Coverings of surface-knots and their pseudo-cycles

Tsukasa Yashiro

Department of Mathematics and Statistics Sultan Qaboos University

TAPU-KOOK Workshop Busan National University, Busan, Korea 25 July 2016

イロト イポト イヨト イヨト

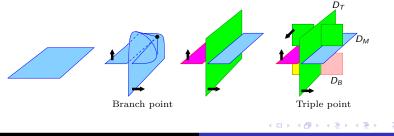
Contents

- 1 Motivation
- 2 Roseman moves
- 3 Double Decker Sets
- **4** Triple Point Numbers
- 5 Pseudo-cycles
- 6 Applications

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

A **surface-knot** is a connected oriented closed surface smoothly embedded in 4-space. If the surface has genus zero, then it is called a 2-**knot**. A **surface-knot diagram** is a projected image under the orthogonal projection proj : $\mathbb{R}^4 \to \mathbb{R}^3$, $(x_1, x_2, x_3, c_4) \mapsto (x_1, x_2, x_3)$. with the crossing information. A **surface-knot diagram** of *F* is a finite union of copies of the following local diagrams.



Motivation

The "knottedness of a surface" appears in the singularity set. We are interested in what is the "knottedness".

イロト イポト イヨト イヨト

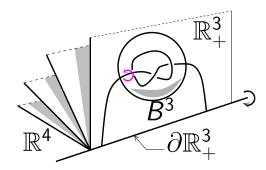
3

Motivation

Let B^3 be a 3-ball in \mathbb{R}^3_+ such that it contains a tangle T(K) of a knot K, and $\partial B^3 \cap T(K)$ is the pair of antipodal points of ∂B^3 .

An *m*-twist-spun knot

obtained from K is defined by rotating $B^3 \cap T(K)$ about the axis through the antipodal points m times while \mathbb{R}^3_+ spins denoted by $T_m(K)$.



Motivation

Zeeman (1965) proved that the *m*-twist spun knot obtained from a knot K is fibred, and the fibre is the one-punctured *m*-fold branched covering space of S^3 along K.

As a consequence, a 1-twist spun knot obtained from K is trivial. A **triple point number** of a surface-knot is the minimal number of

triple points for all possible surface-knot diagrams. This is a geometric surface-knot invariant. Only few triple point numbers have been determined (Satoh, Shima et.al.)

(4月) イヨト イヨト

Motivation

Our approach to deal with knottedness is:

Our Approach

To look at the pre-images (singular sets).

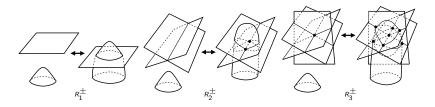
Viewing a surface-knot diagram as a generic surface, the singular set (pre-image of the multiple point set) characterizes the surface-knot:

- The singular set consists of two families: Upper and Lower decker sets (Carter-Saito (1998) characterized the singular set.)
- 2 Algebraic structures are associated with the diagram (the fundamental group, quandles etc.)

イロト イポト イヨト イヨト

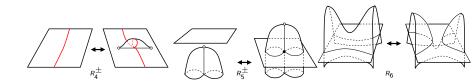
-Roseman moves

Two surface-knot diagrams are **equivalent** if they are projected image of the same type of a surface-knot. Two equivalent surface-knot diagrams are modified from one to the other by a finite sequence of local moves called **Roseman moves**.



-Roseman moves

Roseman moves

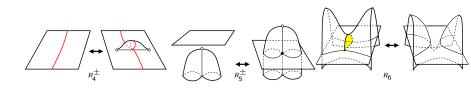


・ロト ・日本 ・モート ・モート

э

-Roseman moves

Roseman moves

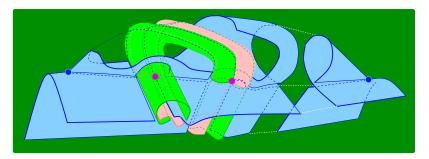


These six moves have some height variations (T.Y. 2005). Roseman's seven moves can be expressed by other six moves. (K. Kawamura 2015).

A (1) > (1) > (1)

Double Decker Sets

S. Satoh (2002) constructed a diagram of twist span knots.

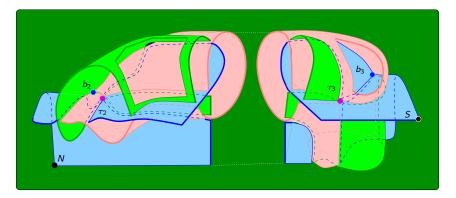


э

-

Double Decker Sets

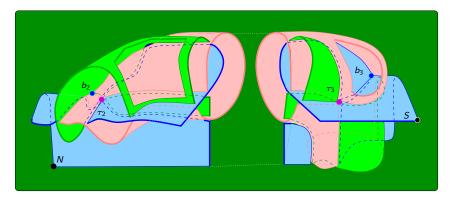
The following is a reduced diagram obtained by a sequence of Roseman moves from Satoh's construction (*t*-minimal diagram).



- 4 同 2 4 三 2 4 三

Double Decker Sets

This diagram does not have non-trivial descendent discs. (*d*-minimal diagram (A. Al Kharusi and TY)).



・ロト ・日本 ・モート ・モート

The preimage of singularities of the projection proj is:

$$S = \{x \in F \mid \#((\text{proj}|_F)^{-1}(\text{proj}(x)) > 1\}$$

The set S is the union of two families of immersed circles and immersed open intervals:

$$\begin{aligned} \mathcal{S}_{a} &= \{ s_{a1}, s_{a2}, \dots, s_{al} \} \\ \mathcal{S}_{b} &= \{ s_{b1}, s_{b2}, \dots, s_{bl} \} \end{aligned}$$

where for $x \in s_{ai}$, $y \in s_{bi}$ (i = 1, 2, ..., l), if proj(x) = proj(y), then h(x) > h(y).

イロト イポト イラト イラト 一日

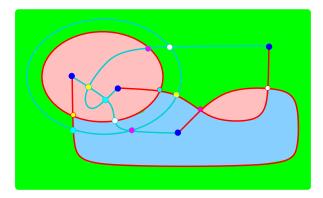
Lemma (Carter-Saito (1998))

Let F be a closed orientable surface. Let $f : F \to \mathbb{R}^3$ be a generic map. Then there is an embedding $g : F \to \mathbb{R}^4$ such that $\operatorname{proj} \circ g = f$ if and only if

$$1 S(f) = \bigcup S_a \cup \bigcup S_b.$$

2 For each triple point, the pre-images are crossings of types (a, a), (a, b) and (b, b).

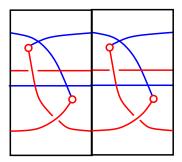




The closure of $S(\text{proj}_F)$ is called the **double decker set** (Carter-Saito). The closure of $\bigcup S_a$ (blue arcs denoted by S_a) is called an **upper decker set** and the closure of $\bigcup calS_b$ (red arcs denoted by S_b) is called a **lower decker set**.

ロト イポト イヨト イヨト

It is known that (TY, 2016) some tri-colourable and d-minimal surface-knot diagram can be obtained by pasting copies of the following primitive diagram



Э

Triple point numbers of twist-spun knots

The minimal number of triple points for all possible surface-knot diagrams of a surface-knot F is called a **triple point number** denoted by t(F), which is a surface-knot invariant.

- 1999 J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito applied quandle co-homology to knots and surface-knots.
- 2002 S. Satoh and A. Shima determined triple point numbers for 2-twist and 3-twist spun trefoils as 4 and 6 respectively.
- 2005 E. Hatakenaka gave a lower bound 6 of the triple point number for 2-twist spun (2,5)-torus knot.

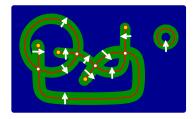
Rectangular-cell complexes



We denote the lower decker set by S_b . $F \setminus S_b = \{R_0, \ldots, R_n\}$. Let $N(S_b)$ be a small neighbourhood of S_b in F. $F \setminus N(S_b) = \{V_0, \ldots, V_n\};$ $V_i \subset R_i \ (i = 0, \ldots, n).$

- 4 回 2 4 日 2 4 日 2

Rectangular-cell complexes



We denote the lower decker set by S_b . $F \setminus S_b = \{R_0, \dots, R_n\}$. Let $N(S_b)$ be a small neighbourhood of S_b in F. $F \setminus N(S_b) = \{V_0, \dots, V_n\};$ $V_i \subset R_i \ (i = 0, \dots, n).$

() < </p>

Rectangular-cell complexes

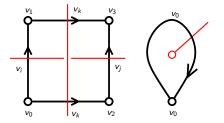


The quotient map $q: F \to F/_{\sim}$ is defined by $q(V_i) = v_i$, (i = 0, ..., n). The quotient space is a 2-dimensional complex. We will denote the complex by K_{D_F} . A subcomplex of K_{D_F} induced from a simple closed curve in S_b is called a **bubble**.

A (1) > (1) > (1)

Rectangular-cell complexes

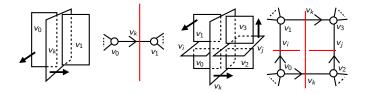
A subcomplex of K_{D_F} corresponding to a connected component of the lower decker set S_b is called a **parcel**. Each parcel is a bubble or a subcomplex consisting of some rectangles and loop discs:



We denote the rectangle by $(v_0; v_0v_1, v_0v_2; v_3)$ and the loop by $\widehat{v_0v_0}$.

Rectangular-cell complexes

Each double segment corresponds to an edge of the complex K_{D_F} . Each edge has a **weight**, which is a vertex of the complex.

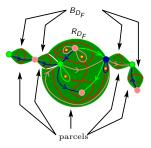


The lower decker set $S_b \subset |K_{D_F}|$ is a union of edges of K_{D_F} .

Rectangular-cell complexes

The Number of Parcels

For every surface-knot, we can make the number of parcels one.



▲ □ ► ▲ □ ►

Coverings of surface-knots and their pseudo-cycles

- Triple Point Numbers

Rectangular-cell complexes

Theorem (S. Satoh (2005))

For every 2-knot S,

$$4 \leq t(S)$$

Theorem (A. Al Kharusi-TY preprint)

Let F be a surface-knot with genus 1 and not pseudo-ribbon. Then

 $3 \leq t(F)$

Proof is done by analysing the double decker sets.

イロン イヨン イヨン イヨン

Quandle colorings

A **quandle** X is a non-empty set with a binary operation $(a, b) \mapsto a * b$ such that

1 For any
$$a \in X$$
, $a * a = a$,

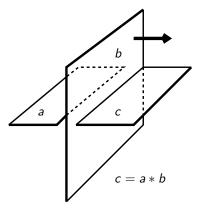
2 For any $a, b \in X$, there is a unique $c \in X$ such that c * b = a.

3 For any
$$a, b, c \in X$$
, $(a * b) * c = (a * c) * (b * c)$.

イロト イポト イヨト イヨト

Quandle colorings

Let $\mathcal{R} = \{R_1, R_2, \dots, R_n\}$ be the set of closures of connected components of $F - S_b$. For a quandle X, a **quandle coloring** of a diagram is a mapping $\text{Col} : \mathcal{R} \to X$ such that



Quandle colorings

The coloring Col can be interpreted in terms of the rectangular-cell complex K_{D_F} :

 $\operatorname{Col}: K^{(0)}_{D_F} \to X$

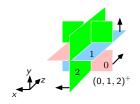
If an edge *e* is incident with vertices v_1 and v_2 , oriented from v_1 to v_2 and with weight v_3 , then the mapping from the 1-skeleton to *X*

$$\operatorname{Col}: K^{(1)}_{D_F} \to X$$

is defined satisfying $\operatorname{Col}(v_1) * \operatorname{Col}(v_3) = \operatorname{Col}(v_2)$. We call this mapping also a quandle coloring.

イロト 不得下 イヨト イヨト 二日

Quandle colorings



The **dihedral quandle** (X, *) of order n > 0 denoted by R_n is a quandle $X = \{0, ..., n - 1\}$ with the binary operation $i * j = 2j - i \pmod{n}$.

・ロト ・回ト ・ヨト

3

Chain groups

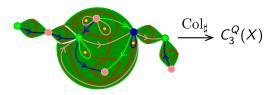
Quandle chain groups

Let $C_n(X)$ $(n \ge 1)$ be a free abelian group generated by *n*-tuples $(x_1, \ldots, x_n) \in X^n$. Let $C_n^D(X)$ be a sub group of $C_n(X)$ generated by (x_1, \ldots, x_n) such that $x_i = x_j$ for some $1 \le i, j, \le n$ and (|i - j| = 1). We denote the quotient group $C_n(X)/C_n^D(X)$ by $C_n^Q(X)$.

Chain groups of K_{D_F}

The chain group $C_k(K_{D_F})$ is defined as a free abelian group generated by k-dimensional elements of K_{D_F} . For k = 2, it is generated by the rectangular cells, loop discs and bubbles in K_{D_F} . For k = 1, it is generated by edges in K_{D_F} . For k = 0, it is generated by vertices of K_{D_F} .

Chain groups



The quandle coloring Col can be extended to a homomorphism

$$\operatorname{Col}_{\sharp}: C_2(K_{D_F}) \to C_3^Q(X)$$

 $(v_0; v_0v_1, v_0v_2; v_3) \mapsto (\mathrm{Col}(v_0), \mathrm{Col}(v_0v_1), \mathrm{Col}(v_0v_2))$

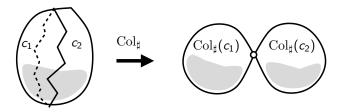
イロト イポト イヨト イヨト

-Pseudo-cycles

Pseudo-cycles

Definition

Let c be a chain of $C_2(K_{D_F})$. If c satisfies the following conditions, (i) $\operatorname{Col}_{\sharp}\partial(c) = 0$ and (ii) $[\operatorname{Col}_{\sharp}(c)] \neq 0 \in H_3^Q(X)$, then c is called a **pseudo-cycle**.



Э

- ∢ ≣ >

- Pseudo-cycles

Pseudo-cycles

Theorem (TY preprint)

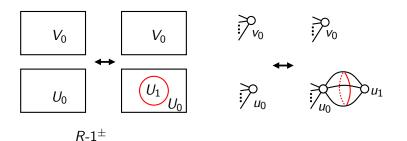
For a surface-knot diagram D_F coloured by a quandle X, the maximal number of pseudo-cycles in $C_2(K_{D_F})$ for all colourings, is an invariant under Roseman moves up to quandle homology.

It is proved by checking that each Roseman move does not change the number of pseudo-cycles:

A (1) > A (1) > A

-Pseudo-cycles

Pseudo-cycles

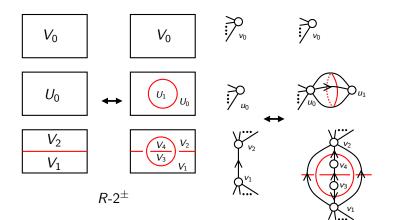


イロン イヨン イヨン イヨン

Э

-Pseudo-cycles

Pseudo-cycles

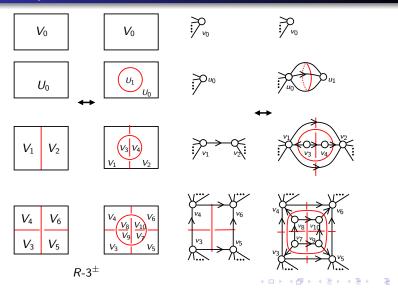


・ロト ・日本 ・モート ・モート

Э

- Pseudo-cycles

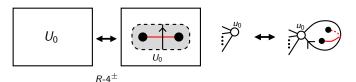
Pseudo-cycles



Coverings of surface-knots and their pseudo-cycles

Tsukasa Yashiro

Pseudo-cycles

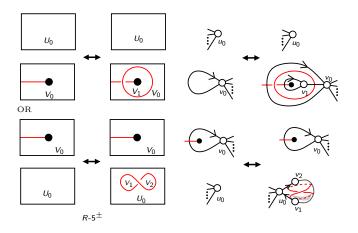


The Roseman move R-4⁺ creates two branch points corresponding to two loop discs. These loop discs are homologically zero.

▲ 御 ▶ → ヨ ▶

- ∢ ≣ >

Pseudo-cycles



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Pseudo-cycles

The Roseman move R-6 gives two possible cases:

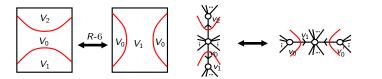
- 1 it does not change the number of parcels, or
- 2 it changes the number of parcels.

(1) it is done.

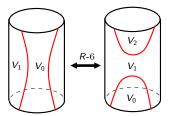
(2) The lower decker set will be split. This means that a parcel will be split; that is, a pseudo cycle will be split into two pseudo-cycles. The maximal number of pseudo-cycles does not change.

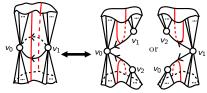
- 4 回 ト 4 ヨ ト 4 ヨ ト

Pseudo-cycles



OR





・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Tsukasa Yashiro Coverings of surface-knots and their pseudo-cycles

Covering Diagrams

Let \widetilde{F} and F be surface-knots.

Let $\widetilde{\Sigma} \subset \widetilde{F}$ and $\Sigma \subset F$ be the double decker sets of $D_{\widetilde{F}}$ and D_F respectively.

A surface-knot diagram $D_{\widetilde{F}}$ is a **covering diagram** over D_F if

1
$$\widetilde{p}:\widetilde{F}\to F$$
 be a branched covering map.

2 the branch set misses Σ .

$$\widetilde{p}|_{\widetilde{\Sigma}}: \widetilde{\Sigma} \to \Sigma$$
 is a covering map,

4
$$\widetilde{p}(\widetilde{S}_{x})=S_{x}$$
, $x=a,b$, and

5 the following diagram is commutative.

$$\begin{array}{ccc} \widetilde{F} & \stackrel{\widetilde{p}}{\longrightarrow} & F \\ \text{proj} & & & \downarrow \text{proj} \\ D_{\widetilde{F}} & \stackrel{p}{\longrightarrow} & D_{F} \end{array}$$

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Covering Diagrams

The degree of the map \tilde{p} on a regular point is called the degree of \tilde{p} denoted by deg(p). From the definition the map p induces a map $p_* : K_{D_{\tilde{F}}} \to K_{D_F}$. The map p_* induces the homomorphism

$$p_{\#}: C_2(K_{D_{\widetilde{F}}}) \rightarrow C_2(K_{D_F})$$

Every pseudo-cycle \tilde{c} is mapped into a pseudo-cycle $p_{\#}(\tilde{c})$.

イロト イポト イヨト イヨト

Covering Diagrams

Lemma

For a covering diagram $D_{\tilde{F}}$ over D_F with degree n coloured by a quandle X, for every pseudo-cycle c for D_F , there exist pseudo-cycles c_1, c_2, \ldots, c_n such that

$$p_{\#}(c_i)=c \quad i=1,2,\ldots,n.$$

The number of crossing points of S_b contained in a chain c will be denoted by |c|

Lemma

A covering diagram $D_{\widetilde{F}}$ over D_F coloured by a quandle X is given. For every pseudo-cycle \widetilde{c} from $K_{D_{\widetilde{E}}}$,

$$|\operatorname{Col}_{\#}(\widetilde{c})| \leq |\widetilde{c}|, \qquad |p_{\#}(\widetilde{c})| \leq |\widetilde{c}|.$$

Covering Diagrams

Lemma

For a covering diagram $D_{\tilde{F}}$ over D_F with degree n coloured by a quandle X,

$$n\mu(F,X)=\mu(\widetilde{F},X)$$

Proof From the definition of the covering diagram, $\mu(D_{\widetilde{F}}) \leq n\mu(D_F)$. From the previous lemmas, $\mu(D_{\widetilde{F}}) \geq n\mu(D_F)$. For every surface-knot diagram, the maximal number of pseudo-cycles is invariant under Roseman moves up to the quandle homology of X. Thus the result follows.

イロト イポト イヨト イヨト

Applications

Applications

Fix a quandle X. For a rectangular cell τ in K_{D_F} , τ is **non-degenerate** if $\operatorname{Col}_{\#}(\tau) \neq 0$

Let *c* be a pseudo-cycle of K_{D_F} with respect to a dihedral quandle *X* of order *n*. If $c = \tau$, then *c* must be degenerate. Thus the number of non-degenerate rectangular-cells in *c* is ≥ 2 .

Theorem

For a surface-knot F coloured by a dihedral quandle X of order n,

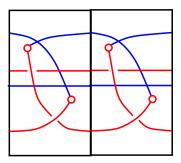
 $2\mu(F,X) \leq t(F)$

イロト イポト イヨト イヨト

- Applications

Applications

We can construct a double decker set obtained by pasting copies of the following primitive diagram and the resulting double decker set is constructible as a tri-colourable surface-knot diagram.

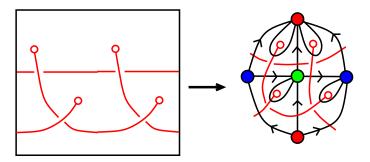


A (1) < A (1) </p>

Applications

Applications

A surface-knot diagram of the 2k-twist spun trefoil can be constructed by pasting copies of the primitive diagram. The lower decker set of the primitive diagram induces a pseudo-cycle:



A (1) > A (1) > A

Applications

Applications

We have the following:

Theorem

For the 2k-twist spun trefoil \widetilde{F} ,

$$t(\widetilde{F}) = 4k \quad (k = 1, 2, \dots n)$$

Proof The 2k-twist spun trefoil \widetilde{F} has a covering diagram $D_{\widetilde{F}}$ over a surface diagram of the double twist spun trefoil D_F with degree k. Both are tri-coloured.

Let \tilde{c} be a pseudo-Cole for $K_{D_{\tilde{F}}}$. Then $\operatorname{Col}_{\#}(\tilde{c})$ is a quandle cycle in $C_3^Q(X)$. By Satoh's result, for every cycle $c \in C_3^Q(X)$,

$$4 \leq |c|$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- Applications

Applications

Therefore,

$$4 \leq |\operatorname{Col}_{\#}(\widetilde{c})|$$

This implies that

$$4\mu(\widetilde{F},X) \leq 4\deg(p)\mu(F,X) \leq t(\widetilde{F}).$$

Therefore, $4k \leq t(F)$. There is a surface-knot diagram of \tilde{F} with 4k triple points. Therefore, $t(\tilde{F}) = 4k$.

- 4 回 2 4 日 2 4 日 2

- Applications

Thank You

イロン イヨン イヨン イヨン

Э