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Motivation

Motivation

A surface-knot is a connected oriented closed surface smoothly
embedded in 4-space. If the surface has genus zero, then it is
called a 2-knot. A surface-knot diagram is a projected image
under the orthogonal projection proj : R4 → R

3,
(x1, x2, x3, c4) 7→ (x1, x2, x3). with the crossing information. A
surface-knot diagram of F is a finite union of copies of the
following local diagrams.

Triple point

DT

DM

DB

Branch point
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Motivation

Motivation

The “knottedness of a surface” appears in the singularity set.
We are interested in what is the “knottedness”.
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Motivation

Motivation

Let B3 be a 3–ball in R
3
+ such

that it contains a tangle T (K )
of a knot K , and ∂B3 ∩ T (K )
is the pair of antipodal points
of ∂B3.
An m-twist-spun knot

obtained from K is defined by
rotating B3 ∩ T (K ) about the
axis through the antipodal
points m times while R

3
+ spins

denoted by Tm(K ).

R
3
+

B
3

∂R3
+R

4
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Motivation

Motivation

Zeeman (1965) proved that the m-twist spun knot obtained from a
knot K is fibred, and the fibre is the one-punctured m-fold
branched covering space of S3 along K .
As a consequence, a 1-twist spun knot obtained from K is trivial.
A triple point number of a surface-knot is the minimal number of

triple points for all possible surface-knot diagrams. This is a
geometric surface-knot invariant. Only few triple point numbers
have been determined (Satoh, Shima et.al.)
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Motivation

Motivation

Our approach to deal with knottedness is:

Our Approach

To look at the pre-images (singular sets).

Viewing a surface-knot diagram as a generic surface, the singular
set (pre-image of the multiple point set) characterizes the
surface-knot:

1 The singular set consists of two families: Upper and Lower
decker sets (Carter-Saito (1998) characterized the singular
set.)

2 Algebraic structures are associated with the diagram (the
fundamental group, quandles etc.)
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Roseman moves

Roseman moves

Two surface-knot diagrams are equivalent if they are projected
image of the same type of a surface-knot. Two equivalent
surface-knot diagrams are modified from one to the other by a
finite sequence of local moves called Roseman moves.

R
±
1

R
±
2

R
±
3

Tsukasa Yashiro Coverings of surface-knots and their pseudo-cycles



Coverings of surface-knots and their pseudo-cycles

Roseman moves

Roseman moves

R
±
5

R6R
±
4
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Roseman moves

Roseman moves

R
±
5

R
±
4

R6

These six moves have some height variations (T.Y. 2005).
Roseman’s seven moves can be expressed by other six moves. (K.
Kawamura 2015).
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Double Decker Sets

Double Decker Sets

S. Satoh (2002) constructed a diagram of twist span knots.
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Double Decker Sets

Double Decker Sets

The following is a reduced diagram obtained by a sequence of
Roseman moves from Satoh’s construction (t-minimal diagram).

S

b3

b2

N

τ3

τ2
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Double Decker Sets

Double Decker Sets

This diagram does not have non-trivial descendent discs.
(d-minimal diagram (A. Al Kharusi and TY)).

S

b3

b2

N

τ3

τ2

Tsukasa Yashiro Coverings of surface-knots and their pseudo-cycles



Coverings of surface-knots and their pseudo-cycles

Double Decker Sets

The preimage of singularities of the projection proj is:

S = {x ∈ F | #((proj|F )
−1(proj(x)) > 1}

The set S is the union of two families of immersed circles and
immersed open intervals:

Sa = {sa1, sa2, . . . , sal}

Sb = {sb1, sb2, . . . , sbl}

where for x ∈ sai , y ∈ sbi (i = 1, 2, . . . , l), if proj(x) = proj(y),
then h(x) > h(y).
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Double Decker Sets

Lemma (Carter-Saito (1998))

Let F be a closed orientable surface. Let f : F → R
3 be a generic

map. Then there is an embedding g : F → R
4 such that

proj ◦ g = f if and only if

1 S(f ) =
⋃
Sa ∪

⋃
Sb.

2 For each triple point, the pre-images are crossings of types

(a, a), (a, b) and (b, b).

(a, a) (a, b) (b, b)
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Double Decker Sets

The closure of S(projF ) is called the double decker set

(Carter-Saito). The closure of
⋃
Sa (blue arcs denoted by Sa) is

called an upper decker set and the closure of
⋃
calSb (red arcs

denoted by Sb) is called a lower decker set.
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Double Decker Sets

It is known that (TY, 2016) some tri-colourable and d-minimal
surface-knot diagram can be obtained by pasting copies of the
following primitive diagram
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Triple Point Numbers

Triple point numbers of twist-spun knots

The minimal number of triple points for all possible surface-knot
diagrams of a surface-knot F is called a triple point number

denoted by t(F ), which is a surface-knot invariant.

1999 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and
M. Saito applied quandle co-homology to knots and
surface-knots.

2002 S. Satoh and A. Shima determined triple point numbers
for 2-twist and 3-twist spun trefoils as 4 and 6 respectively.

2005 E. Hatakenaka gave a lower bound 6 of the triple point
number for 2-twist spun (2, 5)-torus knot.
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Triple Point Numbers

Rectangular-cell complexes

We denote the lower decker
set by Sb.
F \ Sb = {R0, . . . ,Rn}. Let
N(Sb) be a small
neighbourhood of Sb in F .
F \ N(Sb) = {V0, . . . ,Vn};
Vi ⊂ Ri (i = 0, . . . , n).
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Triple Point Numbers

Rectangular-cell complexes

We denote the lower decker
set by Sb.
F \ Sb = {R0, . . . ,Rn}. Let
N(Sb) be a small
neighbourhood of Sb in F .
F \ N(Sb) = {V0, . . . ,Vn};
Vi ⊂ Ri (i = 0, . . . , n).
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Triple Point Numbers

Rectangular-cell complexes

The quotient map
q : F → F/∼ is defined by
q(Vi ) = vi , (i = 0, . . . , n).
The quotient space is a
2-dimensional complex. We
will denote the complex by
KDF

. A subcomplex of KDF

induced from a simple closed
curve in Sb is called a bubble.
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Triple Point Numbers

Rectangular-cell complexes

A subcomplex of KDF
corresponding to a connected component of

the lower decker set Sb is called a parcel. Each parcel is a bubble
or a subcomplex consisting of some rectangles and loop discs:

v0

vj

vk

vi

v1 v3vk

v0 v2 v0

We denote the rectangle by (v0; v0v1, v0v2; v3) and the loop by
v̂0v0.
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Triple Point Numbers

Rectangular-cell complexes

Each double segment corresponds to an edge of the complex KDF
.

Each edge has a weight, which is a vertex of the complex.

vjv1v0

vk

v0

v1

vi

v2

v3

vk

v1 v3

v2v0

vk

vi vjv1vk

v0 vk

The lower decker set Sb ⊂ |KDF
| is a union of edges of KDF

.
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Triple Point Numbers

Rectangular-cell complexes

The Number of Parcels

For every surface-knot, we can make the number of parcels one.

parcels

RDF

BDF
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Triple Point Numbers

Rectangular-cell complexes

Theorem (S. Satoh (2005))

For every 2-knot S,
4 ≤ t(S)

Theorem (A. Al Kharusi-TY preprint)

Let F be a surface-knot with genus 1 and not pseudo-ribbon. Then

3 ≤ t(F )

Proof is done by analysing the double decker sets.
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Triple Point Numbers

Quandle colorings

A quandle X is a non-empty set with a binary operation
(a, b) 7→ a ∗ b such that

1 For any a ∈ X , a ∗ a = a,

2 For any a, b ∈ X , there is a unique c ∈ X such that c ∗ b = a.

3 For any a, b, c ∈ X , (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).
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Triple Point Numbers

Quandle colorings

Let R = {R1,R2, . . . ,Rn} be the set of closures of connected
components of F − Sb. For a quandle X , a quandle coloring of a
diagram is a mapping Col : R → X such that

a

b

c

c = a ∗ b
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Triple Point Numbers

Quandle colorings

The coloring Col can be interpreted in terms of the rectangular-cell
complex KDF

:

Col : K
(0)
DF

→ X

If an edge e is incident with vertices v1 and v2, oriented from v1 to
v2 and with weight v3, then the mapping from the 1-skeleton to X

Col : K
(1)
DF

→ X

is defined satisfying Col(v1) ∗ Col(v3) = Col(v2). We call this
mapping also a quandle coloring.
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Triple Point Numbers

Quandle colorings

(0, 1, 2)+

x

y
z

0

1

2

The dihedral quandle (X , ∗) of
order n > 0 denoted by Rn is
a quandle X = {0, . . . , n − 1}
with the binary operation
i ∗ j = 2j − i (mod n).
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Triple Point Numbers

Chain groups

Quandle chain groups

Let Cn(X ) (n ≥ 1) be a free abelian group generated by n-tuples
(x1, . . . , xn) ∈ X n. Let CD

n (X ) be a sub group of Cn(X ) generated
by (x1, . . . , xn) such that xi = xj for some 1 ≤ i , j ,≤ n and
(|i − j | = 1). We denote the quotient group Cn(X )/CD

n (X ) by
CQ
n (X ).

Chain groups of KDF

The chain group Ck(KDF
) is defined as a free abelian group

generated by k-dimensional elements of KDF
. For k = 2, it is

generated by the rectangular cells, loop discs and bubbles in KDF
.

For k = 1, it is generated by edges in KDF
. For k = 0, it is

generated by vertices of KDF
.
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Triple Point Numbers

Chain groups

CQ
3 (X )

Col♯

The quandle coloring Col can be extended to a homomorphism

Col♯ : C2(KDF
) → CQ

3 (X )

(v0; v0v1, v0v2; v3) 7→ (Col(v0),Col(v0v1),Col(v0v2))

Tsukasa Yashiro Coverings of surface-knots and their pseudo-cycles



Coverings of surface-knots and their pseudo-cycles

Pseudo-cycles

Pseudo-cycles

Definition

Let c be a chain of C2(KDF
). If c satisfies the following conditions,

(i) Col♯∂(c) = 0 and

(ii) [Col♯(c)] 6= 0 ∈ HQ
3 (X ),

then c is called a pseudo-cycle.

c1 c2 Col♯(c1)Col♯ Col♯(c2)
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Pseudo-cycles

Pseudo-cycles

Theorem (TY preprint)

For a surface-knot diagram DF coloured by a quandle X , the

maximal number of pseudo-cycles in C2(KDF
) for all colourings, is

an invariant under Roseman moves up to quandle homology.

It is proved by checking that each Roseman move does not change
the number of pseudo-cycles:
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Pseudo-cycles

Pseudo-cycles

u0

u1
u0

v0 v0

R-1±

U1

V0 V0

U0 U0
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Pseudo-cycles

Pseudo-cycles

U0

V0 V0

V1

V2

V1

V2

U0

U1

V3

V4

u1

u0

v0 v0

v1

v2

v1

v2

R-2±

u0

v4

v3
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Pseudo-cycles

Pseudo-cycles

u1

v0

u0U0
U0

U1

V0 V0

V1 V2

V1 V2

V3 V4

v0

v1 v2

v1 v2

v3 v4

u0

V3 V5

V6

V3

V4
V4 V6

V5

R-3
±

v3

v4 v6

v5
v3

v4 v6

v5

V9

V8

V7

V10

v7

v8 v10

v9
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Pseudo-cycles

Pseudo-cycles

U0

u0 u0

U0

R-4±

The Roseman move R-4+ creates two branch points corresponding
to two loop discs. These loop discs are homologically zero.
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Pseudo-cycles

Pseudo-cycles

v0 v0

v1

U0
U0

V0V1 v0

v0

u0 u0

V0

R-5±

OR

u0

V0V0

u0
v1

v2

U0
U0

V1 V2
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Pseudo-cycles

Pseudo-cycles

The Roseman move R-6 gives two possible cases:

1 it does not change the number of parcels, or

2 it changes the number of parcels.

(1) it is done.
(2) The lower decker set will be split. This means that a parcel will
be split; that is, a pseudo cycle will be split into two pseudo-cycles.
The maximal number of pseudo-cycles does not change.
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Pseudo-cycles

Pseudo-cycles

v0 v1

v1

v2 v0

v2
or

V2

V1

V0 V1 V0V0

V0V1

R-6

R-6

v0 v1

OR

V2

V1

v0

v1

v2

v1

v0 v ′
0

V0
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Pseudo-cycles

Covering Diagrams

Let F̃ and F be surface-knots.
Let Σ̃ ⊂ F̃ and Σ ⊂ F be the double decker sets of D

F̃
and DF

respectively.
A surface-knot diagram D

F̃
is a covering diagram over DF if

1 p̃ : F̃ → F be a branched covering map.

2 the branch set misses Σ.

3 p̃|
Σ̃
: Σ̃ → Σ is a covering map,

4 p̃(S̃x) = Sx , x = a, b, and

5 the following diagram is commutative.

F̃
p̃

−−−−→ F

proj

y
yproj

D
F̃

p
−−−−→ DF
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Pseudo-cycles

Covering Diagrams

The degree of the map p̃ on a regular point is called the degree of
p̃ denoted by deg(p).
From the definition the map p induces a map p∗ : KD

F̃
→ KDF

.
The map p∗ induces the homomorphism

p# : C2(KD
F̃
) → C2(KDF

)

Every pseudo-cycle c̃ is mapped into a pseudo-cycle p#(c̃).
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Pseudo-cycles

Covering Diagrams

Lemma

For a covering diagram D
F̃
over DF with degree n coloured by a

quandle X , for every pseudo-cycle c for DF , there exist

pseudo-cycles c1, c2, . . . , cn such that

p#(ci ) = c i = 1, 2, . . . , n.

The number of crossing points of Sb contained in a chain c will be
denoted by |c |

Lemma

A covering diagram D
F̃
over DF coloured by a quandle X is given.

For every pseudo-cycle c̃ from KD
F̃
,

|Col#(c̃)| ≤ |c̃ |, |p#(c̃)| ≤ |c̃ |.
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Pseudo-cycles

Covering Diagrams

Lemma

For a covering diagram D
F̃
over DF with degree n coloured by a

quandle X ,

nµ(F ,X ) = µ(F̃ ,X )

Proof From the definition of the covering diagram,
µ(D

F̃
) ≤ nµ(DF ). From the previous lemmas, µ(D

F̃
) ≥ nµ(DF ).

For every surface-knot diagram, the maximal number of
pseudo-cycles is invariant under Roseman moves up to the quandle
homology of X . Thus the result follows.
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Applications

Applications

Fix a quandle X . For a rectangular cell τ in KDF
, τ is

non-degenerate if Col#(τ) 6= 0
Let c be a pseudo-cycle of KDF

with respect to a dihedral quandle
X of order n. If c = τ , then c must be degenerate. Thus the
number of non-degenerate rectangular-cells in c is ≥ 2.

Theorem

For a surface-knot F coloured by a dihedral quandle X of order n,

2µ(F ,X ) ≤ t(F )
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Applications

Applications

We can construct a double decker set obtained by pasting copies of
the following primitive diagram and the resulting double decker set
is constructible as a tri-colourable surface-knot diagram.
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Applications

Applications

A surface-knot diagram of the 2k-twist spun trefoil can be
constructed by pasting copies of the primitive diagram. The lower
decker set of the primitive diagram induces a pseudo-cycle:
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Applications

Applications

We have the following:

Theorem

For the 2k-twist spun trefoil F̃ ,

t(F̃ ) = 4k (k = 1, 2, . . . n)

Proof The 2k-twist spun trefoil F̃ has a covering diagram D
F̃
over

a surface diagram of the double twist spun trefoil DF with degree
k . Both are tri-coloured.
Let c̃ be a pseudo-Cole for KD

F̃
. Then Col#(c̃) is a quandle cycle

in CQ
3 (X ). By Satoh’s result, for every cycle c ∈ CQ

3 (X ),

4 ≤ |c |

Tsukasa Yashiro Coverings of surface-knots and their pseudo-cycles



Coverings of surface-knots and their pseudo-cycles

Applications

Applications

Therefore,
4 ≤ |Col#(c̃)|

This implies that

4µ(F̃ ,X ) ≤ 4 deg(p)µ(F ,X ) ≤ t(F̃ ).

Therefore, 4k ≤ t(F ). There is a surface-knot diagram of F̃ with
4k triple points. Therefore, t(F̃ ) = 4k .
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Applications

Thank You
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