H_3^Q(X)$$
,

then c is called a **pseudo cycle**.

Theorem

The number of pseudo-cycles in K_{D_F} is an invariant under Roseman moves up to homology.

Proof. A proof can by done by checking that each Roseman move does not change the number of pseudo cycles.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Coloring homomorphisms

Coloring homomorphisms

Let D_F be a surface diagram of a surface-knot F and let K_{D_F} be the rectangular complex induced from D_F . For a coloring homomorphism $\operatorname{Col}_* : H_2(K_{D_F}) \to H_3^Q(X)$, determined by the number of non-degenerate pseudo cycles. Thus the following holds.

Theorem

Let D_F be a surface diagram of a surface-knot F and let K_{D_F} be a rectangular-cell complex induced from D_F colored by a quandle X. The number of coloring homomorphisms

$$\operatorname{Col}_* : H_2(K_{D_F}) \to H_3^Q(X)$$

is a surface-knot invariant.

マロト イヨト イヨト

Coloring homomorphisms

The number of pseudo cycles in D_F will be denoted by $\nu(F)$.

Theorem Let F be a double twist spun of (2, k)-torus knot for odd k > 1. Then $\nu(F) = 1$

・ロト ・回ト ・ヨト ・ヨト

Matrices of boundary mappings

The matrix of the boundary mapping

Suppose the complex K_{D_F} contains a pseudo 2-cycle $\sum_{i=1}^{m} \tau_i$, where τ_i is a rectangle of K_{D_F} and also edges $\zeta_1, \zeta_2, \ldots, \zeta_n$. For the homomorphism

$$\operatorname{Col} \circ \partial_2 : C_2(K_{D_F}) \to C_1(K_{D_F}) \to C_2^Q(X),$$

we can define an $(n \times m)$ -matrix for the ordered non-degenerate generators of $C_2(K_{D_F})$ and $C_2^Q(X)$ denoted by $M(D_F)$.

Lemma

Let F be a surface diagram coloured by a quandle X. Then

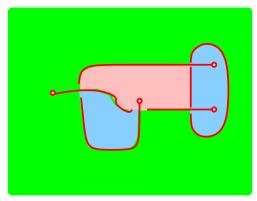
$$\operatorname{rank}(M_{D_F}) \leq m-1.$$

A (10) A (10) A (10) A

Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots

Let $T_{(2,p)}$ be the double twist spun (2, p)-torus knot. p = 3. The number of triple points is 4. The pre-image of the reduced diagram is:

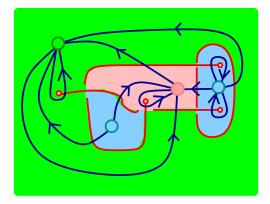


向下 イヨト イヨト

Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots

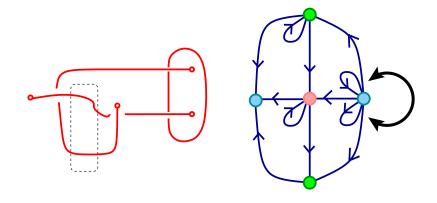
The rectangular-cell complex is constructed.



< E

Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots



イロト イポト イヨト イヨト

Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots

 $C_2(KD_{T_{(2,3)}})$ is generated by four rectangles τ_1 , τ_2 , τ_3 and τ_4 colored as $\{(0,1,0)^+, (1,2,1)^-, (1,0,1)^-, (2,1,2)^+\}$ and the image of the chain is presented by six non-degenerate edges ζ_1 , ζ_2, \ldots, ζ_6 colored as $\{(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)\}$.

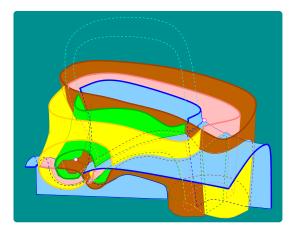
$$M_{\mathcal{K}_{D_{T_{(2,3)}}}} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
The rank is 3. This implies that there is no proper pseudo 2-cycles in $\mathcal{K}_{D_{T_{(2,3)}}}$. Thus $\nu(T_{(2,p)}) = 1$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ = ヨー つくで

Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots

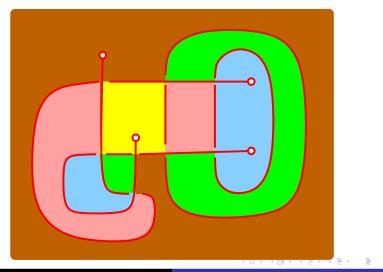
p = 5. The number of triple points is 8.



→ 御 → → 注 → → 注 →

Matrices of boundary mappings

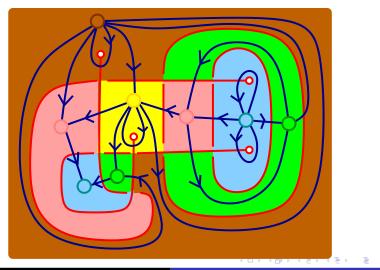
M_{D_F} of double twist spun (2, p)-torus knots



Tsukasa Yashiro On connected components of the lower decker sets of surface

Matrices of boundary mappings

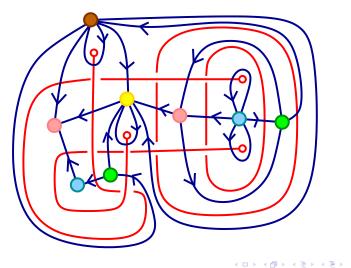
M_{D_F} of double twist spun (2, p)-torus knots



Tsukasa Yashiro On connected components of the lower decker sets of surface

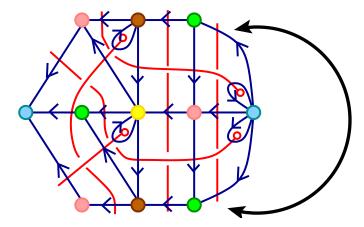
Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots



Matrices of boundary mappings

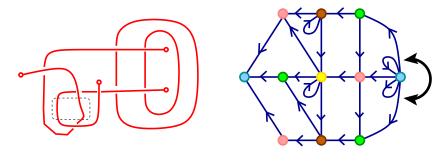
M_{D_F} of double twist spun (2, p)-torus knots



イロン スポン イヨン イヨン

Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots



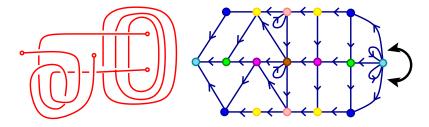
 $\operatorname{rank}(M_{D_{T_{(2,5)}}}) = 7$, so $\nu(T_{(2,p)}) = 1$.

(4回) (4回) (4回)

Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots

p = 7. The number of triple points is 12.



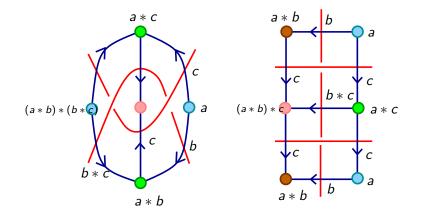
 $\operatorname{rank}(M_{D_{T_{(2,p)}}}) = 11$, so $\nu(T_{(2,p)}) = 1$.

(4月) (4日) (4日) 日

Matrices of boundary mappings

M_{D_F} of double twist spun (2, p)-torus knots

Four triple points are added: two pairs of rectangles are added.



- ∢ ≣ >

Matrices of boundary mappings

Let
$$M = M_{\mathcal{K}_{D_{T_{(2,p)}}}}$$
 and let $N = M_{\mathcal{K}_{D_{T_{(2,p+2)}}}}$

If rank(M) = 2p - 3 and rank(M') = 2p - 2, then rank(N) = 2p + 1.