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Introduction

Background and motivation

1957 R. H. Fox and J. W. Milnor gave an example of a 2-knot.

1965 E. C. Zeeman introduced a construction method of a
2-knot called an m-twist spinning.

1982 A. Kawauchi, T. Shibuya and S. Suzuki described a
surface-knot with a normal form.

1980s Roseman proposed diagrammatic approach to describe
surface in 4-space and introduced elementary deformations
called Roseman moves (1998).

1980s-1990s with the development of algebraic structure for
this area such as racks and quandles, geometric approaches
have been used and developed.

1992 S. Kamada introduced braid surfaces and charts.

1998 J. S. Carter and M. Saito introduced the double decker
set.
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Introduction

Surface-knots

1999 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and
M. Saito applied quandle co-homology to knots and
surface-knots.

2002 S. Satoh and A. Shima determined triple point numbers
for 2-twist and 3-twist spun trefoils.

2005 E. Hatakenaka gave a lower bound of triple point
number for 2-twist spun (2, 5)-torus knot.

Motivation

Can we symbolize geometric objects? (example: tangles,
surface braid charts, etc.).

In this talk

Discuss about the number of essential connected components of
the lower decker set of a surface diagram.
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Surfaces in 4-space

Zeeman’s twist spinning

Let B3 be a 3–ball in R
3
+ such

that it contains a tangle T (K )
of a knot K , and ∂B3 ∩ T (K )
is the pair of antipodal points
of ∂B3.
An m-twist-spun knot

obtained from K is defined by
rotating B3 ∩ T (K ) about the
axis through the antipodal
points m times while R

3
+ spins

denoted by Tm(K ).

R
3
+

B
3

∂R3
+R

4
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Surfaces in 4-space

Theorem (Zeeman, 1965)

Every m-twist spun knot Tm(K ) obtained from K is fibred

(m ≥ 1); the fibre is the one-punctured m-fold branched covering

space of S3 along K.

Corollary (Zeeman, 1965)

For any knot K, 1-twist spun knot obtained from K is trivial.
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Surfaces in 4-space

Surface Diagrams

A surface-knot is a connected oriented closed surface embedded
in 4-space. Let F ⊂ R

4 be a surface-knot. Let proj : R4 → R
3;

(x1, x2, x3, x4) 7→ (x1, x2, x3), be the orthogonal projection. A
surface diagram of F is a union of the following local diagrams.

Triple point

DT

DM

DB

Branch point
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Surfaces in 4-space

Example(Double twist spun trefoil)

S. Satoh (2002) constructed a diagram of twist span knots. The
following is a reduced diagram obtained by a sequence of Roseman
moves from Satoh’s construction.

S

b3

b2

N

τ3

τ2
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Pre-image of Multiple Points

The preimage of singularities of the projection proj is:

S = {x ∈ F | #((proj|F )
−1(proj(x)) > 1}

The set S is the union of two families of immersed circles and
immersed open intervals:

Sa = {sa1, sa2, . . . , sal}

Sb = {sb1, sb2, . . . , sbl}

where for x ∈ sai , y ∈ sbi (i = 1, 2, . . . , l), if proj(x) = proj(y),
then h(x) > h(y).
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Pre-image of Multiple Points

Lemma (Carter-Saito (1998))

Let F be a closed orientable surface. Let f : F → R
3 be a generic

map. Then there is an embedding g : F → R
4 such that

proj ◦ g = f if and only if

1 S(f ) =
⋃
Sa ∪

⋃
Sb.

2 For each triple point, the pre-images are crossings of types

(a, a), (a, b) and (b, b).

(a, a) (a, b) (b, b)
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Pre-image of Multiple Points

Pre-image of DK DK

The closure of the pre-image of double curves in DF is a union of
two families of arcs called the double decker set (Carter-Saito).
The blue arcs represent the upper decker set and the red arcs
represent the lower decker set.
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Pre-image of Multiple Points

Rectangular-cell complexes

We denote the lower decker
set by Sb.
F \ Sb = {R0, . . . ,Rn}. Let
N(Sb) be a small
neighbourhood of Sb in F .
F \ N(Sb) = {V0, . . . ,Vn};
Vi ⊂ Ri (i = 0, . . . , n).
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Pre-image of Multiple Points

Rectangular-cell complexes

The quotient map
q : F → F/∼ is defined by
q(Vi ) = vi , (i = 0, . . . , n).
The quotient space is a
2-dimensional complex. We
will denote the complex by
KDF

. A subcomplex of KDF

induced from a simple closed
curve in Sb is called a bubble.

Tsukasa Yashiro On connected components of the lower decker sets of surface diagrams



On connected components of the lower decker sets of surface diagrams

Pre-image of Multiple Points

Rectangular-cell complexes

A subcomplex of KDF
corresponding to a connected component of

the lower decker set Sb is called a parcel. Each parcel is a bubble
or a subcomplex consisting of some rectangles and loop discs:

v0

vj

vk

vi

v1 v3vk

v0 v2 v0

We denote the rectangle by (v0; v0v1, v0v2; v3) and the loop by
v̂0v0.
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Pre-image of Multiple Points

Rectangular-cell complexes

Each double segment corresponds to an edge of the complex KDF
.

Each edge has a weight, which is a vertex of the complex.

vjv1v0

vk

v0

v1

vi

v2

v3

vk

v1 v3

v2v0

vk

vi vjv1vk

v0 vk

The lower decker set Sb ⊂ |KDF
| is a union of edges of KDF

.
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Pre-image of Multiple Points

Rectangular-cell complexes

KDF
can be decomposed into parcels K1, . . . ,Kn such that

KDF
= K1 + · · ·+ Kn,

= RecDF
+ BubDF

.

where RecDF
is the union of rectangles and loop discs, and BubDF

be the union of bubbles.

parcels

RDF

BDF

Tsukasa Yashiro On connected components of the lower decker sets of surface diagrams



On connected components of the lower decker sets of surface diagrams

Pre-image of Multiple Points

Quandle colorings

A quandle X is a non-empty set with a binary operation
(a, b) 7→ a ∗ b such that

1 For any a ∈ X , a ∗ a = a,

2 For any a, b ∈ X , there is a unique c ∈ X such that c ∗ b = a.

3 For any a, b, c ∈ X , (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).
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Pre-image of Multiple Points

Quandle colorings

(0, 1, 2)+

x

y
z

0

1

2

The dihedral quandle (X , ∗) of
order n > 0 denoted by Rn is
a quandle X = {0, . . . , n − 1}
with the binary operation
i ∗ j = 2j − i (mod n).

The triple point in the left dia-
gram is coloured by R3; (0, 1, 2)
and the orientation is deter-
mined by orientation normals to
DT ,DM ,DB respectively.
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Pre-image of Multiple Points

Quandle colorings

Let R be the set of connected components of F − Sb. For a
quandle X , a quandle coloring of a diagram is a mapping
Col : R → X such that if

1 V1 and V2 in R have a common boundary arc c

corresponding to an upper sheet V3 ∈ R and

2 the orientation normal to proj(V3) directs from proj(V1) to
proj(V2),

then Col(V1) ∗ Col(V3) = Col(V2).
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Pre-image of Multiple Points

Quandle colorings

The coloring Col can be interpreted in terms of the rectangular-cell
complex KDF

. If an edge e is incident with vertices v1 and v2,
oriented from v1 to v2 and with weight v3, then the mapping from
the 1-skeleton to X

Col : K
(1)
DF

→ X

is defined satisfying Col(v1) ∗ Col(v3) = Col(v2). We call this
mapping also a quandle coloring.
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Pre-image of Multiple Points

Chain groups

Quandle chain groups

Let Cn(X ) (n ≥ 1) be a free abelian group generated by n-tuples
(x1, . . . , xn) ∈ X n. Let CD

n (X ) be a sub group of Cn(X ) generated
by (x1, . . . , xn) such that xi = xj for some 1 ≤ i , j ,≤ n and
(|i − j | = 1). We denote the quotient group Cn(X )/CD

n (X ) by
CQ
n (X ).

Chain groups of KDF

The chain group Ck(KDF
) is defined as a free abelian group

generated by k-dimensional elements of KDF
. For k = 2, it is

generated by the rectangular cells, loop discs and bubbles in KDF
.

For k = 1, it is generated by edges in KDF
. For k = 0, it is

generated by vertices of KDF
.
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Pre-image of Multiple Points

Coloring homomorphisms

The quandle coloring Col can be extended to a homomorphism
Col♯ : C2(KDF

) → CQ
3 (X ) defined as follows. For

σ = (v0; v0v1, v0v2; v3),
Col♯(σ) = (Col(v0),Col(v0v1),Col(v0v2) ∈ CQ

3 (X ).

CQ
3 (X )

Col♯
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Roseman moves

Roseman moves

Two surface diagrams are equivalent if they are projected image of
the same type of a surface-knot. Two equivalent surface diagrams
are modified from one to the other by a finite sequence of local

moves called Roseman moves.

R
±
1

R
±
2

R
±
3
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Roseman moves

Roseman moves

R
±
5

R6R
±
4

Tsukasa Yashiro On connected components of the lower decker sets of surface diagrams



On connected components of the lower decker sets of surface diagrams

Roseman moves

Roseman moves

R
±
5

R
±
4

R6
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Roseman moves

Roseman move R+
3 create six triple point around a triple point

(x , y , z).

R
±

3

Suppose the colour of the moving disc is d . Then the six triple
points are given by either ∂(d , x , y , z) or ∂(x , d , y , z) or
∂(x , y , d , z) or ∂(x , y , z , d).
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Pseudo cycles

Pseudo cycles

Definition

Let c be a chain of C2(KDF
). If c satisfies the following conditions,

(i) ∂Col♯(c) = 0 and

(ii) [Col♯(c)] 6= 0 ∈ HQ
3 (X ),

then c is called a pseudo cycle.

Theorem

The number of pseudo-cycles in KDF
is an invariant under

Roseman moves up to homology.

Proof. A proof can by done by checking that each Roseman move
does not change the number of pseudo cycles.
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Pseudo cycles
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Coloring homomorphisms

Coloring homomorphisms

Let DF be a surface diagram of a surface-knot F and let KDF
be

the rectangular complex induced from DF . For a coloring
homomorphism Col∗ : H2(KDF

) → HQ
3 (X ), determined by the

number of non-degenerate pseudo cycles. Thus the following holds.

Theorem

Let DF be a surface diagram of a surface-knot F and let KDF
be a

rectangular-cell complex induced from DF colored by a quandle X .

The number of coloring homomorphisms

Col∗ : H2(KDF
) → HQ

3 (X )

is a surface-knot invariant.
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Coloring homomorphisms

The number of pseudo cycles in DF will be denoted by ν(F ).

Theorem

Let F be a double twist spun of (2, k)-torus knot for odd k > 1.
Then

ν(F ) = 1
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Matrices of boundary mappings

The matrix of the boundary mapping

Suppose the complex KDF
contains a pseudo 2-cycle

∑m
i=1 τi ,

where τi is a rectangle of KDF
and also edges ζ1, ζ2, . . . , ζn. For

the homomorphism

Col ◦ ∂2 : C2(KDF
) → C1(KDF

) → CQ
2 (X ),

we can define an (n ×m)-matrix for the ordered non-degenerate
generators of C2(KDF

) and CQ
2 (X ) denoted by M(DF ).

Lemma

Let F be a surface diagram coloured by a quandle X . Then

rank(MDF
) ≤ m − 1.
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots

Let T(2,p) be the double twist spun (2, p)-torus knot.
p = 3. The number of triple points is 4. The pre-image of the
reduced diagram is:
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots

The rectangular-cell complex is constructed.
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots

C2(KDT(2,3)
) is generated by four rectangles τ1, τ2, τ3 and τ4

colored as {(0, 1, 0)+, (1, 2, 1)−, (1, 0, 1)−, (2, 1, 2)+} and the
image of the chain is presented by six non-degenerate edges ζ1,
ζ2, . . . , ζ6 colored as {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}.

MKDT(2,3)

=




−1 1 0 0
1 0 0 −1
0 −1 1 0
0 1 −1 0
−1 0 0 1
0 0 1 −1



.

The rank is 3. This
implies that there is
no proper pseudo 2-
cycles in KDT(2,3)

. Thus

ν(T(2,p)) = 1.
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots

p = 5. The number of triple points is 8.
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots
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Matrices of boundary mappings
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Matrices of boundary mappings
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots

rank(MDT(2,5)
) = 7, so ν(T(2,p)) = 1.
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots

p = 7. The number of triple points is 12.

rank(MDT(2,p)
) = 11, so ν(T(2,p)) = 1.
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Matrices of boundary mappings

MDF
of double twist spun (2, p)-torus knots

Four triple points are added: two pairs of rectangles are added.

a ∗ b

b ∗ c

c

a

c

b

a
b

c

a ∗ c

a ∗ c

a

c

b

c

c

b ∗ c

a ∗ b

a ∗ b

(a ∗ b) ∗ (b ∗ c) (a ∗ b) ∗ c
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Matrices of boundary mappings

Let M = MKDT(2,p)

and let N = MKDT(2,p+2)

.

M → N =




∗ ∗ ∗ ∗ ∗
M ′ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 . . . 0 a . . . −a 0
0 . . . 0 0 b −b . . . 0
...

. . . . . .
0 . . . 0 0 . . . 0 −d d




.

If rank(M) = 2p − 3 and rank(M ′) = 2p − 2, then
rank(N) = 2p + 1.
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