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Motivation

Motivation

H. Poincaré stated the following conjecture.

Conjecture (Poincaré (1904))

Every simply connected orientable closed 3-manifold is

homeomorphic to S
3.

It is no longer a conjecture. G. Perelman (2002, 2003) proved the
Geometric Conjecture and thus the Poincaré conjecture is true.
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Motivation

Motivation

In 1980s many approaches were tried to tackle the conjecture. One
of them is the following: Let D2 be a disc and let ∆3 be a
homotopy 3-ball. Consider the map

f : ∂(D2 × I ) → ∆3

in which ∂(D2 × I ) is mapped onto the parallel to the boundary of
∆3. Extending f into D2 × I , we obtain a homotopy
F : D2× I → ∆3. Then modify the homotopy F into an isotopy.
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Motivation

Motivation

We can see this idea in Homma-Nagase (1985, 1987) and others.
The singularities of F (D2 × {t}) consist of double curves, triple
points and sometimes branch points. If all singularities of
F (D2 × {t}) are elminated, it is done.

It is known that if the sigularities are only double curves and
branch points, then it is done. Therefore, if triple points are
eliminated, then it will be done.
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Motivation

Motivation

However, this approach faced the following problem:

Problem

How can we characterize the cancelling pair of triple points?

To characterize the pre-image of triple point is not easy.
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Motivation

Motivation

One of approaches to this problem was:

D2 × I R
3

I × R
3

F̃

F̃ ′

I × (I × R
3)

F

The obstruction of regular homotopy of F̃ relates to the existence
of triple points.
We can view the image F̃ ′(D2 × {t}) is an embedded disc in
{s} × I × R

3.
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Motivation

Motivation

Reagarding to deal with triple points in generic surfaces,
surface-knot diagrams have some advantages:

1 The singular set consists of two families: Upper and Lower
decker sets (Carter-Saito (1998) characterized the singular
set.)

2 Algebraic structures are associated with the diagram (the
fundamental group, quandles etc.)

Our approach to deal with triple points is:

Our Approach

To look at the pre-images (singular sets).
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Surface-knots

Zeeman’s twist spinning

Let B3 be a 3–ball in R
3
+ such

that it contains a tangle T (K )
of a knot K , and ∂B3 ∩ T (K )
is the pair of antipodal points
of ∂B3.
An m-twist-spun knot

obtained from K is defined by
rotating B3 ∩ T (K ) about the
axis through the antipodal
points m times while R

3
+ spins

denoted by Tm(K ).

R
3
+

B
3

∂R3
+R

4
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Surface-knots

Theorem (Zeeman, 1965)

Every m-twist spun knot Tm(K ) obtained from K is fibred

(m ≥ 1); the fibre is the one-punctured m-fold branched covering

space of S3 along K.

Corollary (Zeeman, 1965)

For any knot K, 1-twist spun knot obtained from K is trivial.
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Surface-knots

Surface-knot Diagrams

A surface-knot is a connected oriented closed surface embedded
in 4-space. Let F ⊂ R

4 be a surface-knot. Let proj : R4 → R
3;

(x1, x2, x3, x4) 7→ (x1, x2, x3), be the orthogonal projection. A
surface-knot diagram of F is a union of the following local
diagrams.

Triple point

DT

DM

DB

Branch point
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Roseman moves

Roseman moves

Two surface-knot diagrams are equivalent if they are projected
image of the same type of a surface-knot. Two equivalent
surface-knot diagrams are modified from one to the other by a
finite sequence of local moves called Roseman moves.

R
±
1

R
±
2

R
±
3
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Roseman moves

Roseman moves

R
±
5

R6R
±
4
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Roseman moves

Roseman moves

R
±
5

R
±
4

R6

These six moves have some height variations (T.Y. 2005).
Roseman’s seven moves can be expressed by other six moves. (K.
Kawamura 2015).
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Double Decker Sets

Double Decker Sets

S. Satoh (2002) constructed a diagram of twist span knots.
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Double Decker Sets

Double Decker Sets

The following is a reduced diagram obtained by a sequence of
Roseman moves from Satoh’s construction (t-minimal diagram).

S

b3

b2

N

τ3

τ2
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Double Decker Sets

Double Decker Sets

This diagram does not have non-trivial discendent discs.
(d-minimal diagram (A. Al Kharusi and TY)).

S

b3

b2

N

τ3

τ2
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Double Decker Sets

The preimage of singularities of the projection proj is:

S = {x ∈ F | #((proj|F )
−1(proj(x)) > 1}

The set S is the union of two families of immersed circles and
immersed open intervals:

Sa = {sa1, sa2, . . . , sal}

Sb = {sb1, sb2, . . . , sbl}

where for x ∈ sai , y ∈ sbi (i = 1, 2, . . . , l), if proj(x) = proj(y),
then h(x) > h(y).
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Double Decker Sets

The closure of the pre-image of double curves in DF is a union of
two families of arcs called the double decker set (Carter-Saito).
The blue arcs represent the upper decker set and the red arcs
represent the lower decker set.
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Double Decker Sets

Lemma (Carter-Saito (1998))

Let F be a closed orientable surface. Let f : F → R
3 be a generic

map. Then there is an embedding g : F → R
4 such that

proj ◦ g = f if and only if

1 S(f ) =
⋃
Sa ∪

⋃
Sb.

2 For each triple point, the pre-images are crossings of types

(a, a), (a, b) and (b, b).

(a, a) (a, b) (b, b)
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Triple Point Numbers

Triple point numbers of twist-spun knots

The minimal number of triple points for all possible surface-knot
diagrams of a surface-knot F is called a triple point number

denoted by t(F ), which is a surface-knot invariant.

1999 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and
M. Saito applied quandle co-homology to knots and
surface-knots.

2002 S. Satoh and A. Shima determined triple point numbers
for 2-twist and 3-twist spun trefoils as 4 and 6 respectively.

2005 E. Hatakenaka gave a lower bound 6 of the triple point
number for 2-twist spun (2, 5)-torus knot.
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Triple Point Numbers

Rectangular-cell complexes

We denote the lower decker
set by Sb.
F \ Sb = {R0, . . . ,Rn}. Let
N(Sb) be a small
neighbourhood of Sb in F .
F \ N(Sb) = {V0, . . . ,Vn};
Vi ⊂ Ri (i = 0, . . . , n).

Proof is done by analysing the double decker sets.
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Triple Point Numbers
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Triple Point Numbers

Rectangular-cell complexes

The quotient map
q : F → F/∼ is defined by
q(Vi ) = vi , (i = 0, . . . , n).
The quotient space is a
2-dimensional complex. We
will denote the complex by
KDF

. A subcomplex of KDF

induced from a simple closed
curve in Sb is called a bubble.

Proof is done by analysing the double decker sets.
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Triple Point Numbers

Rectangular-cell complexes

A subcomplex of KDF
corresponding to a connected component of

the lower decker set Sb is called a parcel. Each parcel is a bubble
or a subcomplex consisting of some rectangles and loop discs:

v0

vj

vk

vi

v1 v3vk

v0 v2 v0

We denote the rectangle by (v0; v0v1, v0v2; v3) and the loop by
v̂0v0.
Proof is done by analysing the double decker sets.
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Triple Point Numbers

Rectangular-cell complexes

Each double segment corresponds to an edge of the complex KDF
.

Each edge has a weight, which is a vertex of the complex.

vjv1v0

vk

v0

v1

vi

v2

v3

vk

v1 v3

v2v0

vk

vi vjv1vk

v0 vk

The lower decker set Sb ⊂ |KDF
| is a union of edges of KDF

.
Proof is done by analysing the double decker sets.
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Triple Point Numbers

Rectangular-cell complexes

The Numer of Parcels

For every surface-knot, we can make the number of parcels one.

parcels

RDF

BDF

Proof is done by analysing the double decker sets.
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Triple Point Numbers

Rectangular-cell complexes

S. Satoh (2005) proved that for every 2-knot S ,

4 ≤ t(S)

Theorem (A. Al Kharusi-TY 2016 preprint)

Let F be a surface-knot with genus 1 and not pseudo-ribbon. Then

3 ≤ t(F )

Proof is done by analysing the double decker sets.
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Triple Point Numbers

Quandle colorings

A quandle X is a non-empty set with a binary operation
(a, b) 7→ a ∗ b such that

1 For any a ∈ X , a ∗ a = a,

2 For any a, b ∈ X , there is a unique c ∈ X such that c ∗ b = a.

3 For any a, b, c ∈ X , (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).
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Triple Point Numbers

Quandle colorings

Let R = {R1,R2, . . . ,Rn} be the set of closures of connected
components of F − Sb. For a quandle X , a quandle coloring of a
diagram is a mapping Col : R → X such that

a

b

c

c = a ∗ b
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Triple Point Numbers

Quandle colorings

The coloring Col can be interpreted in terms of the rectangular-cell
complex KDF

:

Col : K
(0)
DF

→ X

If an edge e is incident with vertices v1 and v2, oriented from v1 to
v2 and with weight v3, then the mapping from the 1-skeleton to X

Col : K
(1)
DF

→ X

is defined satisfying Col(v1) ∗ Col(v3) = Col(v2). We call this
mapping also a quandle coloring.
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Triple Point Numbers

Quandle colorings

(0, 1, 2)+

x

y
z

0

1

2

The dihedral quandle (X , ∗) of
order n > 0 denoted by Rn is
a quandle X = {0, . . . , n − 1}
with the binary operation
i ∗ j = 2j − i (mod n).
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Triple Point Numbers

Chain groups

Quandle chain groups

Let Cn(X ) (n ≥ 1) be a free abelian group generated by n-tuples
(x1, . . . , xn) ∈ X n. Let CD

n (X ) be a sub group of Cn(X ) generated
by (x1, . . . , xn) such that xi = xj for some 1 ≤ i , j ,≤ n and
(|i − j | = 1). We denote the quotient group Cn(X )/CD

n (X ) by
CQ
n (X ).

Chain groups of KDF

The chain group Ck(KDF
) is defined as a free abelian group

generated by k-dimensional elements of KDF
. For k = 2, it is

generated by the rectangular cells, loop discs and bubbles in KDF
.

For k = 1, it is generated by edges in KDF
. For k = 0, it is

generated by vertices of KDF
.
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Triple Point Numbers

Chain groups

CQ
3 (X )

Col♯

The quandle coloring Col can be extended to a homomorphism
Col♯ : C2(KDF

) → CQ
3 (X ) defined as follows.

For σ = (v0; v0v1, v0v2; v3),

Col♯(σ) = (Col(v0),Col(v0v1),Col(v0v2)) ∈ CQ
3 (X ).
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Pseudo-cycles

Pseudo-cycles

Definition

Let c be a chain of C2(KDF
). If c satisfies the following conditions,

(i) Col♯∂(c) = 0 and

(ii) [Col♯(c)] 6= 0 ∈ HQ
3 (X ),

then c is called a pseudo-cycle.

c1 c2 Col♯(c1)Col♯ Col♯(c2)
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Pseudo-cycles

Pseudo-cycles

Theorem

For a surface-knot diagram DF , the maximal number of

pseudo-cycles in KDF
is an invariant under Roseman moves up to

quandle homology.

It is proved by checking that each Roseman move does not change
the number of pseudo-cycles:
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Pseudo-cycles

Pseudo-cycles

u0

u1
u0

v0 v0

R-1±

U1

V0 V0

U0 U0
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Pseudo-cycles

Pseudo-cycles

U0

V0 V0

V1

V2

V1

V2

U0

U1

V3

V4

u1

u0

v0 v0

v1

v2

v1

v2

R-2±

u0

v4

v3
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Pseudo-cycles

Pseudo-cycles

u1

v0

u0U0
U0

U1

V0 V0

V1 V2

V1 V2

V3 V4

v0

v1 v2

v1 v2

v3 v4

u0

V3 V5

V6

V3

V4
V4 V6

V5

R-3
±

v3

v4 v6

v5
v3

v4 v6

v5

V9

V8

V7

V10

v7

v8 v10

v9
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Pseudo-cycles

Pseudo-cycles

U0

u0 u0

U0

R-4±

The Roseman move R-4+ creates two branch points corresponding
to two loop discs. These loop discs are homologically zero.
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Pseudo-cycles

Pseudo-cycles

v0 v0

v1

U0
U0

V0V1 v0

v0

u0 u0

V0

R-5±

OR

u0

V0V0

u0
v1

v2

U0
U0

V1 V2
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Pseudo-cycles

Pseudo-cycles

The Roseman move R-6 gives two possible cases: one does not
change the number of parcels, and the other may change the
number of parcels:
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Pseudo-cycles

Pseudo-cycles

v0 v1

v1

v2 v0

v2
or

V2

V1

V0 V1 V0V0

V0V1

R-6

R-6

v0 v1

OR

V2

V1

v0

v1

v2

v1

v0 v ′
0

V0
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Pseudo-cycles

The maximal number of pseudo-cycles in DF will be denoted by
ν(F ,Q).

Theorem

Let F be a double twist spun of (2, k)-torus knot for odd prime

k > 1. Then F is colourable with the dihedral quandle Q of order

k and for each Q,

ν(F ,Q) = 1
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Pseudo-cycles

Applications

Theorem

Let F be a tri-colourable surafce-knot. Then

2ν(F ,R3) ≤ t(F )

Proof.

The pseudo-cycle which has the mini-
mal number of crossings is shown in the
left: Therefore, t(F ) is bounded below
by 2ν(F ,R3).
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Pseudo-cycles

Applications

If a tri-colourable surface-knot F has one pseudo-cycle with two
crossings, then it must have more pseudo cycles with at least 2
crossings to construct a diagram. Therefore, we have:

Theorem

Let F be a non-pseudo-ribbon, tri-colourable surface-knot with

πF 6∼= Z. Then

4 ≤ t(F ).
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Pseudo-cycles

Applications

It is known that (T. Yashiro, 2016) some double decker sets of
some tri-colorable surface-knot diagram can be obtained by pasting
copies of the following primitive diagram and the resulting double
decker set is constructible.

It is known that the primitive diagram induces the double twist
spun trefoil.
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Pseudo-cycles

Applications

A surface-knot diagram of the 2k-twist spun trefoil can be
constructed by pasting copies of the primitive diagram. The lower
decker set of the primitive diagram induces a pseudo cycle:
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Pseudo-cycles

Applications

We have the following:

Theorem

For the 2k-twist spun trefoil F ,

t(F ) = 4k (k = 1, 2, . . . n)

Proof. The diagram induces a sum of pseudo cycles:

c1 + c2 + · · · ck .

Each ci is from the primitive double decker set.

Roseman moves do not change a pseudo-cycle.

there is no pseudo cycles containing less than four crossings.

Therefore, 4k ≤ t(F ).
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Pseudo-cycles

Thank You

Tsukasa Yashiro Pseudo-cycles of surface-knots and their applications


	Motivation
	Surface-knots
	Roseman moves
	Double Decker Sets
	Triple Point Numbers
	Pseudo-cycles

