On a surface-knot invariant obtained from surface-knot diagrams

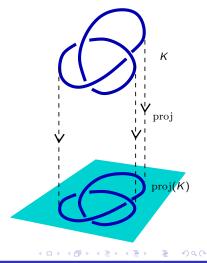
Tsukasa Yashiro

Department of Mathematics and Statistics Sultan Qaboos University

East Asian School of Knots, Osaka City University, Osaka, Japan 27th January 2016

イロト イヨト イヨト イヨト

1 Introduction

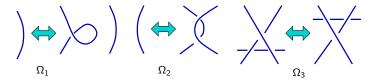

- 2 Surfaces in 4-space
- 3 Roseman moves
- 4 Double decker sets
- 5 Pre-image of Multiple Points
- 6 Pseudo-cycles

(4回) (4回) (4回)

- Introduction

Classical Knots and their diagrams

A **knot** is a closed 1dimensional manifold (\mathbb{S}^1) embedded in \mathbb{R}^3 . A **knot diagram** D_K is the image of K under the orthogonal projection $\operatorname{proj}(x_1, x_2, x_3) = (x_1, x_2)$ with crossing information.

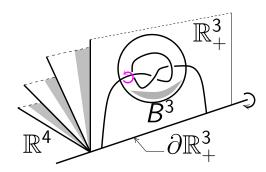


On a surface-knot invariant obtained from surface-knot diagrams

- Introduction

Reidemeister moves and knot deformation

Redemeister Moves


・ 同下 ・ ヨト ・ ヨト

-Surfaces in 4-space

Zeeman's twist spinning

Let B^3 be a 3-ball in \mathbb{R}^3_+ such that it contains a tangle T(K) of a knot K, and $\partial B^3 \cap T(K)$ is the pair of antipodal points of ∂B^3 .

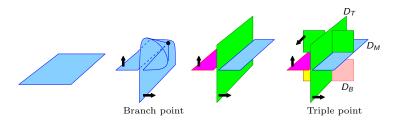
An *m*-twist-spun knot obtained from *K* is defined by rotating $B^3 \cap T(K)$ about the axis through the antipodal points *m* times while \mathbb{R}^3_+ spins denoted by $T_m(K)$.

-Surfaces in 4-space

Theorem (Zeeman, 1965)

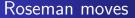
Every m-twist spun knot $T_m(K)$ obtained from K is fibred $(m \ge 1)$; the fibre is the one-punctured m-fold branched covering space of S^3 along K.

Corollary (Zeeman, 1965)

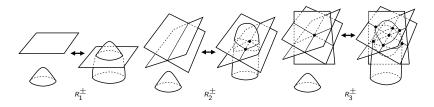

For any knot K, 1-twist spun knot obtained from K is trivial.

< 日 > < 四 > < 回 > < 回 > < 回 > <

-Surfaces in 4-space

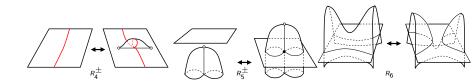

Surface-knot Diagrams

A **surface-knot** is a connected oriented closed surface embedded in 4-space. Let $F \subset \mathbb{R}^4$ be a surface-knot. Let $\operatorname{proj} : \mathbb{R}^4 \to \mathbb{R}^3$; $(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2, x_3)$, be the orthogonal projection. A **surface-knot diagram** of F is a union of the following local diagrams.



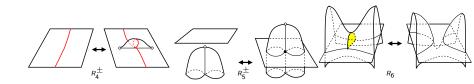
・ 同下 ・ ヨト ・ ヨト

-Roseman moves


Two surface-knot diagrams are equivalent if they are projected image of the same type of a surface-knot. Two equivalent surface-knot diagrams are modified from one to the other by a **finite sequence of local moves** called Roseman moves.

・ 同 ト ・ ヨ ト ・ ヨ

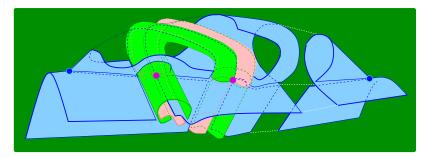
-Roseman moves


Roseman moves

イロン イヨン イヨン イヨン

-Roseman moves

Roseman moves

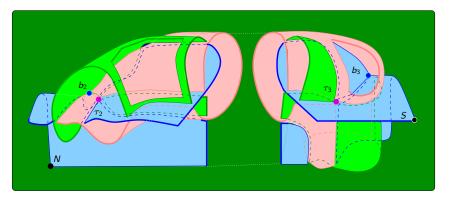


イロン イヨン イヨン イヨン

Roseman moves

Example(Double twist spun trefoil)

S. Satoh (2002) constructed a diagram of twist span knots.



(人間) (人) (人) (人)

Roseman moves

Example(Double twist spun trefoil)

The following is a reduced diagram obtained by a sequence of Roseman moves from Satoh's construction.

・ 同 ト ・ ヨ ト ・ ヨ

The preimage of singularities of the projection proj is:

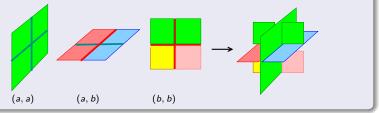
$$S = \{x \in F \mid \#((\text{proj}|_F)^{-1}(\text{proj}(x)) > 1\}$$

The set S is the union of two families of immersed circles and immersed open intervals:

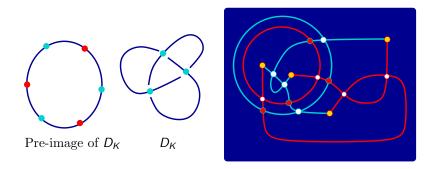
$$\mathcal{S}_a = \{s_{a1}, s_{a2}, \dots, s_{al}\}$$

$$\mathcal{S}_b = \{s_{b1}, s_{b2}, \dots, s_{bl}\}$$

where for $x \in s_{ai}$, $y \in s_{bi}$ (i = 1, 2, ..., l), if proj(x) = proj(y), then h(x) > h(y).


イロト 不得下 イヨト イヨト 二日

Lemma (Carter-Saito (1998))

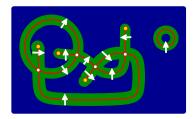

Let F be a closed orientable surface. Let $f : F \to \mathbb{R}^3$ be a generic map. Then there is an embedding $g : F \to \mathbb{R}^4$ such that $\operatorname{proj} \circ g = f$ if and only if

$$I S(f) = \bigcup S_a \cup \bigcup S_b.$$

2 For each triple point, the pre-images are crossings of types (a, a), (a, b) and (b, b).

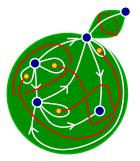
イロト イポト イヨト イヨト

The closure of the pre-image of double curves in D_F is a union of two families of arcs called the **double decker set** (Carter-Saito). The blue arcs represent the **upper decker set** and the red arcs represent the **lower decker set**.


Rectangular-cell complexes

We denote the lower decker set by S_b . $F \setminus S_b = \{R_0, \dots, R_n\}$. Let $N(S_b)$ be a small neighbourhood of S_b in F. $F \setminus N(S_b) = \{V_0, \dots, V_n\}$; $V_i \subset R_i \ (i = 0, \dots, n)$.

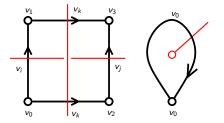
(4回) (1日) (日)


Rectangular-cell complexes

We denote the lower decker set by S_b . $F \setminus S_b = \{R_0, \dots, R_n\}$. Let $N(S_b)$ be a small neighbourhood of S_b in F. $F \setminus N(S_b) = \{V_0, \dots, V_n\};$ $V_i \subset R_i \ (i = 0, \dots, n).$

・ 母 と ・ ヨ と ・ ヨ と

Rectangular-cell complexes

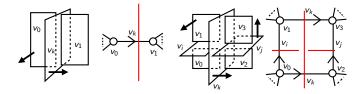


The quotient map $q: F \to F/_{\sim}$ is defined by $q(V_i) = v_i$, (i = 0, ..., n). The quotient space is a 2-dimensional complex. We will denote the complex by K_{D_F} . A subcomplex of K_{D_F} induced from a simple closed curve in S_b is called a **bubble**.

向下 イヨト イヨト

Rectangular-cell complexes

A subcomplex of K_{D_F} corresponding to a connected component of the lower decker set S_b is called a **parcel**. Each parcel is a bubble or a subcomplex consisting of some rectangles and loop discs:

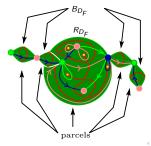


We denote the rectangle by $(v_0; v_0v_1, v_0v_2; v_3)$ and the loop by $\widehat{v_0v_0}$.

(人間) システン イラン

Rectangular-cell complexes

Each double segment corresponds to an edge of the complex K_{D_F} . Each edge has a **weight**, which is a vertex of the complex.


The lower decker set $S_b \subset |K_{D_F}|$ is a union of edges of K_{D_F} .

Rectangular-cell complexes

 K_{D_F} can be decomposed into parcels K_1, \ldots, K_n such that

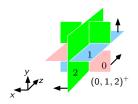
$$K_{D_F} = K_1 + \dots + K_n,$$

= $Rec_{D_F} + Bub_{D_F}.$

where Rec_{D_F} is the union of rectangles and loop discs, and Bub_{D_F} be the union of bubbles.

Quandle colorings

A **quandle** X is a non-empty set with a binary operation $(a, b) \mapsto a * b$ such that


1 For any
$$a \in X$$
, $a * a = a$,

2 For any $a, b \in X$, there is a unique $c \in X$ such that c * b = a.

3 For any
$$a, b, c \in X$$
, $(a * b) * c = (a * c) * (b * c)$.

(日) (周) (王) (王) (王)

Quandle colorings

The **dihedral quandle** (X, *) of order n > 0 denoted by R_n is a quandle $X = \{0, ..., n - 1\}$ with the binary operation $i * j = 2j - i \pmod{n}$.

The triple point in the left diagram is coloured by R_3 ; (0, 1, 2)and the orientation is determined by orientation normals to D_T , D_M , D_B respectively.

イロン イ部ン イヨン イヨン 三日

Quandle colorings

Let $\mathcal{R} = \{R_1, R_2, \dots, R_n\}$ be the set of closures of connected components of $F - S_b$. For a quandle X, a **quandle coloring** of a diagram is a mapping $\text{Col} : \mathcal{R} \to X$ such that if

- **1** R_1 and R_2 in \mathcal{R} have a common boundary arc *c* corresponding to an upper sheet $R_3 \in \mathcal{R}$ and
- 2 the orientation normal to $\operatorname{proj}(R_3)$ directs from $\operatorname{proj}(R_1)$ to $\operatorname{proj}(R_2)$,

then $\operatorname{Col}(R_1) * \operatorname{Col}(R_3) = \operatorname{Col}(R_2)$.

イロト 不得下 イヨト イヨト 二日

Quandle colorings

The coloring Col can be interpreted in terms of the rectangular-cell complex K_{D_F} . If an edge *e* is incident with vertices v_1 and v_2 , oriented from v_1 to v_2 and with weight v_3 , then the mapping from the 1-skeleton to X

$$\operatorname{Col}: K^{(1)}_{D_F} \to X$$

is defined satisfying $\operatorname{Col}(v_1) * \operatorname{Col}(v_3) = \operatorname{Col}(v_2)$. We call this mapping also a **quandle coloring**.

・ 回 と く ヨ と く ヨ と

Chain groups

Quandle chain groups

Let $C_n(X)$ $(n \ge 1)$ be a free abelian group generated by *n*-tuples $(x_1, \ldots, x_n) \in X^n$. Let $C_n^D(X)$ be a sub group of $C_n(X)$ generated by (x_1, \ldots, x_n) such that $x_i = x_j$ for some $1 \le i, j, \le n$ and (|i - j| = 1). We denote the quotient group $C_n(X)/C_n^D(X)$ by $C_n^Q(X)$.

Chain groups of K_{D_F}

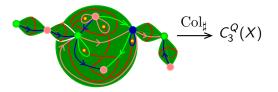
The chain group $C_k(K_{D_F})$ is defined as a free abelian group generated by k-dimensional elements of K_{D_F} . For k = 2, it is generated by the rectangular cells, loop discs and bubbles in K_{D_F} . For k = 1, it is generated by edges in K_{D_F} . For k = 0, it is generated by vertices of K_{D_F} .

イロン イロン イモン イモン

Chain groups

Quandle chain groups

Let $C_n(X)$ $(n \ge 1)$ be a free abelian group generated by *n*-tuples $(x_1, \ldots, x_n) \in X^n$. Let $C_n^D(X)$ be a sub group of $C_n(X)$ generated by (x_1, \ldots, x_n) such that $x_i = x_j$ for some $1 \le i, j, \le n$ and (|i - j| = 1). We denote the quotient group $C_n(X)/C_n^D(X)$ by $C_n^Q(X)$.

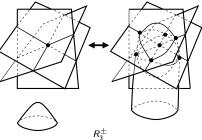

Chain groups of K_{D_F}

The chain group $C_k(K_{D_F})$ is defined as a free abelian group generated by k-dimensional elements of K_{D_F} . For k = 2, it is generated by the rectangular cells, loop discs and bubbles in K_{D_F} . For k = 1, it is generated by edges in K_{D_F} . For k = 0, it is generated by vertices of K_{D_F} .

On a surface-knot invariant obtained from surface-knot diagrams

Pre-image of Multiple Points

Coloring homomorphisms



The quandle coloring Col can be extended to a homomorphism $\operatorname{Col}_{\sharp} : C_2(\mathcal{K}_{D_F}) \to C_3^Q(X)$ defined as follows. For $\sigma = (v_0; v_0v_1, v_0v_2; v_3)$,

$$\operatorname{Col}_{\sharp}(\sigma) = (\operatorname{Col}(v_0), \operatorname{Col}(v_0v_1), \operatorname{Col}(v_0v_2)) \in C_3^Q(X).$$

回 と く ヨ と く ヨ と

Roseman move R_3^+ create six triple point around a triple point (x, y, z).

Suppose the colour of the moving disc is *d*. Then the six triple points are given by either $\partial(d, x, y, z)$ or $\partial(x, d, y, z)$ or $\partial(x, y, d, z)$ or $\partial(x, y, z, d)$.

Pseudo-cycles

Definition

Let c be a chain of $C_2(K_{D_F})$. If c satisfies the following conditions,

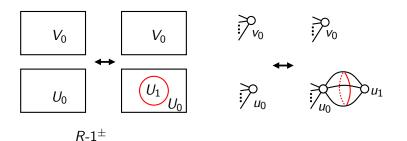
(i)
$$\operatorname{Col}_{\sharp}\partial(c) = 0$$
 and

(ii)
$$[\operatorname{Col}_{\sharp}(c)] \neq 0 \in H_3^Q(X),$$

then c is called a **pseudo-cycle**.

(1日) (日) (日)

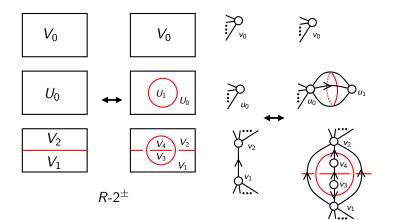
Pseudo-cycles


Theorem

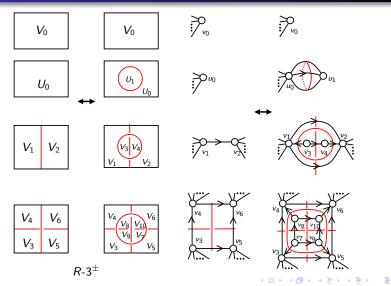
For a surface-knot diagram D_F , the maximal number of pseudo-cycles in K_{D_F} is an invariant under Roseman moves up to quandle homology.

It is suffised to check each Roseman move does not change the number of pseudo-cycles:

- 4 回 2 - 4 □ 2 - 4 □

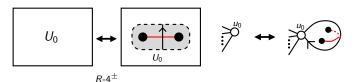

Pseudo-cycles

イロン イヨン イヨン イヨン


э

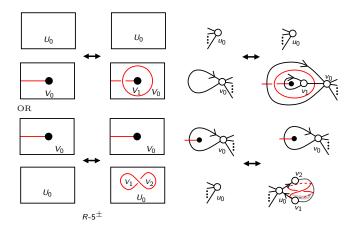
Pseudo-cycles

イロン イヨン イヨン イヨン


Pseudo-cycles

Tsukasa Yashiro

On a surface-knot invariant obtained from surface-knot diagram

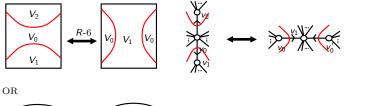

Pseudo-cycles

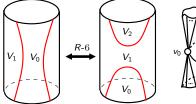
The Roseman move R-4⁺ creates two branch points corresponding to two loop discs. These loop discs are homologically zero.

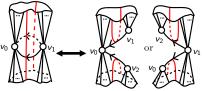
向下 イヨト イヨト

Pseudo-cycles

イロン イヨン イヨン イヨン


э




The Roseman move R-6 gives two possible cases: one does not change the number of parcels, and the other may change the number of parcels:

- 4 回 2 - 4 □ 2 - 4 □

Pseudo-cycles

イロン イヨン イヨン イヨン

The maximal number of pseudo-cycles in D_F will be denoted by $\nu(F)$.

Theorem

Let F be a double twist spun of (2, k)-torus knot for odd prime k > 1. Then

$$\nu(F) = 1$$

・ロト ・回ト ・ヨト ・ヨト

Applications

Let F be a surface-knot. A **triple point number** is the minimal number of triple points for all possible surface-knot diagrams. Let K be a pseudo-cycle and let D be a partial diagram corresponding to K. Then the number of triple points contained in D will be denoted by t(K).

Proposition

Let F be a surface-knot obtained by a connected-sum of some surface-knots F_1, F_2, \dots, F_m with $\nu(F_i) \neq 0$ for all i. Then

$$0 < t(F_1 \# F_2 \# \cdots \# F_m),$$

where # means the connected sum.

・ロン ・回 と ・ 回 と ・

On a surface-knot invariant obtained from surface-knot diagrams

- Pseudo-cycles

Example

Let F be a 2-twit-spun trefoil. Then F # F is not a ribbon 2-knot.

Tsukasa Yashiro On a surface-knot invariant obtained from surface-knot diagram

・ 回 と く ヨ と く ヨ と

æ

Thank You

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

э