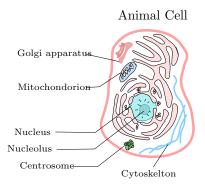
Abdul Adheem Mohamad<sup>1</sup> Tsukasa Yashiro <sup>2</sup>

<sup>1</sup> University of Nizwa, Nizwa, Oman

<sup>2</sup>Independent Mathematical Institute, Nagano, Japan

The 16th East Asian Conference on Geometric Topology January 25 (Monday) - 28 (Thursday), 2021. 25 January 2021


# Contents

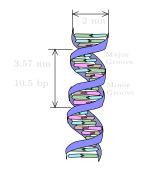
- 1 Background
- 2 DNA replication
- **3** DNA-links
- 4 Topological Semi-Conservative Scheme
- 5 Sizes matter
- 6 Conclusion

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

# Animal Cells




Animal cells are shown as the left figure. The nucleus contains most of genetic information stored in DNA (deoxyribonucleic acid).

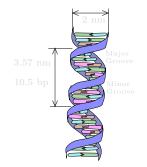
・ 同 ト ・ ヨ ト ・ ヨ ト

# Basic structure of DNA

### DNA has:

- a right-handed double helix,
- sugar-phosphoate backbones on the outside and base pairs lined up on the inside.
- antiparallel orientation, and
- major/minor grooves.




The diameter of a doublestarand DNA is 2 nm  $(1 \text{ nm} = 1 \times 10^{-9} \text{ metre}).$ 

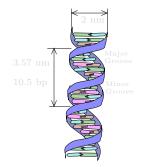
イロト イヨト イヨト イヨト

# Basic structure of DNA

### DNA has:

- a right-handed double helix,
- sugar-phosphoate backbones on the outside and base pairs lined up on the inside.
- antiparallel orientation, and
- major/minor grooves.



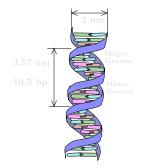

The diameter of a doublestarand DNA is 2 nm  $(1 \text{ nm} = 1 \times 10^{-9} \text{ metre}).$ 

イロト イヨト イヨト イヨト

# Basic structure of DNA

DNA has:

- a right-handed double helix,
- sugar-phosphoate backbones on the outside and base pairs lined up on the inside.
- antiparallel orientation, and
- major/minor grooves.

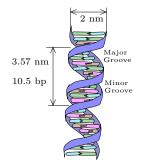



The diameter of a doublestarand DNA is 2 nm  $(1 \text{ nm} = 1 \times 10^{-9} \text{ metre}).$ 

# Basic structure of DNA

DNA has:

- a right-handed double helix,
- sugar-phosphoate backbones on the outside and base pairs lined up on the inside.
- antiparallel orientation, and
- major/minor grooves.




The diameter of a doublestarand DNA is 2 nm  $(1 \text{ nm} = 1 \times 10^{-9} \text{ metre}).$ 

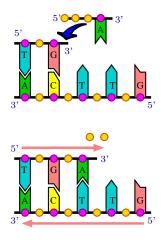
# Basic structure of DNA

DNA has:

- a right-handed double helix,
- sugar-phosphoate backbones on the outside and base pairs lined up on the inside.
- antiparallel orientation, and
- major/minor grooves.



The diameter of a doublestarand DNA is 2 nm  $(1 \text{ nm} = 1 \times 10^{-9} \text{ metre}).$ 


# Base Pairs of DNA

DNA has two linear backbones alternating sugar and phosphorus.

$$A = Adenine, - T = Thymine,$$

$$C = Cytosine, - G = Guanine.$$

A sequence of bases along one backbone becomes a **template** to construct the DNA.

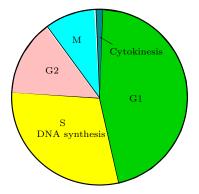


# Base Pairs of DNA

DNA has two linear backbones alternating sugar and phosphorus.

$$A = Adenine, - T = Thymine$$

$$C = Cytosine, - G = Guanine.$$

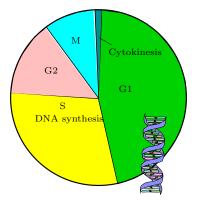

A sequence of bases along one backbone becomes a **template** to construct the DNA.



#### **Topological Orientation**

We assume that the DNA has a parallel orientation.

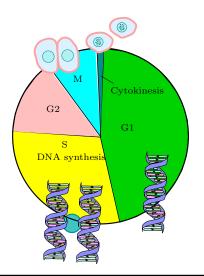
# Cell Cycle




The eukaryotic cell cycle has two phases,

- Mitosis/cytokinesis and interphase, and also,
- During the interphase, DNA is replicated.

・日・ ・ ヨ ・ ・ ヨ ・


# Cell Cycle

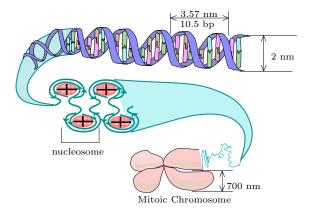


The eukaryotic cell cycle has two phases,

- Mitosis/cytokinesis and interphase, and also,
- During the interphase, DNA is replicated.

# Cell Cycle



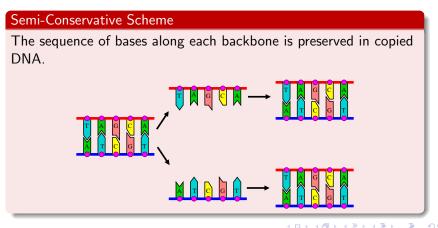

The eukaryotic cell cycle has two phases,

- Mitosis/cytokinesis and interphase, and also,
- During the interphase, DNA is replicated.

э

# Chromosomes

The ds-DNA forms a winding structure around histones to make a beads structure.

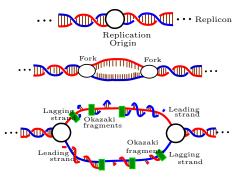



イロト イヨト イヨト イヨト

DNA replication

# Semi-Conservative Scheme

In 1958 Meselson and Stahl did an experiment to show that DNA is replicated by **semi-conservative** replication.




DNA replication

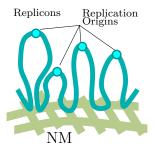
# Replicons

The replication is done on each looped segment called a **replicon**.

- The ds-DNA is relaxed and split into two ss-DNAs at the origin.
- 2 New nucleotids and double helix are created.



(4月) トイヨト イヨト

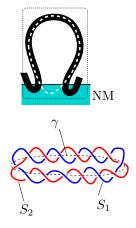

DNA replication

# Replicons

It is believed that the ends of segments of DNA are anchored at the **nuclear matrix (NM)** to form loops, called **replicon**.

#### The size of replicon

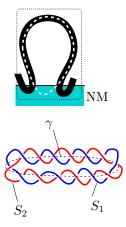
If the diameter of DNA is  $2\ {\rm cm},$  then the length of a replicon is about  $17\ {\rm m}$ 




# DNA-link

Topologically, it is viewed as a special 2-component link. Its components  $S_1$  and  $S_2$  correspond to backbones of DNA and the centre curve is denoted by  $\gamma$ .

$$L(S_1, S_2; \gamma)$$


We call this link a **DNA-link**.



# DNA-link

The DNA-link  $L(S_1,S_2;\gamma)$  has the following properties.

- **1** L is a 2-component link.
- **2**  $\gamma$  is a trivial knot.
- **3**  $S_1$  and  $S_2$  form a double helix along  $\gamma$ .



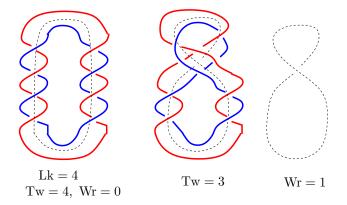
・ 同 ト ・ ヨ ト ・ ヨ ト

# Linking Number Formula for DNA

It is known that the following formula holds:

Proposition 3.1 (White)

<sup>1</sup> For a DNA-link  $L(S_1, S_2; \gamma)$ ,


$$Lk(L) = Lk(S_1, S_2) = Tw(S_1, S_2) + Wr(\gamma)$$

Corollary 3.1

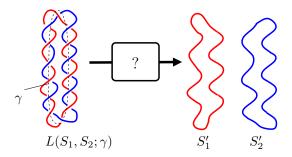
For  $L(S_1, S_2; \gamma)$ , Lk(L) = 0 if and only if L is split.

<sup>1</sup>J. H. White,Self-linking and Gauss integral in higher dimensions, Amer. J. of Math.,(1969), 693-728

# Linking Number Formula for DNA



Actual linking number for a replicon is about 10,000.

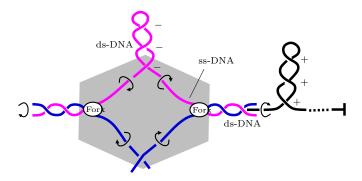

イロト イヨト イヨト イヨト

- Topological Semi-Conservative Scheme

# Topological Semi-conservative scheme

#### The semi-conservative scheme (Topological version)

During the DNA replication process, the DNA-link  $L(S_1, S_2; \gamma)$  is deformed into a split link  $\{S'_1, S'_2\}$ .

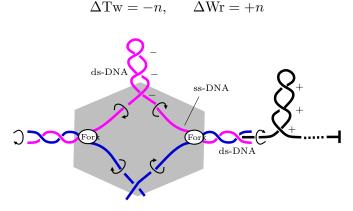



There must be some unknotting operations between the original DNA and the synthesised DNAs.  $(\Box ) \in (\Box) \times ($ 

- Topological Semi-Conservative Scheme

## Problem?

As the forks move away from the replication origin, both single strand DNA (ss-DNA) and ds-DNA are rotated and some supercoils are introduced.



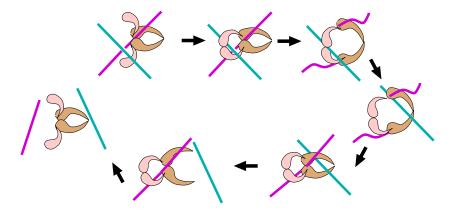

The supercoil becomes an obstruction.

- Topological Semi-Conservative Scheme

# Problem?

At the fork, n full-twist are unwound, then the supercoil ahead of the fork introduces +n writhe.

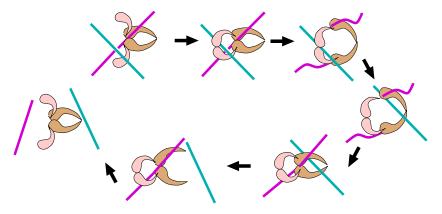



The supercoil becomes an obstruction.

shortname

-Sizes matter

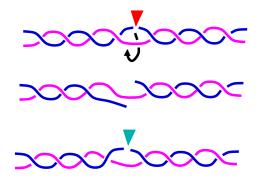
# **Biological Unknotting Operations**


It is known that **Topoisomerase IA** and **II** change the crossings.



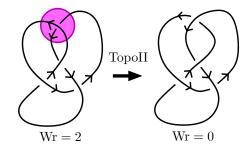
The red and bule strings must be very close to each other.

# **Biological Unknotting Operations**


This operation is called an **unknotting operation**. We call it U-operation.



The red and bule strings must be very close to each other.

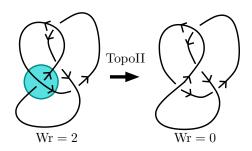

# **Biological Unknotting Operations**

**Topoisomerase IB**. The topoisomerase IB nicks one single strand to make a pair of free ends and let one of the free ends rotate around the complete single strand.



# Still Problem?

We cannot activate Topoll at randomly chosen crossings. For example, one crossing change may give a non-trivial knot.

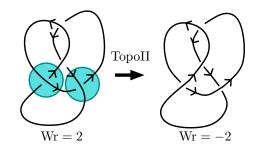



イロト イヨト イヨト イヨト

Э

# Still Problem?

While changing another crossing reduces the writhe Wr and preserves the triviality of  $\gamma$ . Therefore, there must be a certain order of activations of enzymes to obtain relaxed DNA.



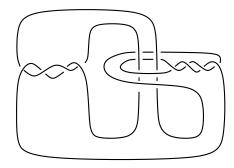

イロト イヨト イヨト イヨト

# Still Problem?

#### Question

How enzymes detect the right places on ds-DNA for activation?



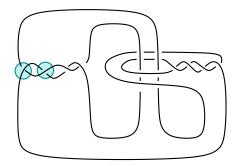

イロト イヨト イヨト イヨト

э

Sizes matter

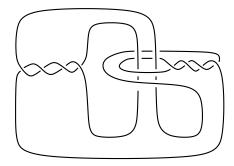
# Still Problem?

This is a trivial knot.




イロト イヨト イヨト イヨト

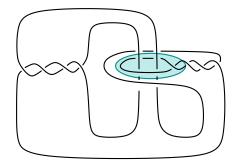
Э


# Still Problem?

If the specified two crossings are changed, then it will be non-trivial.



# Still Problem?


Possibly, the size of the loop is matter.



・日・ ・ ヨ ・ ・ ヨ ・

# Still Problem?

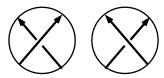
Possibly, the size of the loop is matter.



(人間) とうせい くぼう

# Still Problem?

Possibly, the size of the loop is matter.

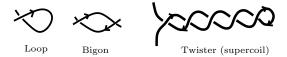



イロト イヨト イヨト イヨト

### $\varepsilon$ -crossings

Let  $\gamma$  be an oriented knot in  $\mathbb{R}^3$ . Suppose that there are a point  $z \in \mathbb{R}^3 - \gamma$  and  $\varepsilon > 0$  such that

- $B(z; \varepsilon/2) \cap \gamma$  is a pair of line segments  $e_1$  and  $e_2$ .
- the pair  $\{e_1, e_2\}$  has one of local diagrams below.




Then we call the crossing an  $\varepsilon$ -crossing.  $\varepsilon$  is less than the size of the clamp of Topo II.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Loops and bigons

A **bigon** is a union of short segments bounded at the end  $\varepsilon$ -crossings of the segments. A **loop** is a simple closed curve starting and ending at the same  $\varepsilon$ -crossing. A **twister** is a union of a loop and some sonsecutive bigons.



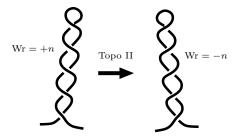
通 ト イ ヨ ト イ ヨ ト

# Loops and bigons

A **size** of a twister is the maximmum diameters of the loop and bigons of it.

#### Assertion 2.

There is a number  $\delta > 0$  such that if the diameter of a loop or bigon is less than  $\delta$ , then the loop or bigon bounds a disc in 3-space.


#### Proposition 5.1

If the size of a twister is less than  $\delta$ , then the acting the U-operations to the supercoil does not change the knot type of  $\gamma$ .

イロト イポト イヨト イヨト

# Loops and bigons

A positive twister (supercoil) can be modified into negative one by activating U-operations on the bigons. n of unwound full-twists introduces +n writhe but the operation above changes it into -n. Thus  $\Delta Lk = -3n$ . Therefore this modification is quite efficient.



伺 ト イヨト イヨト

# Conclusion

If size of the supercoil is small enough, then the activation of topoisomerase II on the supercoil preserves the knot type of  $\gamma$  and reduce the writhe.

There are still many things to do:

- other topoisomerases.
- nucleosomes.
- experiments to check our model.

(4月) トイヨト イヨト

# Conclusion

If size of the supercoil is small enough, then the activation of topoisomerase II on the supercoil preserves the knot type of  $\gamma$  and reduce the writhe.

There are still many things to do:

- other topoisomerases.
- nucleosomes.
- experiments to check our model.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Conclusion

If size of the supercoil is small enough, then the activation of topoisomerase II on the supercoil preserves the knot type of  $\gamma$  and reduce the writhe.

There are still many things to do:

- other topoisomerases.
- nucleosomes.
- experiments to check our model.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Conclusion

If size of the supercoil is small enough, then the activation of topoisomerase II on the supercoil preserves the knot type of  $\gamma$  and reduce the writhe.

There are still many things to do:

- other topoisomerases.
- nucleosomes.
- experiments to check our model.

向下 イヨト イヨト

- A topological model of splitting double strand DNA
- Conclusion

# Thank You!

イロト イヨト イヨト イヨト

Э