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Introduction

Classical Knots and their diagrams

A knot is a closed 1-
dimensional manifold (S1)
embedded in R

3.
A knot diagram DK is
the image of K under
the orthogonal projection
proj(x1, x2, x3) = (x1, x2)
with crossing information.

K

proj(K)

proj
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Introduction

Reidemeister moves and knot deformation

Redemeister Moves

Ω2 Ω3Ω1
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Surfaces in 4-space

Zeeman’s twist spinning

Let B3 be a 3–ball in R
3
+ such

that it contains a tangle T (K )
of a knot K , and ∂B3 ∩ T (K )
is the pair of antipodal points
of ∂B3.
An m-twist-spun knot

obtained from K is defined by
rotating B3 ∩ T (K ) about the
axis through the antipodal
points m times while R

3
+ spins

denoted by Tm(K ).

R
3
+

B
3

∂R3
+R

4
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Surfaces in 4-space

Theorem (Zeeman, 1965)

Every m-twist spun knot Tm(K ) obtained from K is fibred

(m ≥ 1); the fibre is the one-punctured m-fold branched covering

space of S3 along K.

Corollary (Zeeman, 1965)

For any knot K, 1-twist spun knot obtained from K is trivial.
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Surfaces in 4-space

Surface-knot Diagrams

A surface-knot is a connected oriented closed surface embedded
in 4-space. Let F ⊂ R

4 be a surface-knot. Let proj : R4 → R
3;

(x1, x2, x3, x4) 7→ (x1, x2, x3), be the orthogonal projection. A
surface-knot diagram of F is a union of the following local
diagrams.

Triple point

DT

DM

DB

Branch point
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Roseman moves

Roseman moves

Two surface-knot diagrams are equivalent if they are projected
image of the same type of a surface-knot. Two equivalent
surface-knot diagrams are modified from one to the other by a
finite sequence of local moves called Roseman moves.

R
±
1

R
±
2

R
±
3
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Roseman moves

Roseman moves

R
±
5

R6R
±
4
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Roseman moves

Roseman moves

R
±
5

R
±
4

R6
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Roseman moves

Example(Double twist spun trefoil)

S. Satoh (2002) constructed a diagram of twist span knots.
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Roseman moves

Example(Double twist spun trefoil)

The following is a reduced diagram obtained by a sequence of
Roseman moves from Satoh’s construction.

S

b3

b2

N

τ3

τ2
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Pre-image of Multiple Points

The preimage of singularities of the projection proj is:

S = {x ∈ F | #((proj|F )
−1(proj(x)) > 1}

The set S is the union of two families of immersed circles and
immersed open intervals:

Sa = {sa1, sa2, . . . , sal}

Sb = {sb1, sb2, . . . , sbl}

where for x ∈ sai , y ∈ sbi (i = 1, 2, . . . , l), if proj(x) = proj(y),
then h(x) > h(y).
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Pre-image of Multiple Points

Lemma (Carter-Saito (1998))

Let F be a closed orientable surface. Let f : F → R
3 be a generic

map. Then there is an embedding g : F → R
4 such that

proj ◦ g = f if and only if

1 S(f ) =
⋃
Sa ∪

⋃
Sb.

2 For each triple point, the pre-images are crossings of types

(a, a), (a, b) and (b, b).

(a, a) (a, b) (b, b)
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Pre-image of Multiple Points

Pre-image of DK DK

The closure of the pre-image of double curves in DF is a union of
two families of arcs called the double decker set (Carter-Saito).
The blue arcs represent the upper decker set and the red arcs
represent the lower decker set.
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Pre-image of Multiple Points

Rectangular-cell complexes

We denote the lower decker
set by Sb.
F \ Sb = {R0, . . . ,Rn}. Let
N(Sb) be a small
neighbourhood of Sb in F .
F \ N(Sb) = {V0, . . . ,Vn};
Vi ⊂ Ri (i = 0, . . . , n).
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Pre-image of Multiple Points
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Pre-image of Multiple Points

Rectangular-cell complexes

The quotient map
q : F → F/∼ is defined by
q(Vi ) = vi , (i = 0, . . . , n).
The quotient space is a
2-dimensional complex. We
will denote the complex by
KDF

. A subcomplex of KDF

induced from a simple closed
curve in Sb is called a bubble.
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Pre-image of Multiple Points

Rectangular-cell complexes

A subcomplex of KDF
corresponding to a connected component of

the lower decker set Sb is called a parcel. Each parcel is a bubble
or a subcomplex consisting of some rectangles and loop discs:

v0

vj

vk

vi

v1 v3vk

v0 v2 v0

We denote the rectangle by (v0; v0v1, v0v2; v3) and the loop by
v̂0v0.
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Pre-image of Multiple Points

Rectangular-cell complexes

Each double segment corresponds to an edge of the complex KDF
.

Each edge has a weight, which is a vertex of the complex.

vjv1v0

vk

v0

v1

vi

v2

v3

vk

v1 v3

v2v0

vk

vi vjv1vk

v0 vk

The lower decker set Sb ⊂ |KDF
| is a union of edges of KDF

.
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Pre-image of Multiple Points

Rectangular-cell complexes

KDF
can be decomposed into parcels K1, . . . ,Kn such that

KDF
= K1 + · · ·+ Kn,

= RecDF
+ BubDF

.

where RecDF
is the union of rectangles and loop discs, and BubDF

be the union of bubbles.

parcels

RDF

BDF
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Pre-image of Multiple Points

Quandle colorings

A quandle X is a non-empty set with a binary operation
(a, b) 7→ a ∗ b such that

1 For any a ∈ X , a ∗ a = a,

2 For any a, b ∈ X , there is a unique c ∈ X such that c ∗ b = a.

3 For any a, b, c ∈ X , (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).
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Pre-image of Multiple Points

Quandle colorings

(0, 1, 2)+

x

y
z

0

1

2

The dihedral quandle (X , ∗) of
order n > 0 denoted by Rn is
a quandle X = {0, . . . , n − 1}
with the binary operation
i ∗ j = 2j − i (mod n).

The triple point in the left dia-
gram is coloured by R3; (0, 1, 2)
and the orientation is deter-
mined by orientation normals to
DT ,DM ,DB respectively.
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Pre-image of Multiple Points

Quandle colorings

Let R = {R1,R2, . . . ,Rn} be the set of closures of connected
components of F − Sb. For a quandle X , a quandle coloring of a
diagram is a mapping Col : R → X such that if

1 R1 and R2 in R have a common boundary arc c corresponding
to an upper sheet R3 ∈ R and

2 the orientation normal to proj(R3) directs from proj(R1) to
proj(R2),

then Col(R1) ∗ Col(R3) = Col(R2).
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Pre-image of Multiple Points

Quandle colorings

The coloring Col can be interpreted in terms of the rectangular-cell
complex KDF

. If an edge e is incident with vertices v1 and v2,
oriented from v1 to v2 and with weight v3, then the mapping from
the 1-skeleton to X

Col : K
(1)
DF

→ X

is defined satisfying Col(v1) ∗ Col(v3) = Col(v2). We call this
mapping also a quandle coloring.

Tsukasa Yashiro On a surface-knot invariant obtained from surface-knot diagrams



On a surface-knot invariant obtained from surface-knot diagrams

Pre-image of Multiple Points

Chain groups

Quandle chain groups

Let Cn(X ) (n ≥ 1) be a free abelian group generated by n-tuples
(x1, . . . , xn) ∈ X n. Let CD

n (X ) be a sub group of Cn(X ) generated
by (x1, . . . , xn) such that xi = xj for some 1 ≤ i , j ,≤ n and
(|i − j | = 1). We denote the quotient group Cn(X )/CD

n (X ) by
CQ
n (X ).

Chain groups of KDF

The chain group Ck(KDF
) is defined as a free abelian group

generated by k-dimensional elements of KDF
. For k = 2, it is

generated by the rectangular cells, loop discs and bubbles in KDF
.

For k = 1, it is generated by edges in KDF
. For k = 0, it is

generated by vertices of KDF
.
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Pre-image of Multiple Points

Coloring homomorphisms

CQ
3 (X )

Col♯

The quandle coloring Col can be extended to a homomorphism
Col♯ : C2(KDF

) → CQ
3 (X ) defined as follows.

For σ = (v0; v0v1, v0v2; v3),

Col♯(σ) = (Col(v0),Col(v0v1),Col(v0v2)) ∈ CQ
3 (X ).
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Pre-image of Multiple Points

Roseman move R+
3 create six triple point around a triple point

(x , y , z).

R
±

3

Suppose the colour of the moving disc is d . Then the six triple
points are given by either ∂(d , x , y , z) or ∂(x , d , y , z) or
∂(x , y , d , z) or ∂(x , y , z , d).
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Pseudo-cycles

Pseudo-cycles

Definition

Let c be a chain of C2(KDF
). If c satisfies the following conditions,

(i) Col♯∂(c) = 0 and

(ii) [Col♯(c)] 6= 0 ∈ HQ
3 (X ),

then c is called a pseudo-cycle.
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Pseudo-cycles

Pseudo-cycles

Theorem

For a surface-knot diagram DF , the maximal number of

pseudo-cycles in KDF
is an invariant under Roseman moves up to

quandle homology.

It is suffised to check each Roseman move does not change the
number of pseudo-cycles:
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Pseudo-cycles

Pseudo-cycles

u0

u1
u0

v0 v0

R-1±

U1

V0 V0

U0 U0
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Pseudo-cycles

Pseudo-cycles

U0

V0 V0

V1

V2

V1

V2

U0

U1

V3

V4

u1

u0

v0 v0

v1

v2

v1

v2

R-2±

u0

v4

v3

Tsukasa Yashiro On a surface-knot invariant obtained from surface-knot diagrams



On a surface-knot invariant obtained from surface-knot diagrams

Pseudo-cycles

Pseudo-cycles

u1

v0

u0U0
U0

U1

V0 V0

V1 V2

V1 V2

V3 V4

v0

v1 v2

v1 v2

v3 v4

u0

V3 V5

V6

V3

V4
V4 V6

V5

R-3
±

v3

v4 v6

v5
v3

v4 v6

v5

V9

V8

V7

V10

v7

v8 v10

v9
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Pseudo-cycles

Pseudo-cycles

U0

u0 u0

U0

R-4±

The Roseman move R-4+ creates two branch points corresponding
to two loop discs. These loop discs are homologically zero.
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Pseudo-cycles

Pseudo-cycles

v0 v0

v1

U0
U0

V0V1 v0

v0

u0 u0

V0

R-5±

OR

u0

V0V0

u0
v1

v2

U0
U0

V1 V2
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Pseudo-cycles

Pseudo-cycles

The Roseman move R-6 gives two possible cases: one does not
change the number of parcels, and the other may change the
number of parcels:
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Pseudo-cycles

Pseudo-cycles

v0 v1

v1

v2 v0

v2
or

V2

V1

V0 V1 V0V0

V0V1

R-6

R-6

v0 v1

OR

V2

V1

v0

v1

v2

v1

v0 v ′
0

V0
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Pseudo-cycles

The maximal number of pseudo-cycles in DF will be denoted by
ν(F ).

Theorem

Let F be a double twist spun of (2, k)-torus knot for odd prime

k > 1. Then
ν(F ) = 1
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Pseudo-cycles

Applications

Let F be a surface-knot. A triple point number is the minimal
number of triple points for all possible surface-knot diagrams. Let
K be a pseudo-cycle and let D be a partial diagram corresponding
to K . Then the number of triple points contained in D will be
denoted by t(K ).

Proposition

Let F be a surface-knot obtained by a connected-sum of some

surface-knots F1,F2, · · · ,Fm with ν(Fi ) 6= 0 for all i . Then

0 < t(F1#F2# · · ·#Fm),

where # means the connected sum.
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Pseudo-cycles

Applications

Example

Let F be a 2-twit-spun trefoil. Then F#F is not a ribbon 2-knot.
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Pseudo-cycles

Thank You
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