Essential Betti Numbers of Surface-knot Diagrams

Tsukasa Yashiro
This is a joint work with Amal AI Kharushi

Independent Mathematical Institutes

Extended KOOK Seminar
Osaka Metropolitan University
29 August 2023

Contents

Motivation

Roseman moves

Rectangular cell-complexes

Motivation

A surface-knot F is a closed oriented surface smoothly embedded in \mathbb{R}^{4} The orthogonal projection proj : $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ maps F onto $\operatorname{proj}(F)$ with double point set, isolated triple points, and isolated branch points. The image $\operatorname{proj}(F)$ with crossing information is called a surface-knot diagram and denoted by Δ_{F}.

Motivation

There is a geometric surface-knot invariant, called a triple point number of a surface-knot. This is defined as the minimal number of triple points for all possible surface-knot diagrams. Only few triple point numbers have been determined (Satoh, Shima et.al.)

To investigate the triple point numbers, we need to construct diagrams. We would like to know any relationship between the topology of F and the number of triple points in Δ_{F}.

Roseman moves

Two surface-knot diagrams are equivalent if they have projected images of the same type of a surface-knot. Two equivalent surface-knot diagrams are modified from one to the other by a finite sequence of seven types of local moves called Roseman moves (D. Roseman 1998). Roseman's seven moves are expressed by six moves (TY 2005, K. Kawamura 2015).

Roseman moves

Roseman moves

Deforming diagrams

The $2 k$-twist-spun trefoil knot is deformed into the t-minimal surface-knot diagram by deforming each single twisting part.

Deforming diagrams

The $2 k$-twist-spun trefoil knot is deformed into the t-minimal surface-knot diagram by deforming each single twisting part.

Deforming diagrams

The $2 k$-twist-spun trefoil knot is deformed into the t-minimal surface-knot diagram by deforming each single twisting part.

Deforming diagrams

The $2 k$-twist-spun trefoil knot is deformed into the t-minimal surface-knot diagram by deforming each single twisting part.

Deforming diagrams

The $2 k$-twist-spun trefoil knot is deformed into the t-minimal surface-knot diagram by deforming each single twisting part.

Deforming diagrams

The $2 k$-twist-spun trefoil knot is deformed into the t-minimal surface-knot diagram by deforming each single twisting part.

Deforming diagrams

The $2 k$-twist-spun trefoil knot is deformed into the t-minimal surface-knot diagram by deforming each single twisting part.

Deforming diagrams

The $2 k$-twist-spun trefoil knot is deformed into the t-minimal surface-knot diagram by deforming each single twisting part.

Double Decker Sets

The pre-image of singularities of the projection proj is:

$$
S=\left\{x \in F \mid \#\left(\left(\left.\operatorname{proj}\right|_{F}\right)^{-1}(\operatorname{proj}(x))>1\right\}\right.
$$

is the union of two families of immersed circles and immersed open intervals:

$$
\begin{aligned}
\mathcal{S}_{a} & =\left\{s_{a 1}, s_{a 2}, \ldots, s_{a l}\right\} \\
\mathcal{S}_{b} & =\left\{s_{b 1}, s_{b 2}, \ldots, s_{b l}\right\}
\end{aligned}
$$

where for $x \in s_{a i}, y \in s_{b i}(i=1,2, \ldots, l)$, if $\operatorname{proj}(x)=\operatorname{proj}(y)$, then $h(x)>h(y)$.
The closure $\operatorname{cl}(S)$ is called the double decker set (Carter-Saito). The closures $S_{a}=\operatorname{cl}\left(\bigcup \mathcal{S}_{a}\right)$ and $S_{b}=\operatorname{cl}\left(\bigcup \mathcal{S}_{b}\right)$ are called upper decker set, and lower decker set respectively.

Double Decker Sets

Lemma 2.1 (Carter-Saito (1998))

Let F be a closed orientable surface. Let $f: F \rightarrow \mathbb{R}^{3}$ be a generic map. Then there is an embedding $g: F \rightarrow \mathbb{R}^{4}$ such that proj $\circ g=f$ if and only if

1. $S(f)=\bigcup \mathcal{S}_{a} \cup \bigcup \mathcal{S}_{b}$.
2. For each triple point, the pre-images are crossings of types $(a, a),(a, b)$ and (b, b).

Rectangular cell-complexes

$$
\begin{aligned}
& F \backslash S_{b}=\left\{R_{0}, \ldots, R_{n}\right\} . \\
& \text { Let } N\left(S_{b}\right) \text { be a small }
\end{aligned}
$$ neighbourhood of S_{b} in

F. $F \backslash N\left(S_{b}\right)=$
$\left\{V_{0}, \ldots, V_{n}\right\} ; V_{i} \subset R_{i}$
$(i=0, \ldots, n)$.

Rectangular cell-complexes

$F \backslash S_{b}=\left\{R_{0}, \ldots, R_{n}\right\}$.
Let $N\left(S_{b}\right)$ be a small neighbourhood of S_{b} in F. $F \backslash N\left(S_{b}\right)=$

$\left\{V_{0}, \ldots, V_{n}\right\} ; V_{i} \subset R_{i}$
$(i=0, \ldots, n)$.

Rectangular cell-complexes

The quotient map
$q: F \rightarrow F / \sim$ is defined by $q\left(V_{i}\right)=v_{i}$,
$(i=0, \ldots, n) . F / \sim$ admits a 2-dimensional complex structure, and it is denoted by $K_{\Delta_{F}}$.

Rectangular cell-complexes

Regular Parcels

A subcomplex of $K_{\Delta_{F}}$ induced from a connected lower decker set is called a parcel A parcel induced from a simple closed curve in S_{b} is called a bubble. A parcel including the crossings is called a regular parcel.

Topology of $K_{\Delta_{F}}$

We use the folloiwng notations.

- V, E, and f denote the sets of vertices, edges, and faces of $K_{\Delta_{F}}$ respectively.
- ρ is the number of rectangles $\underset{\rightarrow-\infty}{\substack{\rightarrow-\infty}}=t\left(\Delta_{F}\right)$
- λ is the number of loop discs $\varnothing=b\left(\Delta_{F}\right)$
- ζ is the number of bubbles $=$ the number of simple closed lower decker curves.
- ψ is the number of rectangular parcels.

Topology of $K_{\Delta_{F}}$

Then the Euler characteristic of $\left|K_{\Delta_{F}}\right|$ is:

$$
\begin{aligned}
\chi\left(\left|K_{\Delta_{F}}\right|\right. & =|V|-|E|+|f| \\
& =|V|-\left(\frac{\lambda+4 \rho}{2}\right)-\zeta+(\rho+\lambda+\zeta) \\
& =|V|+\frac{\lambda}{2}-\rho \\
& =1-\beta_{1}+\psi+\zeta\left(=\beta_{0}-\beta_{1}+\beta_{2}\right)
\end{aligned}
$$

where β_{i} is the i-th Betti number of $\left|K_{\Delta_{F}}\right|$ for $i=0,1,2$. Since $2 \leq|V|$,

$$
\begin{aligned}
2 & \leq \rho-\frac{\lambda}{2}+1-\beta_{1}+\psi+\zeta \\
\beta_{1} & \leq t\left(\Delta_{F}\right)-\frac{\lambda}{2}-1+\psi+\zeta
\end{aligned}
$$

Topology of $K_{\Delta_{F}}$

Theorem 3.1
Let F be a surface-knot. Let K be the cell-complex of a surface-knot diagram Δ_{F} of F. The underlying space $|K|$ has ψ regular parcels, ζ bubbles, λ loop discs, and ρ rectangles. Then the following holds.

$$
\beta_{1} \leq t\left(\Delta_{F}\right)-\frac{\lambda}{2}-1+\psi+\zeta
$$

where β_{1} is the first Betti number of $|K|$.

Reduced Complex

Let K_{Δ} be the rectangular complex of a diagram Δ. Two vertices u, v in K are equivalent if there is a path from u to v such that all edges in the path are of bubbles. The quotient complex K_{Δ} / \sim is called a reduced rectangular complex denoted by $\widetilde{K_{\Delta}}$. The first Betti number $\widetilde{\beta}_{1}=\beta_{1}\left(\widetilde{K}_{\Delta}\right.$ is called an essential Betti number of Δ. Then the following holds.

$$
\widetilde{\beta_{1}} \leq \rho-\frac{\lambda}{2}-1+\psi
$$

t-minimal diagrams

A surface-knot diagram Δ_{F} of F is t-minimal if $t\left(\Delta_{F}\right)=t\left(\Delta_{F}\right)$.
We assume that a t-minimal diagram Δ induces only one regular parcel. Then \widetilde{K}_{Δ} consists of the combinations of loop discs and rectangular cells, and there exists at least 2 branch points. Therefore, the following holds.

$$
\begin{aligned}
\widetilde{\beta}_{1} & \leq t(\Delta)-\frac{\lambda}{2}-1+\psi \\
& \leq t(F)-1
\end{aligned}
$$

t-minimal diagrams

Lemma 3.1 (AK-TY (2016))
Let F be a surface-knot of genus 1. Then

$$
3 \leq t(F)
$$

We try to construct a t-minimal surface-knot diagram Δ with only triple points and branch points $(t(\Delta)=3)$. Then

$$
\widetilde{\beta}_{1} \leq 2
$$

The genus of F is at most 1 but Satoh proved that it is not 0 . Thus it is 1 .

t-minimal diagrams

We found the following diagram (only one) with three triple points and two branch points.

Its K has $|V|=2$ thus $\pi F \cong \mathbb{Z}$ and also $\widetilde{\beta_{1}}=2$. Also, it is trivial.

Thank You for listening!

