An ordinal analysis of Π_N -Collection

Toshiyasu Arai Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, JAPAN tosarai@ms.u-tokyo.ac.jp

Abstract

In this paper we give an ordinal analysis of a set theory with $\Pi_N\text{-}$ Collection.

1 Introduction

Throughout in this paper N denotes a fixed positive integer. In this paper we give an ordinal analysis of a Kripke-Platek set theory with the axiom of Infinity and one of Π_N -Collection, denoted by $\mathsf{KP}\omega + \Pi_N$ -Collection. Our proof is an extension of [4, 5]. Since [5] has not yet appeared, some proofs are duplicated for the readers' conveniences.

In [5] we analyzed proof-theoretically a set theory $\mathsf{KP}\ell^r + (M \prec_{\Sigma_1} V)$ extending $\mathsf{KP}\ell^r$ with an axiom stating that 'there exists a transitive set M such that $M \prec_{\Sigma_1} V$ '. An ordinal analysis of an extension $\mathsf{KP}i + (M \prec_{\Sigma_1} V)$ is given in M. Rathjen[14]. Our proof is an extension of [2, 5]. In [2], a set theory $\mathsf{KP}\Pi_N$ of Π_N -reflection is analyzed, which is an extension of M. Rathjen's analysis for Π_3 -reflection in [13].

$$\begin{split} \Sigma_{N+2}^1\text{-}\text{DC}+\text{BI} \ [\Sigma_{N+2}^1\text{-}\text{AC}+\text{BI}] \text{ denotes a second order arithmetic obtained} \\ \text{from ACA}_0+\text{BI by adding the axiom of } \Sigma_{N+2}^1\text{-}\text{Dependent Choice} \ [\Sigma_{N+2}^1\text{-}\text{Axiom} \\ \text{of Choice], resp. It is easy to see that } \Sigma_{N+2}^1\text{-}\text{DC}+\text{BI is interpreted canonically} \\ \text{to the set theory } \mathsf{KP}\omega+\Pi_N\text{-}\text{Collection}+(V=L) \text{ with the axiom } V=L \text{ of} \\ \text{constructibility. It is well known that } \Sigma_{N+2}^1\text{-}\text{DC}_0 \text{ implies } \Sigma_{N+2}^1\text{-}\text{AC}, \text{ which yields} \\ \Delta_{N+2}^1\text{-}\text{CA}, \text{ a fortiori } \Sigma_{N+1}^1\text{-}\text{CA}, \text{ cf. Lemma VII.6.6 of [15]. Moreover it is known \\ \text{that } \Sigma_{N+2}^1\text{-}\text{DC}+\text{BI is } \Pi_4^1\text{-}\text{conservative over } \Sigma_{N+2}^1\text{-}\text{AC}+\text{BI [over } \Delta_{N+2}^1\text{-}\text{CA}+\text{BI]}, \\ \text{resp., cf. Exercise VII.5.13 and Theorem VII.6.16 of [15]. \end{split}$$

Let *n* be a positive integer. We say that an ordinal α is *n*-stable if $L_{\alpha} \prec_{\Sigma_n} L$ for the constructible universe $L = \bigcup_{\alpha} L_{\alpha}$. In general, a transitive and nonempty set *M* is *n*-stable if $M \prec_{\Sigma_n} V$ for the universe *V*. We see that $(V, \in$ $) \models \mathsf{KP}\omega + \prod_N$ -Collection if *V* enjoys the $\Delta_0(\{st_i\}_{0 < i \le N})$ -collection, where st_i denotes the predicate for the class $\{M \in V : M \prec_{\Sigma_i} V\}$ of *i*-stable sets in *V*. We introduce an extension $S_{\mathbb{I}_N}$ of $\mathsf{KP}\omega + \Pi_N$ -Collection in the language $\{\in\} \cup \{st_i\}_{0 < i \leq N}$, which codifies $\Sigma(\{st_i\}_{0 < i \leq N})$ -reflection. We aim to give an ordinal analysis of the theory $S_{\mathbb{I}_N}$.

In the following theorems, Ω denotes the least recursively regular ordinal ω_1^{CK} , and ψ_{Ω} a collapsing function such that $\psi_{\Omega}(\alpha) < \Omega$. \mathbb{I}_N is an ordinal term denoting an ordinal such that $L_{\mathbb{I}_N} \models \mathsf{KP}\omega + \Pi_N$ -Collection + (V = L).

First we show the following Theorem 1.1.

Theorem 1.1 Suppose $S_{\mathbb{I}_N} \vdash \theta^{L_\Omega}$ for a Σ_1 -sentence θ in the language $\{\in\}$ of set theory. Then $L_{\psi_\Omega(\varepsilon_{\mathbb{I}_N+1})} \models \theta$ holds.

It is not hard to see that the ordinal $\psi_{\Omega}(\varepsilon_{\mathbb{I}_{N}+1})$ is computable. Let < denote a computable well-ordering of type $\psi_{\Omega}(\varepsilon_{\mathbb{I}_{N}+1})$ on the set of natural numbers. Conversely we show that Σ^{1}_{N+2} -DC+BI proves that each initial segment of $\psi_{\Omega}(\varepsilon_{\mathbb{I}_{N}+1})$ is well-founded.

Theorem 1.2 Σ_{N+2}^1 -DC+BI \vdash $Wo[\alpha]$ for each $\alpha < \psi_{\Omega}(\varepsilon_{\mathbb{I}_N+1})$.

For $T \supset ACA_0$, |T| denotes the proof-theoretic ordinal of T, i.e., the supremum of order types of computable well-orderings \prec on the set of natural numbers for which T proves the fact that \prec is a well-ordering. Also let $|\mathsf{KP}\omega + \Pi_N$ -Collection $|_{\Sigma_1^\Omega}$ denote the Σ_1^Ω -ordinal of $\mathsf{KP}\omega + \Pi_N$ -Collection, i.e., the ordinal min $\{\alpha \leq \omega_1^{CK} : \forall \theta \in \Sigma_1 (\mathsf{KP}\omega + \Pi_N\text{-Collection} \vdash \theta^{L_\Omega} \Rightarrow L_\alpha \models \theta)\}$. For more on ordinal analysis see [3]. We conclude the following Theorem 1.3, where $\psi_\Omega(\varepsilon_{\mathbb{I}_N+1})$ denotes the order type of the initial segment $OT(\mathbb{I}_N) \cap \Omega$ of a notation system $OT(\mathbb{I}_N)$ of ordinals.

 $\begin{array}{l} \textbf{Theorem 1.3} \ |\Delta_{N+2}^1\text{-}\mathrm{CA}+\mathrm{BI}| = |\Sigma_{N+2}^1\text{-}\mathrm{AC}+\mathrm{BI}| = |\Sigma_{N+2}^1\text{-}\mathrm{DC}+\mathrm{BI}| = |\mathsf{KP}\omega + \Pi_N\text{-}\mathrm{Collection}|_{\Sigma_1^\Omega} = \psi_\Omega(\varepsilon_{\mathbb{I}_N+1}). \end{array}$

Let $\mathbf{Z}_2 = \Sigma_{\infty}^1$ -DC be the full second order arithmetic with the Dependent Choice schema, and ZFC – Power denote the set theory ZFC minus the power set axiom. \mathbf{Z}_2 proves the $(\Pi_1^1$ -)soundness of Σ_{N+2}^1 -DC + BI, and hence \mathbf{Z}_2 proves that $(OT(\mathbb{I}_N), <)$ is a well ordering for *each* N. \mathbf{Z}_2 is canonically interpreted in $(\mathsf{ZFC} - \mathsf{Power}) + (V = L)$, which is Π_1^1 -conservative over ZFC – Power.

Assume $\mathsf{ZFC}-\mathsf{Power} \vdash \theta$ for a sentence θ . Since $S_{\mathbb{I}_N}$ subsumes Π_N -Collection and Σ_N -Separation, there is an N such that $S_{\mathbb{I}_N} \vdash \theta$. Therefore we conclude the following.

Theorem 1.4 $\psi_{\Omega}(\mathbb{I}_{\omega}) := \sup\{\psi_{\Omega}(\mathbb{I}_{N}) : 0 < N < \omega\} = |\mathbf{Z}_{2}| = |\mathsf{ZFC} - \mathsf{Power}|_{\Sigma_{1}^{\Omega}}.$

Let us mention the contents of this paper. In the next section 2 a second order arithmetic Σ_{N+2}^1 -DC+BI is interpreted to a set theory KP ω + Π_N -Collection+ (V = L), and KP ω + Π_N -Collection is shown to be a subtheory of a set theory $S_{\mathbb{I}_N}$. In section 3 ordinals for our analysis of Π_N -Collection are introduced, and a computable notation system $OT(\mathbb{I}_N)$ is extracted. Theorem 1.1 is proved in sections 4 and 5. In section 4 operator controlled derivations are introduced. In section 5, stable ordinals are removed from derivations. Although our proof of Theorem 1.1 is based on operator controlled derivations introduced by W. Buchholz[9], it is hard for us to give its sketch here. See subsection 4.2 for an outline of the proof.

Theorem 1.2 is proved in sections 6 and 7. For $0 \leq i \leq N$, we introduce *i*-maximal distinguished sets, which are Σ_{2+i}^1 -definable. A 0-maximal distinguished set is Σ_2^1 -definable as in [4]. Σ_{N+2}^1 -(Dependent) Choice is needed to handle limits of N-stable ordinals. Our proof of Theorem 1.2 is based on maximal distinguished class introduced again by Buchholz[7]. A sketch of the well-foundedness proof is outlined in subsection 6.1.

In the final section 8 let us conclude some standard outcomes of an ordinal analysis of the theory \mathbf{Z}_2 .

IH denotes the Induction Hypothesis, MIH the Main IH, SIH the Subsidiary IH, and SSIH the Sub-Subsidiary IH.

2 Π_N -Collection

In this section a second order arithmetic Σ_{N+2}^1 -DC+BI is interpreted canonically to a set theory $\mathsf{KP}\omega + \Pi_N$ -Collection + (V = L), and $\mathsf{KP}\omega + \Pi_N$ -Collection is shown to be a subtheory of a set theory S_{Π_N} .

For subsystems of second order arithmetic, we follow largely Simpson's monograph[15]. The schema Bar Induction, BI is denoted by TI in [15]. BI allows the transfinite induction schema for well-founded relations.

 $\begin{array}{l} \Sigma_{N+2}^1\text{-}\mathrm{AC}+\mathrm{BI} \text{ denotes a second order arithmetic obtained from } \Pi_1^1\text{-}\mathrm{CA}_0 + \\ \mathrm{BI} \text{ by adding the axiom } \Sigma_{N+2}^1\text{-}\mathrm{AC}, \ \forall n\exists XF(n,X) \rightarrow \exists Y\forall nF(n,Y_n) \text{ for each } \\ \Pi_{N+1}^1\text{-formula } F(n,X), \text{ where } m\in Y_n \Leftrightarrow (n,m)\in Y \text{ for a bijective pairing function } (\cdot,\cdot). \ \Sigma_{N+2}^1\text{-}\mathrm{DC}+\mathrm{BI} \text{ denotes a second order arithmetic obtained from } \\ \Pi_1^1\text{-}\mathrm{CA}_0+\mathrm{BI} \text{ by adding the axiom } \Sigma_{N+2}^1\text{-}\mathrm{DC} \text{ for each } \Pi_{N+1}^1\text{-formula } F(n,X,Y), \\ \forall n\forall X\exists YF(n,X,Y) \rightarrow \forall X_0\exists Y\forall n[Y_0=X_0\wedge F(n,Y_n,Y_{n+1})]. \text{ It is easy to see that the formulas } F \text{ can be } \Sigma_{N+2}^1 \text{ in the axioms.} \end{array}$

The axioms of the set theory $\mathsf{KP}\omega + \Pi_N$ -Collection consists of those of $\mathsf{KP}\omega$ (Kripke-Platek set theory with the Axiom of Infinity, cf.[6, 12]) plus Π_N -Collection: for each Π_N -formula A(x, y) in the language of set theory, $\forall x \in a \exists y A(x, y) \to \exists b \forall x \in a \exists y \in b A(x, y).$

 Σ_N -Separation denotes the axiom $\exists y \forall x (x \in y \leftrightarrow x \in a \land \varphi(x))$ for each Σ_N formula $\varphi(x)$. Δ_{N+1} -Separation denotes the axiom $\forall x \in a(\varphi(x) \leftrightarrow \neg \psi(x)) \rightarrow \exists y \forall x (x \in y \leftrightarrow x \in a \land \varphi(x))$ for each Σ_{N+1} -formulas $\varphi(x)$ and $\psi(x)$.

 Σ_{N+1} -Replacement denotes the axiom stating that if $\forall x \in a \exists ! y \varphi(x, y)$, then there exists a function f with its domain dom(f) = a such that $\forall x \in a \varphi(x, f(x))$ for each Σ_{N+1} -formula $\varphi(x, y)$.

Lemma 2.1 KP ω + Π_N -Collection proves each of Σ_N -Separation, Δ_{N+1} - Separation and Σ_{N+1} -Replacement.

Proof. We show that $\{x \in a : \varphi(x)\}$ exists as a set for each Σ_i -formula φ by (meta)induction on $i \leq N$. The case i = 0 follows from Δ_0 -Separation. Let $\varphi \equiv \exists y \, \theta(x, y)$ with a $\prod_{i=1}$ -matrix θ . We have by logic $\forall x \in a \exists y (\exists z \theta(x, z) \to \theta(x, y))$. By \prod_i -Collection pick a set b so that $\forall x \in a \exists y \in b(\varphi(x) \to \theta(x, y))$. In other words, $\{x \in a : \varphi(x)\} = \{x \in a : \exists y \in b \, \theta(x, y)\}$. If i = 1, then $\exists c[c = \{x \in a : \exists y \in b \, \theta(x, y)\}]$ by Δ_0 -Separation. Let $2 \leq i \leq N$. By $\prod_{i=2}$ -Collection we obtain a $\prod_{i=1}$ -formula σ such that $\exists y \in b \, \theta(x, y) \leftrightarrow \sigma(x)$. By IH we obtain $\exists c[c = \{x \in a : \sigma(x)\}]$.

 Δ_{N+1} -Separation follows from Σ_N -Separation as in [6], p.17, Theorem 4.5(Δ Separation), and Σ_{N+1} -Replacement follows from Δ_{N+1} -Separation as in [6], p.17, Theorem 4.6(Σ Replacement).

For a formula A in the language of second order arithmetic let A^{set} denote the formula obtained from A by interpreting the first order variable x as $x \in \omega$ and the second order variable X as $X \subset \omega$.

The following is the Quantifier Theorem in p.125 of [12], in which $\mathsf{KP}l^r$ is defined as a set theory for limits of admissible sets with restricted induction. $\mathsf{KP}l^r$ is a subtheory of $\mathsf{KP}\omega + \Pi_N$ -Collection. Ad(x) designates that x is an admissible set.

Lemma 2.2 For each Σ_{N+1}^1 -formula F(n, a, Y), there exists a Σ_N -formula $A_{\Sigma}(d, n, a, Y)$ in the language of set theory so that for $F_{\Sigma}(n, a, Y) :\Leftrightarrow \exists d[Ad(d) \land Y \in d \land A_{\Sigma}(d, n, a, Y)]$,

$$\mathsf{KP}l^r \vdash n, a \in \omega \land Y \subset \omega \to \{F^{set}(n, a, Y) \leftrightarrow F_{\Sigma}(n, a, Y)\}.$$

For an ordinal α , L_{α} denotes the initial segment of Gödel's constructible universe $L = \bigcup_{\alpha} L_{\alpha}$. $x \in L$ is a Σ_1 -formula. $<_L$ denotes a canonical Δ_1 well ordering of L such that if $y <_L x \in L_{\alpha}$, then $y \in L_{\alpha}$, cf. p.162 of [6]. V = Ldenotes the axiom of Constructibility.

Lemma 2.3 For each sentence A in the language of second order arithmetic,

 Σ^{1}_{N+2} -DC + BI $\vdash A \Rightarrow \mathsf{KP}\omega + \Pi_{N}$ -Collection + $(V = L) \vdash A^{set}$.

Proof. By the Quantifier Theorem 2.2 $F^{set}(n, X, Y)$ is equivalent to a Π_{N-1} formula $\varphi(n, X, Y)$ for a Π_{N+1}^1 -formula F(n, X, Y), $n \in \omega$ and $X \subset \omega$. It suffices to show for a Π_N -formula $\varphi(n, X, Y)$ that assuming $\forall n \in \omega \forall X \subset \omega \exists Y \subset \omega \varphi(n, X, Y)$ and $X_0 \subset \omega$, there exists a function f with its domain $dom(f) = \omega$ such that $\forall n \in \omega[f(0) = X_0 \land \varphi(n, f(n), f(n+1))]$. By induction on $k \in \omega$ using V = L we see that there exists a unique family $(Y_n)_{n < k}$ of subsets of ω such that $\forall n < k[\varphi(n, Y_n, Y_{n+1}) \land \forall Z <_L Y_{n+1} \neg \varphi(n, Y_n, Z)]$, where $\forall Z <_L Y \neg \varphi(n, Y, Z)$ is equivalent to a Σ_N -formula under Π_{N-1} -Collection. By Σ_{N+1} -Replacement pick a function g with $dom(g) = \omega$ and $rng(g) \subset {}^{<\omega}\mathcal{P}(\omega)$ so that for any $k \in \omega$ g(k) is the unique sequence $(Y_n)_{n < k} \in {}^k\mathcal{P}(\omega)$ with $Y_0 = X_0$. Then the function f(n) = (g(n+1))(n) is a desired one. \Box

It is easy to see that $\mathsf{KP}\omega + \Pi_N$ -Collection $+(V = L) \vdash A \Rightarrow \mathsf{KP}\omega + \Pi_N$ -Collection $\vdash A^L$ for any A, and each Π_1^1 -sentence B on ω is absolute for L, $\mathsf{KP}\omega + \Pi_N$ -Collection $\vdash B \leftrightarrow B^L$.

Next we show that $\mathsf{KP}\omega + \Pi_N$ -Collection is contained in a set theory $S_{\mathbb{I}_N}$. The language of the theory $S_{\mathbb{I}_N}$ is $\{\in, M_0\} \cup \{st_i\}_{0 < i \leq N}$ with unary predicate constants st_i and an individual constant M_0 . $st_i(a)$ is intended to denote the fact that a is an i-stable set and M_0 is intended to denote the least admissible set $L_{\omega_1^{CK}}$ above L_{ω} . The axioms of $S_{\mathbb{I}_N}$ are obtained from those¹ of $\mathsf{KP}\omega$ by adding the following axioms. By a $\Delta_0(\{st_i\}_{0 < i < k})$ -formula we mean a bounded formula in the language $\mathcal{L}_k = \{\in, M_0\} \cup \{st_i\}_{i < k}$.

- 1. The axioms for the admissible set $M_0: M_0 \neq \emptyset, \forall x \in M_0 \forall y \in x(y \in M_0)$, and the axioms stating that $(M_0, \in) \models \mathsf{KP}\omega$.
- 2. $\Delta_0(\{st_i\}_{0 < i < N})$ -collection:

$$\forall x \in a \exists y \, \theta(x, y) \to \exists b \forall x \in a \exists y \in b \, \theta(x, y)$$

for each $\Delta_0(\{st_i\}_{0 \le i \le N})$ -formula θ in which the predicates st_i may occur. Note that $\Sigma_1(\{st_i\}_{0 \le i \le N})$ -collection follows from this.

3.

$$\forall a \exists b [a \in b \land st_N(b)] \tag{1}$$

4. For each $i + 1 \leq N$:

$$st_{i+1}(a) \to M_0 \in a \land \forall y \in a \forall z \in y(z \in a) \land lst_i(a)$$
(2)

where $lst_i(a) :\Leftrightarrow st_i(a) \land \forall b \in a \exists c \in a \ (b \in c \land st_i(c)) \text{ and } st_0(c) :\Leftrightarrow (0 = 0).$

5. For $0 < i \leq N$:

$$st_i(a) \land \varphi(u) \land u \in a \to \varphi^a(u)$$
 (3)

for each $\Sigma_1(\{st_j\}_{j < i})$ -formula $\varphi \equiv (\exists x \, \theta)$ in the language $\mathcal{L}_i = \{\in, M_0\} \cup \{st_j\}_{j < i}$, where $\varphi^a \equiv (\exists x \in a \, \theta)$.

Note that if $lst_{i+1}(a)$ for a transitive set a, then $lst_i(a)$ holds.

Lemma 2.4 $S_{\mathbb{I}_N} \vdash st_i(M) \land u \in M \rightarrow [\varphi^M(u) \leftrightarrow \varphi(u)]$ for set-theoretic Σ_i -formulas φ .

Proof. Argue in $S_{\mathbb{I}_N}$. The case i = 1 follows from the axiom (3). We show

$$st_k(a) \wedge u \in a \to \left[\theta^a(u) \leftrightarrow \exists b \in a\{st_i(b) \wedge u \in b \wedge \theta^b(u)\}\right]$$
(4)

¹In the axiom schemata Δ_0 -Separation and Δ_0 -Collection, Δ_0 -formulas remain to mean a Δ_0 -formula in which st_i does not occur, while the axiom of foundation may be applied to a formula in which st_i may occur.

for $0 \leq i < k \leq N+1$ and $\Pi_1(\{st_j\}_{j < i-1})$ -formula $\theta(u)$, where a = V, $st_{N+1}(V) :\Leftrightarrow (0 = 0)$ and $\theta^V(u) :\Leftrightarrow \theta$ when k = N+1.

Assume $st_k(a)$ and $\theta^a(u)$ with $u \in a$. By the axioms (1) and (2) there exists a set $b \in a$ such that $st_i(b)$ and $u \in b$. $\theta^b(u)$ follows logically. Conversely assume $\theta^b(u)$ for $b \in a$ such that $st_i(b)$ and $u \in b$. (3) yields $\theta(u)$, a fortiori $\theta^a(u)$. Thus (4) is shown.

Let $\varphi(u) \in \Sigma_{1+n}(\{st_j\}_{j < i})$ and $st_{i+n}(a)$ with $u \in a$. From (4) we see by (meta-)induction on n that there exists a $\Sigma_1(\{st_j\}_{j < i+n})$ -formula θ such that $\varphi^a \leftrightarrow \theta^a$ and $\varphi \leftrightarrow \theta$.

Now we show $\varphi^M(u) \leftrightarrow \varphi(u)$, where $0 \leq n < N$, $st_{1+n}(M)$, $\varphi \in \Sigma_{1+n}$ and $u \in M$. Suppose $\varphi^M(u)$. Pick a $\Sigma_1(\{st_j\}_{j < n})$ -formula θ such that $\varphi^M(u) \leftrightarrow \theta^M(u)$ and $\varphi(u) \leftrightarrow \theta(u)$. $\theta(u)$ follows logically, and $\varphi(u)$ follows. Conversely assume $\varphi(u)$. Then we obtain $\theta(u)$, and (3) yields $\theta^M(u)$, and hence $\varphi^M(u)$. \Box

Lemma 2.5 $S_{\mathbb{I}_N}$ is an extension of $\mathsf{KP}\omega + \Pi_N$ -Collection. Namely $S_{\mathbb{I}_N}$ proves Π_N -Collection.

Proof. Argue in $S_{\mathbb{I}_N}$. Let A(x, y) be a Π_N -formula in the language of set theory. We obtain by the axiom (1) and Lemma 2.4

$$A(x,y) \leftrightarrow \exists b(st_N(b) \land x, y \in b \land A^b(x,y)) \tag{5}$$

Assume $\forall x \in a \exists y A(x, y)$. Then we obtain $\forall x \in a \exists y \exists b(st_N(b) \land x, y \in b \land A^b(x, y))$ by (5). Since $st_N(b) \land x, y \in b \land A^b(x, y)$ is a $\Delta_0(\{st_i\}_{0 < i \leq N})$ -formula, pick a set c such that $\forall x \in a \exists y \in c \exists b \in c(st_N(b) \land x, y \in b \land A^b(x, y))$ by $\Delta_0(\{st_i\}_{0 < i < N})$ -Collection. Again by (5) we obtain $\forall x \in a \exists y \in cA(x, y)$. \Box

3 Ordinals for Π_N -Collection

In this section up to subsection 3.2 we work in a set theory $\mathsf{ZFC}(\{St_i\}_{0 \le i \le N})$, where each St_i is a unary predicate symbol. Let St_0 denote the set of uncountable cardinals below \mathbb{I}_N . Ω and \mathbb{I}_N are strongly critical numbers with $\Omega < \mathbb{I}_N$, i.e., non-zero ordinals closed under the binary Veblen function $\varphi \alpha \beta = \varphi_\alpha(\beta)$. We assume that $St_{i+1} \subset St_i$ for i < N, each St_i is an unbounded class of ordinals below \mathbb{I}_N such that the least element of St_i is larger than Ω , $\Omega < \min(\bigcup_{0 \le i \le N} St_i)$. The predicate St_i is identified with the class $\{\alpha \in ON : \alpha \in St_i\}$. $\alpha^{\dagger i}$ denotes the least ordinal> α in the class St_i when $\alpha < \mathbb{I}_N$. $\alpha^{\dagger i} := \mathbb{I}_N$ if $\alpha \ge \mathbb{I}_N$. Put $\alpha^{\dagger} := \alpha^{\dagger 1}$. Let $SSt_i := \{\alpha^{\dagger i} : \alpha \in ON\}$ and $LSt_i = St_i \setminus SSt_i$.

 Γ_a denotes the *a*-th strongly critical number. For ordinals α , $\varepsilon(\alpha)$ denotes the least epsilon number above α , and $\Gamma(\alpha)$ the least strongly critical number above α . For ordinals α, β , and $\gamma, \gamma = \alpha - \beta$ designates that $\alpha = \beta + \gamma$. $\alpha + \beta$ denotes the sum $\alpha + \beta$ when $\alpha + \beta$ equals to the commutative (natural) sum $\alpha \# \beta$, i.e., when either $\alpha = 0$ or $\alpha = \alpha_0 + \omega^{\alpha_1}$ with $\omega^{\alpha_1 + 1} > \beta$.

 u, v, w, x, y, z, \ldots range over sets in the universe, $a, b, c, \alpha, \beta, \gamma, \delta, \ldots$ range over ordinals $< \varepsilon(\mathbb{I}_N)$, and ξ, ζ, η, \ldots range over ordinals $< \Gamma(\mathbb{I}_N)$, and ordinals $\le \mathbb{I}_N$ are denoted by $\pi, \kappa, \rho, \sigma, \tau, \lambda, \ldots$

Let $\mathbb{S} \in St_i$ with i > 0. A 'Mahlo degree' $m(\pi)$ of ordinals $\pi < \mathbb{S}$ with higher reflections is defined to be a finite function $f : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$. Let $\Lambda \leq \mathbb{I}_N$ be a strongly critical number. To denote ordinals $\langle \varphi_{\Lambda}(0), it$ is convenient for us to introduce an ordinal function $\tilde{\theta}_b(\xi; \Lambda) < \varphi_{\Lambda}(0)$ for $\xi < \varphi_{\Lambda}(0)$ and $b < \Lambda$ as in [4, 5], which is a *b*-th iterate of the exponential $\tilde{\theta}_1(\xi; \Lambda) = \Lambda^{\xi}$ with the base Λ .

Definition 3.1 Let $\Lambda \leq \mathbb{I}_N$ be a strongly critical number. $\varphi_b(\xi)$ denotes the binary Veblen function on $(\mathbb{I}_N)^{\dagger 0} = \omega_{\mathbb{I}_N+1}$ with $\varphi_0(\xi) = \omega^{\xi}$, and $\tilde{\varphi}_b(\xi; \Lambda) := \varphi_b(\Lambda \cdot \xi)$.

Let $b, \xi < (\mathbb{I}_N)^{\dagger 0}$. $\theta_b(\xi) [\tilde{\theta}_b(\xi; \Lambda)]$ denotes a *b*-th iterate of $\varphi_0(\xi) = \omega^{\xi}$ [of $\tilde{\varphi}_0(\xi; \Lambda) = \Lambda^{\xi}$], resp. Specifically ordinals $\theta_b(\xi), \tilde{\theta}_b(\xi; \Lambda) < (\mathbb{I}_N)^{\dagger 0}$ are defined by recursion on *b* as follows. $\theta_0(\xi) = \tilde{\theta}_0(\xi; \Lambda) = \xi, \theta_{\omega^b}(\xi) = \varphi_b(\xi), \tilde{\theta}_{\omega^b}(\xi; \Lambda) = \tilde{\varphi}_b(\xi; \Lambda)$, and $\theta_{c+\omega^b}(\xi) = \theta_c(\theta_{\omega^b}(\xi)), \tilde{\theta}_{c+\omega^b}(\xi; \Lambda) = \tilde{\theta}_c(\tilde{\theta}_{\omega^b}(\xi; \Lambda); \Lambda)$.

A finite set SC(a) of strongly critical numbers is defined recursively as follows. $SC(0) = \emptyset$, $SC(a) = \bigcup_{i \leq m} SC(a_i)$ for $a = \omega^{a_m} + \cdots + \omega^{a_0}$, and $SC(a) = SC(b) \cup SC(c)$ for $a = \varphi_b(c)$ if a is not strongly critical. $SC(a) = \{a\}$ if a is strongly critical.

Let $\Lambda \leq \mathbb{I}_N$ be a strongly critical number. Let us define a normal form of non-zero ordinals $\xi < \varphi_{\Lambda}(0)$. Let $\xi = \Lambda^{\zeta}$. If $\zeta < \Lambda^{\zeta}$, then $\tilde{\theta}_1(\zeta; \Lambda)$ is the normal form of ξ , denoted by $\xi =_{NF} \tilde{\theta}_1(\zeta; \Lambda)$. Assume $\zeta = \Lambda^{\zeta}$, and let b > 0 be the maximal ordinal such that there exists an ordinal η with $\zeta = \tilde{\varphi}_b(\eta; \Lambda) > \eta$. Then $\xi = \tilde{\varphi}_b(\eta; \Lambda) =_{NF} \tilde{\theta}_{\omega^b}(\eta; \Lambda)$.

Let $\xi = \Lambda^{\zeta_m} a_m + \dots + \Lambda^{\zeta_0} a_0$, where $\zeta_m > \dots > \zeta_0$ and $0 < a_0, \dots, a_m < \Lambda$. Let $\Lambda^{\zeta_i} = {}_{NF} \tilde{\theta}_{b_i}(\eta_i; \Lambda)$ with $b_i = \omega^{c_i}$ for each *i*. Then $\xi = {}_{NF} \tilde{\theta}_{b_m}(\eta_m; \Lambda) \cdot a_m + \dots + \tilde{\theta}_{b_0}(\eta_0; \Lambda) \cdot a_0$.

Definition 3.2 Let $\xi < \varphi_{\Lambda}(0)$ be a non-zero ordinal with its normal form:

$$\xi = \sum_{i \le m} \tilde{\theta}_{b_i}(\xi_i; \Lambda) \cdot a_i =_{NF} \tilde{\theta}_{b_m}(\xi_m; \Lambda) \cdot a_m + \dots + \tilde{\theta}_{b_0}(\xi_0; \Lambda) \cdot a_0 \tag{6}$$

where $\tilde{\theta}_{b_i}(\xi_i; \Lambda) > \xi_i$, $\tilde{\theta}_{b_m}(\xi_m; \Lambda) > \cdots > \tilde{\theta}_{b_0}(\xi_0; \Lambda)$, $b_i = \omega^{c_i} < \Lambda$, and $0 < a_0, \ldots, a_m < \Lambda$. $\tilde{\theta}_{b_0}(\xi_0; \Lambda)$ is said to be the *tail* of ξ , denoted $\tilde{\theta}_{b_0}(\xi_0; \Lambda) = tl(\xi)$, and $\tilde{\theta}_{b_m}(\xi_m; \Lambda)$ the *head* of ξ , denoted $\tilde{\theta}_{b_m}(\xi_m; \Lambda) = hd(\xi)$.

- 1. ζ is a segment of ξ iff there exists an $n (0 \leq n \leq m+1)$ such that $\zeta =_{NF} \sum_{i \geq n} \tilde{\theta}_{b_i}(\xi_i; \Lambda) \cdot a_i = \tilde{\theta}_{b_m}(\xi_m; \Lambda) \cdot a_m + \dots + \tilde{\theta}_{b_n}(\xi_n; \Lambda) \cdot a_n$ for ξ in (6).
- 2. Let $\zeta =_{NF} \tilde{\theta}_b(\xi; \Lambda)$ with $\tilde{\theta}_b(\xi; \Lambda) > \xi$ and $b = \omega^{b_0}$, and c be an ordinal. An ordinal $\tilde{\theta}_{-c}(\zeta; \Lambda)$ is defined recursively as follows. If $b \ge c$, then $\tilde{\theta}_{-c}(\zeta; \Lambda) = \tilde{\theta}_{b-c}(\xi; \Lambda)$. Let c > b. If $\xi > 0$, then $\tilde{\theta}_{-c}(\zeta; \Lambda) = \tilde{\theta}_{-(c-b)}(\tilde{\theta}_{b_m}(\xi_m; \Lambda); \Lambda)$ for the head term $hd(\xi) = \tilde{\theta}_{b_m}(\xi_m; \Lambda)$ of ξ in (6). If $\xi = 0$, then let $\tilde{\theta}_{-c}(\zeta; \Lambda) = 0$.
- 3. Let $\xi < \varphi_{\mathbb{I}_N}(0)$ be such that $SC(\xi) \subset \Lambda$ for a strongly critical number $\Lambda < \mathbb{I}_N$. Then $\xi[\Lambda : \mathbb{I}_N]$ denotes an ordinal $\langle \varphi_{\Lambda}(0) \rangle$ obtained from ξ by

changing the base \mathbb{I}_N into Λ . This means that $\xi[\Lambda : \mathbb{I}_N]$ is obtained from ξ in (6) by replacing $\theta_{b_i}(\xi_i; \mathbb{I}_N) \cdot a_i$ by $\theta_{b_i}(\xi_i[\Lambda : \mathbb{I}_N]; \Lambda) \cdot a_i$.

Proposition 3.3 Let $\xi, \zeta < \varphi_{\mathbb{I}_N}(0)$ be such that $SC(\xi, \zeta) \subset \Lambda$ for a strongly critical number $\Lambda < \mathbb{I}_N$. Then $\xi < \zeta$ iff $\xi[\Lambda : \mathbb{I}_N] < \zeta[\Lambda : \mathbb{I}_N]$.

Definition 3.4 1. A function $f : \Lambda \to \varphi_{\Lambda}(0)$ with a finite support supp $(f) = \{c < \Lambda : f(c) \neq 0\} \subset \Lambda$ is said to be a finite function with base Λ if $\forall i > 0(a_i = 1)$ and $a_0 = 1$ when $b_0 > 1$ in $f(c) =_{NF} \tilde{\theta}_{b_m}(\xi_m; \Lambda) \cdot a_m + \cdots + \tilde{\theta}_{b_0}(\xi_0; \Lambda) \cdot a_0$ for any $c \in \text{supp}(f)$.

It is identified with the finite function $f \upharpoonright \operatorname{supp}(f)$. When $c \notin \operatorname{supp}(f)$, let f(c) := 0. f, g, h, \ldots range over finite functions.

Let $SC(f) := \bigcup \{SC(c) \cup SC(f(c)) : c \in \operatorname{supp}(f)\}.$

For an ordinal c, f_c and f^c are restrictions of f to the domains $\operatorname{supp}(f_c) = \{d \in \operatorname{supp}(f) : d < c\}$ and $\operatorname{supp}(f^c) = \{d \in \operatorname{supp}(f) : d \ge c\}$. $g_c * f^c$ denotes the concatenated function such that $\operatorname{supp}(g_c * f^c) = \operatorname{supp}(g_c) \cup \operatorname{supp}(f^c), (g_c * f^c)(a) = g(a)$ for a < c, and $(g_c * f^c)(a) = f(a)$ for $a \ge c$.

2. Let f be a finite function and $c \leq \Lambda$, $\xi < \Gamma(\Lambda)$ ordinals. A relation $f <_{\Lambda}^{c} \xi$ is defined by induction on the cardinality of the finite set $\{d \in \operatorname{supp}(f) : d > c\}$ as follows. If $f^{c} = \emptyset$, then $f <_{\Lambda}^{c} \xi$ holds. Let $f^{c} \neq \emptyset$. If $f^{c+1} = \emptyset$, then $f <_{\Lambda}^{c} \xi$ iff $f(c) < \xi$. Otherwise for $d = \min\{d > 0 : c + d \in \operatorname{supp}(f)\}$, $f <_{\Lambda}^{c} \xi$ iff there exists a segment μ of ξ such that $f(c) < \mu$ and $f <_{\Lambda}^{c+d} = \tilde{\theta}_{-d}(tl(\mu);\Lambda)$, where $tl(\mu)$ is the tail of μ with base Λ .

The following Proposition 3.5 is shown in [4].

Proposition 3.5 1. $\zeta \leq \xi < \varphi_{\Lambda}(0) \Rightarrow \tilde{\theta}_{-c}(\zeta; \Lambda) \leq \tilde{\theta}_{-c}(\xi; \Lambda).$

2. $\tilde{\theta}_c(\tilde{\theta}_{-c}(\zeta;\Lambda);\Lambda) \leq \zeta \text{ for } \zeta < \varphi_\Lambda(0).$

Although the following Proposition 3.6 is shown in [5], let us reproduce its proof.

Proposition 3.6 $f <_{\Lambda}^{c} \xi \leq \zeta \Rightarrow f <_{\Lambda}^{c} \zeta$.

Proof. By induction on the cardinality n of the finite set $\{d \in \operatorname{supp}(f) : d > c\} = \{c + d_1 < \cdots < c + d_n\}$ with $c < c + d_1$. If n = 0, then there is nothing to prove. Let n > 0. We have $f(c) < \mu$, and $f <_{\Lambda}^{c+d_1} \tilde{\theta}_{-d_1}(tl(\mu); \Lambda)$ for a segment μ of ξ . We show the existence of a segment λ of ζ such that $\mu \leq \lambda$, and $\tilde{\theta}_{-d_1}(tl(\mu); \Lambda) \leq \tilde{\theta}_{-d_1}(tl(\lambda); \Lambda)$. Then IH yields $f <_{\Lambda}^{c+d_1} \tilde{\theta}_{-d_1}(tl(\lambda); \Lambda)$, and $f <_{\Lambda}^c \zeta$ follows.

If μ is a segment of ζ , then $\lambda = \mu$ works. Otherwise $\xi < \zeta$ and there exists a segment λ of ζ such that $\mu < \lambda$, and $tl(\mu) < tl(\lambda)$. We obtain $\tilde{\theta}_{-d_1}(tl(\mu); \Lambda) \leq \tilde{\theta}_{-d_1}(tl(\lambda); \Lambda)$ by Proposition 3.5.1.

3.1 Skolem hulls and Mahlo classes

In this subsection Skolem hulls $\mathcal{H}_a(X)$, collapsing functions ψ and Mahlo classes $Mh_{i,c}^a(\xi)$ are introduced. ψ -functions are introduced in Buchholz[8].

Definition 3.7 Let $A \subset \mathbb{I}_N$ be a set, and $\alpha \leq \mathbb{I}_N$ a limit ordinal.

 $\alpha \in M(A) :\Leftrightarrow A \cap \alpha$ is stationary in $\alpha \Leftrightarrow$ every club subset of α meets A.

In the following Definition 3.8, $\varphi\alpha\beta = \varphi_{\alpha}(\beta)$ denotes the binary Veblen function on $(\mathbb{I}_N)^{\dagger 0}$. For $a < \varepsilon(\mathbb{I}_N)$, $c < \mathbb{I}_N$, $\xi < \Gamma(\mathbb{I}_N)$, and $X \subset \mathbb{I}_N$, define simultaneously classes $\mathcal{H}_a(X) \subset \Gamma(\mathbb{I}_N)$, $Mh^a_{i,c}(\xi) \subset (\mathbb{I}_N+1)$ (i > 0), and ordinals $\psi_{\mathbb{I}_N}(a) \leq \mathbb{I}_N$ and $\psi^{\sharp}_{\kappa}(a) \leq \kappa$ by recursion on ordinals a as follows.

Definition 3.8 Let $a < \varepsilon(\mathbb{I}_N)$, $c < \mathbb{I}_N$, $\xi < \Gamma(\mathbb{I}_N)$, and $X \subset \mathbb{I}_N$.

1. (Inductive definition of $\mathcal{H}_a(X)$)

- (a) $\{0, \Omega, \mathbb{I}_N\} \cup X \subset \mathcal{H}_a(X)$, where $\Omega \in SSt_0$.
- (b) If $x, y \in \mathcal{H}_a(X)$, then $x + y \in \mathcal{H}_a(X)$ and $\varphi xy \in \mathcal{H}_a(X)$.
- (c) Let $\alpha = \psi_{\pi}(b)$ with $\pi \in \mathcal{H}_a(X) \cap SSt_0 \cap \mathbb{I}_N$, $b \in \mathcal{H}_a(X) \cap a$ such that $\{\pi, b\} \subset \mathcal{H}_b(\alpha)$. Then $\alpha \in \mathcal{H}_a(X)$.
- (d) Let $\alpha = \psi_{\mathbb{I}_N}(b)$ with $b \in \mathcal{H}_a(X) \cap a$. Then $\alpha \in \mathcal{H}_a(X) \cap (LSt_N \cup \{\mathbb{I}_N\})$.
- (e) Let $\alpha \in \mathcal{H}_a(X) \cap \mathbb{I}_N$. Then $\alpha^{\dagger i} \in \mathcal{H}_a(X) \cap SSt_i$ for each $0 < i \leq N$.
- (f) Let $\alpha = \psi_{\pi}^{f}(b)$ with b < a, and a finite function $f : \mathbb{I}_{N} \to \varphi_{\mathbb{I}_{N}}(0)$ such that $\{\pi, b\} \cup SC(f) \subset \mathcal{H}_{a}(X) \cap \mathcal{H}_{b}(\alpha)$. Then $\alpha \in \mathcal{H}_{a}(X)$.
- 2. (Definitions of $Mh^a_{i,c}(\xi)$ and $Mh^a_{i,c}(f)$ for $0 < i \le N$)

The classes $Mh_{i,c}^{a}(\xi)$ are defined for $c < \mathbb{I}_{N}$, $a < \varepsilon(\mathbb{I}_{N})$ and $\xi < \varphi_{\mathbb{I}_{N}}(0)$. By main induction on ordinals $\pi < \mathbb{I}_{N}$ with subsidiary induction on $c < \mathbb{I}_{N}$ we define $\pi \in Mh_{i,c}^{a}(\xi)$ iff $\pi \in LSt_{i-1}$, $\{a, c, \xi\} \subset \mathcal{H}_{a}(\pi)$ and the following condition is met for any finite functions $f, g : \mathbb{I}_{N} \to \varphi_{\mathbb{I}_{N}}(0)$ such that $f <_{\mathbb{I}_{N}}^{c} \xi$:

$$SC(f,g) \subset \mathcal{H}_a(\pi) \& \pi \in Mh^a_{i,0}(g_c) \Rightarrow \pi \in M(Mh^a_{i,0}(g_c * f^c))$$

where $SC(f,g) = SC(f) \cup SC(g)$ and

$$\begin{aligned} Mh^a_{i,c}(f) &:= & \bigcap \{ Mh^a_{i,d}(f(d)) : d \in \mathrm{supp}(f^c) \} \\ &= & \bigcap \{ Mh^a_{i,d}(f(d)) : c \leq d \in \mathrm{supp}(f) \}. \end{aligned}$$

 $\begin{aligned} Mh_{i,0}^{a}(g_{c}) &= \bigcap \{ Mh_{i,d}^{a}(g(d)) : d \in \operatorname{supp}(g_{c}) \} = \bigcap \{ Mh_{i,d}^{a}(g(d)) : c > d \in \operatorname{supp}(g) \}. \end{aligned}$ When $f = \emptyset$ or $f^{c} = \emptyset$, let $Mh_{i,c}^{a}(\emptyset) := LSt_{i-1}. \end{aligned}$

3. (Definition of $\psi_{\pi}^{f}(a)$)

Let a, π be ordinals, and $f : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ a finite function. Then $\psi_{i,\pi}^f(a)$ denotes the least ordinal $\kappa < \pi$ such that

$$\kappa \in Mh_{i,0}^{a}(f) \& \mathcal{H}_{a}(\kappa) \cap \pi \subset \kappa \& \{\pi, a\} \cup SC(f) \subset \mathcal{H}_{a}(\kappa)$$
(7)

if such a κ exists. Otherwise set $\psi_{i,\pi}^f(a) = \pi$.

4. $\psi_{\Omega}(a) := \min(\{\Omega\} \cup \{\beta : \mathcal{H}_a(\beta) \cap \Omega \subset \beta\})$ and

$$\psi_{\mathbb{I}_N}(a) := \min(\{\mathbb{I}_N\} \cup \{\kappa \in LSt_N : \mathcal{H}_a(\kappa) \cap \mathbb{I}_N \subset \kappa\})$$
(8)

5. For classes $A \subset \mathbb{I}_N$, let $\alpha \in M^a_{i,c}(A)$ iff $\alpha \in A$ and for any finite functions $g : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$

$$\alpha \in Mh_{i,0}^{a}(g_{c}) \& SC(g_{c}) \subset \mathcal{H}_{a}(\alpha) \Rightarrow \alpha \in M\left(Mh_{i,0}^{a}(g_{c}) \cap A\right)$$
(9)

The following Propositions 3.9, 3.10 and 3.11 are seen as in [5].

Proposition 3.9 Assume $\pi \in Mh_{i,c}^a(\zeta)$ and $\xi < \zeta$ with $SC(\xi) \subset \mathcal{H}_a(\pi)$. Then $\pi \in Mh_{i,c}^a(\xi) \cap M_{i,c}^a(Mh_{i,c}^a(\xi))$.

Proof. Proposition 3.6 yields $\pi \in Mh^a_{i,c}(\xi)$. $\pi \in M^a_{i,c}(Mh^a_{i,c}(\xi))$ is seen from the function f such that $f <_{\mathbb{I}_N}^c \zeta$ with $\operatorname{supp}(f) = \{c\}$ and $f(c) = \xi$. \Box

Proposition 3.10 Suppose $\pi \in Mh_{i,c}^{a}(\xi)$.

- 1. Let $f <_{\mathbb{I}_N}^c \xi$ with $SC(f) \subset \mathcal{H}_a(\pi)$. Then $\pi \in M^a_{i,c}(Mh^a_{i,c}(f^c))$.
- 2. Let $\pi \in M^a_{i,d}(A)$ for d > c and $A \subset \mathbb{I}_N$. Then $\pi \in M^a_{i,c}(Mh^a_{i,c}(\xi) \cap A)$.

Proof. 3.10.1. Let g be a function such that $\pi \in Mh_{i,0}^a(g_c)$ with $SC(g_c) \subset \mathcal{H}_a(\pi)$. We obtain $\pi \in M\left(Mh_{i,0}^a(g_c) \cap Mh_{i,c}^a(f^c)\right)$ by Definition 3.8.2 of $\pi \in Mh_{i,c}^a(\xi)$.

3.10.2. Let $\pi \in M_{i,d}^a(A)$ for d > c. Then $\pi \in Mh_{i,c}^a(\xi) \cap A$. Let g be a function such that $\pi \in Mh_{i,0}^a(g_c)$ with $SC(g_c) \subset \mathcal{H}_a(\pi)$. We obtain by (9) and d > c with the function $g_c * h$, $\pi \in M(Mh_{i,0}^a(g_c) \cap Mh_{i,c}^a(\xi) \cap A)$, where $\operatorname{supp}(h) = \{c\}$ and $h(c) = \xi$.

Proposition 3.11 Each of $x \in \mathcal{H}_a(y)$, $x \in Mh_{i,c}^a(f)$ and $x = \psi_{\kappa}^f(a)$ is a $\Delta_1(\{St_i\}_{0 \le i \le N})$ -predicate in $\mathsf{ZFC}(\{St_i\}_{0 \le i \le N})$.

Proof. An inspection of Definition 3.8 shows that $x \in \mathcal{H}_a(y)$, $\psi_{\kappa}^f(a)$ and $x \in Mh_{i,c}^a(f)$ are simultaneously defined by recursion on $a < \varepsilon(\mathbb{I}_N)$, in which $x \in Mh_{i,c}^a(f)$ is defined by recursion on ordinals $x < \mathbb{I}_N$ with subsidiary recursion on $c < \mathbb{I}_N$.

3.2 A small large cardinal hypothesis

It is convenient for us to assume the existence of a small large cardinal in justification of Definition 3.8. *Shrewd cardinals* as well as \mathcal{A} -shrewd cardinals are introduced by M. Rathjen[14].

Definition 3.12 (Rathjen[14])

Let $\eta > 0$. A cardinal κ is η -shrewd iff for any $P \subset V_{\kappa}$, and a set-theoretic formula $\varphi(x, y)$ if $V_{\kappa+\eta} \models \varphi[P, \kappa]$, then there are $0 < \kappa_0, \eta_0 < \kappa$ such that $V_{\kappa_0+\eta_0} \models \varphi[P \cap V_{\kappa_0}, \kappa_0]$. For classes \mathcal{A}, κ is \mathcal{A} - η -shrewd iff for any $P \subset V_{\kappa}$, and a formula $\varphi(x, y)$ in the language $\{\in, R\}$ with a unary predicate R if $(V_{\kappa+\eta}; \mathcal{A}) \models \varphi[P, \kappa]$, then there are $0 < \kappa_0, \eta_0 < \kappa$ such that $(V_{\kappa_0+\eta_0}; \mathcal{A}) \models \varphi[P \cap V_{\kappa_0}, \kappa_0]$, where $(V_{\alpha}; \mathcal{A})$ denotes the structure $(V_{\alpha}, \in; \mathcal{A} \cap V_{\alpha})$, and for the formulas φ in the language $\{\in, R\}, R(t)$ is interpreted as $t \in \mathcal{A} \cap V_{\alpha}$ in $(V_{\alpha}; \mathcal{A}) \models \varphi$.

Obviously each \mathcal{A} - η -shrewd cardinal is η -shrewd. We see easily that each η -shrewd cardinal is regular. A cardinal κ is said to be $(< \eta)$ -shrewd $[\mathcal{A}$ - $(< \eta)$ -shrewd] if κ is δ -shrewd $[\mathcal{A}$ - δ -shrewd] for every $\delta < \eta$, resp.

On the other side subtle cardinals are introduced by R. Jensen and K. Kunen. The following Lemma 3.13 is shown in [14] by Rathjen.

Lemma 3.13 (Lemma 2.7 of [14])

Let π be a subtle cardinal. The set { $\kappa \in V_{\pi} : (V_{\pi}; \mathcal{A}) \models '\kappa \text{ is } \mathcal{A}\text{-shrewd'}$ } of $\mathcal{A}\text{-shrewd cardinals in } (V_{\pi}; \mathcal{A})$ is stationary in π for each class \mathcal{A} .

Definition 3.14 Let π be a cardinal. The classes \mathcal{B}_n and \mathcal{A}_n are defined recursively for $n < \omega$. Let

$$\begin{aligned} \mathcal{B}_0 &= \{\kappa \in V_\pi : V_\pi \models `\kappa \text{ is an uncountable cardinal'} \} \\ \mathcal{A}_n &= \{\langle i, \sigma \rangle : i \leq n, \sigma \in \mathcal{B}_i \} \\ \mathcal{B}_{n+1} &= \{\kappa \in V_\pi : (V_\pi; \mathcal{A}_n) \models `\kappa \text{ is an } \mathcal{A}_n \text{-shrewd cardinal'} \}. \end{aligned}$$

We say that a cardinal $\kappa \in V_{\pi}$ is *n*-shrewd in π iff $\kappa \in \mathcal{B}_n$. An *n*-shrewd carinal is an *n*-shrewd limit iff the set of *n*-shrewd cardinals is cofinal in it.

 \mathcal{B}_1 is the set of shrewd cardinals in V_{π} , and a 1-shrewd cardinal is a shrewd cardinal in π . Each \mathcal{A}_{n+1} -shrewd cardinal is \mathcal{A}_n -shrewd, and each (n + 1)-shrewd cardinal is *n*-shrewd.

Lemma 3.15 Let π be a subtle cardinal.

- 1. The set of n-shrewd cardinals in π is stationary in π for each $n < \omega$.
- 2. Let κ be an (n+1)-shrewd cardinal in π . If $(V_{\kappa+\eta}; \mathcal{A}_n) \models \varphi[P, \kappa]$ for $0 < \eta < \pi$, $P \subset V_{\kappa}$ and a formula $\varphi(x, y)$ in $\{\in, R\}$, then there are an n-shrewd limit $\kappa_0 < \kappa$ and $0 < \eta_0 < \kappa$ such that $(V_{\kappa_0+\eta_0}; \mathcal{A}_n) \models \varphi[P \cap V_{\kappa_0}, \kappa_0]$.

Proof. 3.15.1. From Lemma 3.13 we see that the set of \mathcal{A}_{n-1} -shrewd cardinals is stationary in a subtle cardinal π .

3.15.2. Let κ be an (n+1)-shrewd cardinal in π . Then κ is *n*-shrewd, and hence $(V_{\kappa+\eta}; \mathcal{A}_n) \models \exists x (x \in P) \land R(\langle n, \kappa \rangle)$ for each $P = \{\alpha\} \subset V_{\kappa}$ with $\kappa < \kappa + \eta < \pi$. Since κ is \mathcal{A}_n -shrewd, there are $0 < \kappa_0, \eta_0 < \kappa$ such that $(V_{\kappa_0+\eta_0}; \mathcal{A}_n) \models \exists x (x \in P \cap V_{\kappa_0}) \land R(\langle n, \kappa_0 \rangle)$. This means that $\alpha < \kappa_0$ is *n*-shrewd. Therefore κ is an *n*-shrewd limit.

Suppose $(V_{\kappa+\eta}; \mathcal{A}_n) \models \varphi[P, \kappa]$ for $0 < \eta < \pi$, $P \subset V_{\kappa}$ and a formula $\varphi(x, y)$ in $\{\in, R\}$. Then $(V_{\kappa+\eta}; \mathcal{A}_n) \models \varphi[P, \kappa] \land R(\langle n, \kappa \rangle) \land \forall \alpha < \kappa \exists \sigma < \kappa(\sigma > \alpha \land R(\langle n, \sigma \rangle))$. Since κ is \mathcal{A}_n -shrewd, there are an *n*-shrewd limit $\kappa_0 < \kappa$ and $0 < \eta_0 < \kappa$ such that $(V_{\kappa_0+\eta_0}; \mathcal{A}_n) \models \varphi[P \cap V_{\kappa_0}, \kappa_0]$.

In this subsection we work in an extension T of ZFC by adding the axiom stating that there exists a regular cardinal \mathbb{I}_N in which the set of N-shrewd cardinals is stationary. Ω denotes the least uncountable ordinal ω_1 , For $0 < i \leq N$, $St_i = \mathcal{B}_i$ the class of *i*-shrewd cardinals in $V_{\mathbb{I}_N}$. LSt_i denotes the class of *i*-shrewd limits in $V_{\mathbb{I}_N}$. Let $St_{N+1} = SSt_{N+1} = {\mathbb{I}_N}$ with $\mathbb{I}_N = \Omega^{\dagger(N+1)}$. Also St_0 denotes the class of uncountable cardinals in $V_{\mathbb{I}_N}$, and LSt_0 the class of limit cardinals in $V_{\mathbb{I}_N}$. A successor *n*-shrewd cardinal is an *n*-shrewd cardinal in $V_{\mathbb{I}_N}$, but not in LSt_n .

Lemma 3.16 $T \vdash \forall a < \Gamma(\mathbb{I}_N)[\psi_{\mathbb{I}_N}(a) < \mathbb{I}_N].$

Proof. We see that the set $C = \{\kappa < \mathbb{I}_N : \mathcal{H}_a(\kappa) \cap \mathbb{I}_N \subset \kappa\}$ is a club subset of the regular cardinal \mathbb{I}_N . This shows the existence of a $\kappa \in LSt_N \cap C$, and hence $\psi_{\mathbb{I}_N}(a) < \mathbb{I}_N$ by the definition (8). \Box

 $\alpha^{\dagger i^{(k)}} \text{ is defined by recursion on } k < \omega \text{ by } \alpha^{\dagger i^{(0)}} = \alpha \text{ and } \alpha^{\dagger i^{(k+1)}} = (\alpha^{\dagger i^{(k)}})^{\dagger i}.$

Proposition 3.17 Let $a \in \mathcal{H}_a(\psi_{\mathbb{I}_N}(a))$, $b \in \mathcal{H}_b(\psi_{\mathbb{I}_N}(b))$, $c \in \mathcal{H}_c(\psi_{\Omega}(c))$ and $d \in \mathcal{H}_d(\psi_{\Omega}(d))$.

- 1. $\psi_{\mathbb{I}_N}(a) < \psi_{\mathbb{I}_N}(b)$ iff a < b.
- 2. $\Omega^{\dagger N^{(k)}} < \psi_{\mathbb{I}_N}(b)$ for every $k < \omega$.
- 3. Let $\alpha = \psi_{\mathbb{I}_N}(a)$ and $0 < k < \omega$. Then $\alpha^{\dagger N^{(k)}} < \psi_{\mathbb{I}_N}(b)$ iff $\alpha < \psi_{\mathbb{I}_N}(b)$. $\psi_{\mathbb{I}_N}(b) < \alpha^{\dagger N^{(k)}}$ iff $\psi_{\mathbb{I}_N}(b) \le \alpha$.
- 4. $\psi_{\Omega}(c) < \psi_{\Omega}(d)$ iff c < d.
- 5. If x < y, then $\psi_{\mathbb{I}_N}(x) \leq \psi_{\mathbb{I}_N}(y)$.

Proof. 3.17.2 and 3.17.3. Let $\beta = \psi_{\mathbb{I}_N}(b)$. By the definition (8) and $\Omega \in \mathcal{H}_b(\beta) \cap \mathbb{I}_N \subset \beta$ we obtain $\Omega < \beta$. Let $\alpha \in \{\Omega, \psi_{\mathbb{I}_N}(a)\}$. If $\alpha < \beta$, then $\beta \in LSt_N$ yields $\alpha^{\dagger N^{(k)}} < \beta$.

3.17.5. We obtain $\psi_{\mathbb{I}_N}(y) \in LSt_N$ and $\mathcal{H}_x(\psi_{\mathbb{I}_N}(y)) \cap \mathbb{I}_N \subset \mathcal{H}_y(\psi_{\mathbb{I}_N}(y)) \cap \mathbb{I}_N \subset \psi_{\mathbb{I}_N}(y)$ by x < y and Lemma 3.16. Hence $\psi_{\mathbb{I}_N}(x) \leq \psi_{\mathbb{I}_N}(y)$. \Box

3.3 ψ -functions

In this subsection we work in $\mathsf{ZFC}(\{St_i\}_{0 \le i \le N})$ with $St_i = \mathcal{B}_i$, and show that $\psi_{i,\mathbb{S}}^f(a) < \mathbb{S}$ for *i*-shrewd cardinal \mathbb{S} in Lemma 3.19, and introduce an *irreducibil-ity* of finite functions in Definition 3.24 using Lemma 3.21, which is needed to define a normal form in ordinal notations.

Lemma 3.18 Let \mathbb{S} be an *i*-shrewd cardinal with $0 < i \leq N$, $a < \varepsilon(\mathbb{I}_N)$, $h : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ a finite function with $\{a\} \cup SC(h) \subset \mathcal{H}_a(\mathbb{S})$. Then $\mathbb{S} \in Mh^a_{i,0}(h) \cap M(Mh^a_{i,0}(h))$.

Proof. By induction on $\xi < \varphi_{\mathbb{I}_N}(0)$ we show $\mathbb{S} \in Mh^a_{i,c}(\xi)$ for $\{a, c, \xi\} \subset \mathcal{H}_a(\mathbb{S})$. Let $\{a, c, \xi\} \cup SC(f) \subset \mathcal{H}_a(\mathbb{S})$ with $f <^c_{\mathbb{I}_N} \xi$ and $a < \varepsilon(\mathbb{I}_N)$. We show $\mathbb{S} \in M^a_{i,c}(Mh^a_{i,c}(f^c))$, which yields $\mathbb{S} \in Mh^a_{i,c}(\xi)$. IH yields $\mathbb{S} \in Mh^a_{i,c}(f^c)$ by Proposition 3.5.2, $\tilde{\theta}_{-e}(\zeta;\mathbb{I}_N) \leq \zeta$. By the definition (9) it suffices to show that

$$\forall g[\mathbb{S} \in Mh^a_{i,0}(g_c) \& SC(g_c) \subset \mathcal{H}_a(\mathbb{S}) \Rightarrow \mathbb{S} \in M\left(Mh^a_{i,0}(g_c) \cap Mh^a_{i,c}(f^c)\right)].$$

Let $g: \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ be a finite function such that $SC(g_c) \subset \mathcal{H}_a(\mathbb{S})$ and $\mathbb{S} \in Mh^a_{i,0}(g_c)$. We have to show $\mathbb{S} \in M(A \cap B)$ for $A = Mh^a_{i,0}(g_c) \cap \mathbb{S}$ and $B = Mh^a_{i,c}(f^c) \cap \mathbb{S}$. Let C be a club subset of \mathbb{S} .

We have $\mathbb{S} \in Mh_{i,0}^{a}(g_{c}) \cap Mh_{i,c}^{a}(f^{c})$, and $\{a\} \cup SC(g_{c}, f^{c}) \subset \mathcal{H}_{a}(\mathbb{S})$. Pick a $b < \mathbb{S}$ so that $\{a\} \cup SC(g_{c}, f^{c}) \subset \mathcal{H}_{a}(b)$. Since the cardinality of the set $\mathcal{H}_{a}(\mathbb{S})$ is equal to \mathbb{S} , pick a bijection $F : \mathbb{S} \to \mathcal{H}_{a}(\mathbb{S})$. Each $\alpha < \Gamma(\mathbb{I}_{N})$ with $\alpha \in \mathcal{H}_{a}(\mathbb{S})$ is identified with its code, denoted by $F^{-1}(\alpha) < \mathbb{S}$. Let P be the class $P = \{(\pi, d, \alpha) \in \mathbb{S}^{3} : \pi \in Mh_{i,F(d)}^{F(\alpha)}(F(\xi))\}$, where $F(d) \in \mathcal{H}_{a}(\mathbb{S}) \cap (c+1)$ and $F(\alpha) < \Gamma(\mathbb{I}_{N})$ with $\{F(d), F(\alpha)\} \subset \mathcal{H}_{a}(\pi)$. For fixed i, a and c, the set $\{(d, \zeta) \in (\mathcal{H}_{a}(\mathbb{S}) \cap (c+1)) \times \Gamma(\mathbb{I}_{N}) : \mathbb{S} \in Mh_{i,d}^{a}(\zeta)\}$ is defined from the classes P and $\{St_{j}\}_{j < i}$ by recursion on ordinals $d \leq c$.

Let φ be a formula in $\{\in\}\cup\{St_j\}_{j<i}$ such that $(V_{\mathbb{S}+c^{\dagger i}}; \{St_j\}_{j<i}) \models \varphi[P, C, \mathbb{S}, b]$ iff $\mathbb{S} \in Mh^a_{i,0}(g_c) \cap Mh^a_{i,c}(f^c)$ and C is a club subset of \mathbb{S} , where $\{St_j\}_{j<i} = \mathcal{A}_{i-1}$. Since \mathbb{S} is *i*-shrewd in $V_{\mathbb{I}_N}$, pick $b < \mathbb{S}_0 < \eta < \mathbb{S}$ such that $(V_{\mathbb{S}_0+\eta}; \{St_j\}_{j<i}) \models \varphi[P \cap \mathbb{S}_0, C \cap \mathbb{S}_0, \mathbb{S}_0, b]$. We obtain $\mathbb{S}_0 \in A \cap B \cap C$.

Therefore $\mathbb{S} \in Mh_{i,c}^{a}(\xi)$ is shown for every $\{c,\xi\} \subset \mathcal{H}_{a}(\mathbb{S})$. This yields $\mathbb{S} \in Mh_{i,0}^{a}(h)$ for $SC(h) \subset \mathcal{H}_{a}(\mathbb{S})$. $\mathbb{S} \in M(Mh_{i,0}^{a}(h))$ follows from the *i*-shrewdness of \mathbb{S} .

Lemma 3.19 Let \mathbb{S} be an *i*-shrewd cardinal, *a* an ordinal, and $f : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ a finite function such that $\{a, \mathbb{S}\} \cup SC(f) \subset \mathcal{H}_a(\mathbb{S})$. Then $\psi_{i,\mathbb{S}}^f(a) < \mathbb{S}$ holds.

Proof. Suppose $\{a, \mathbb{S}\} \cup SC(f) \subset \mathcal{H}_a(\mathbb{S})$. By Lemma 3.18 we obtain $\mathbb{S} \in M(Mh_{i,0}^a(f))$. The set $C = \{\kappa < \mathbb{S} : \mathcal{H}_a(\kappa) \cap \mathbb{S} \subset \kappa, \{a, \mathbb{S}\} \cup SC(f) \subset \mathcal{H}_a(\kappa)\}$ is a club subset of the regular cardinal \mathbb{S} , and $Mh_{i,0}^a(f)$ is stationary in \mathbb{S} . This shows the existence of a $\kappa \in Mh_{i,0}^a(f) \cap C \cap \mathbb{S}$, and hence $\psi_{i,\mathbb{S}}^f(a) < \mathbb{S}$ by the definition (7).

Proposition 3.20 Let α be either Ω or an *i*-shrewd cardinal for $0 < i \leq N$ and $\mathbb{S} = \alpha^{\dagger i}$. Assume $\{a, \mathbb{S}\} \cup SC(f) \subset \mathcal{H}_a(\mathbb{S})$ for an ordinal *a* and *a* finite function $f : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$. Then $\alpha^{\dagger j} < \psi_{i,\mathbb{S}}^f(a)$ for every j < i, and $\psi_{i,\mathbb{S}}^f(a) \in LSt_{i-1} \setminus St_i$.

Proof. Let $\kappa = \psi_{i,\mathbb{S}}^f(a) < \mathbb{S}$. We obtain $\alpha \in \mathcal{H}_a(\kappa)$ by $\alpha^{\dagger i} = \mathbb{S} \in \mathcal{H}_a(\kappa)$, and $\alpha^{\dagger j} \in \mathcal{H}_a(\kappa) \cap \mathbb{S}$ for $\mathbb{S} \in LSt_j$. $\alpha < \kappa$ is seen from $\alpha^{\dagger j} \in \mathcal{H}_a(\kappa) \cap \mathbb{S} \subset \kappa$ in the definition (7).

The following Lemma 3.21 and Corollary 3.23 are seen as in [5].

Lemma 3.21 Assume $\mathbb{I}_N > \pi \in Mh^a_{i,d}(\xi) \cap Mh^a_{i,c}(\xi_0), \ \xi_0 \neq 0, \ and \ d < c.$ Moreover let $\xi_1 \in \mathcal{H}_a(\pi)$ for $\xi_1 \leq \tilde{\theta}_{c-d}(\xi_0; \mathbb{I}_N)$, and $tl(\xi) \geq \xi_1$ when $\xi \neq 0$. Then $\pi \in Mh^a_{i,d}(\xi + \xi_1) \cap M^a_{i,d}(Mh^a_{i,d}(\xi + \xi_1))$.

Proof. $\pi \in M^a_{i,d}(Mh^a_{i,d}(\xi + \xi_1))$ follows from $\pi \in Mh^a_{i,d}(\xi + \xi_1)$ and $\pi \in Mh^a_{i,c}(\xi_0) \subset M^a_{i,c}(Mh^a_{i,c}(\emptyset))$ by Proposition 3.10.1.

Let f be a finite function such that $SC(f) \subset \mathcal{H}_a(\pi)$, and $f <_{\mathbb{I}_N}^d \xi + \xi_1$. We show $\pi \in M^a_{i,d}(Mh^a_{i,d}(f^d))$ by main induction on the cardinality of the finite set $\{e \in \operatorname{supp}(f) : e > d\}$ with subsidiary induction on ξ_1 .

First let $f <_{\mathbb{I}_N}^d \mu$ for a segment μ of ξ . By Proposition 3.9 we obtain $\pi \in Mh^a_{i,d}(\mu)$ and $\pi \in M^a_{i,d}(Mh^a_{i,d}(f^d))$.

In what follows let $f(d) = \xi + \zeta$ with $\zeta < \xi_1$. By SIH we obtain $\pi \in Mh_{i,d}^a(f(d)) \cap M_{i,d}^a(Mh_{i,d}^a(f(d)))$. If $\{e \in \operatorname{supp}(f) : e > d\} = \emptyset$, then $Mh_{i,d}^a(f^d) = Mh_{i,d}^a(f(d))$, and we are done. Otherwise let $e = \min\{e \in \operatorname{supp}(f) : e > d\}$. By SIH we can assume $f <_{\mathbb{I}_N}^e \tilde{\theta}_{-(e-d)}(tl(\xi_1);\mathbb{I}_N)$. We obtain $f <_{\mathbb{I}_N}^e \tilde{\theta}_{-(e-d)}(\tilde{\theta}_{c-d}(\xi_0;\mathbb{I}_N);\mathbb{I}_N) = \tilde{\theta}_{-e}(\tilde{\theta}_c(\xi_0;\mathbb{I}_N);\mathbb{I}_N)$ by $\xi_1 \leq \tilde{\theta}_{c-d}(\xi_0;\mathbb{I}_N)$, Propositions 3.6 and 3.5.1. We claim that $\pi \in M_{i,c_0}^a(Mh_{i,c_0}^a(f^{c_0}))$ for $c_0 = \min\{c, e\}$. If c = e, then the claim follows from the assumption $\pi \in Mh_{i,c}^a(\xi_0)$ and $f <_{\mathbb{I}_N}^e \xi_0$. Let $e = c + e_0 > c$. Then $\tilde{\theta}_{-e}(\tilde{\theta}_c(\xi_0;\mathbb{I}_N);\mathbb{I}_N) = \tilde{\theta}_{-e_0}(hd(\xi_0);\mathbb{I}_N)$, and $f <_{\mathbb{I}_N}^e \xi_0$ with f(c) = 0 yields the claim. Let $c = e + c_1 > e$. Then $\tilde{\theta}_{-e}(\tilde{\theta}_c(\xi_0;\mathbb{I}_N);\mathbb{I}_N) = \tilde{\theta}_{-e_1}(\xi_0;\mathbb{I}_N)$. MIH yields the claim.

On the other hand we have $Mh_{i,d}^{a}(f^{d}) = Mh_{i,d}^{a}(f(d)) \cap Mh_{i,c_{0}}^{a}(f^{c_{0}})$. $\pi \in Mh_{i,d}^{a}(f(d)) \cap Mh_{i,c_{0}}^{a}(Mh_{i,c_{0}}^{a}(f^{c_{0}}))$ with $d < c_{0}$ yields by Proposition 3.10.2, $\pi \in M_{i,d}^{a}(Mh_{i,d}^{a}(f(d)) \cap Mh_{i,c_{0}}^{a}(f^{c_{0}}))$, i.e., $\pi \in M_{i,d}^{a}(Mh_{i,d}^{a}(f^{d}))$.

Definition 3.22 For finite functions $f, g : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0), Mh_{i,0}^a(g) \prec Mh_{i,0}^a(f)$ iff the following holds:

$$\forall \pi \in Mh_{i,0}^{a}(f) \left(SC(g) \subset \mathcal{H}_{a}(\pi) \Rightarrow \pi \in M(Mh_{i,0}^{a}(g)) \right).$$

Corollary 3.23 Let $f, g: \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ be finite functions and $c \in \operatorname{supp}(f)$. Assume that there exists an ordinal d < c such that $(d, c) \cap \operatorname{supp}(f) = (d, c) \cap \operatorname{supp}(g) = \emptyset$, $g_d = f_d$, $g(d) < f(d) + \tilde{\theta}_{c-d}(f(c); \mathbb{I}_N) \cdot \omega$, and $g <_{\mathbb{I}_N}^c f(c)$.

Then $Mh_{i,0}^a(g) \prec Mh_{i,0}^a(f)$ holds. In particular if $\pi \in Mh_{i,0}^a(\tilde{f})$ and $SC(g) \subset \mathcal{H}_a(\pi)$, then $\psi_{i,\pi}^g(a) < \pi$.

Proof. Let $\pi \in Mh_{i,0}^a(f) = \bigcap \{ Mh_{i,e}^a(f(e)) : e \in \operatorname{supp}(f) \}$ and $SC(g) \subset \mathcal{H}_a(\pi)$. Lemma 3.21 with $\pi \in Mh_{i,d}^a(f(d)) \cap Mh_{i,c}^a(f(c))$ yields $\pi \in Mh_{i,d}^a(g(d)) \cap M_{i,c}^a(Mh_{i,c}^a(g^c))$. On the other hand we have $\pi \in Mh_{i,0}^a(g_d) = \bigcap \{ Mh_{i,e}^a(f(e)) : e \in \operatorname{supp}(f) \cap d \}$. Hence $\pi \in M(Mh_{i,0}^a(g))$.

Now suppose $SC(g) \subset \mathcal{H}_a(\pi)$. The set $C = \{\kappa < \pi : \mathcal{H}_a(\kappa) \cap \pi \subset \kappa, \{\pi, a\} \cup SC(g) \subset \mathcal{H}_a(\kappa)\}$ is a club subset of the regular cardinal π , and $Mh_{i,0}^a(g)$ is stationary in π . This shows the existence of a $\kappa \in Mh_{i,0}^a(g) \cap C \cap \pi$, and hence $\psi_{i,\pi}^g(a) < \pi$ by the definition (7).

Definition 3.24 An *irreducibility* of finite functions $f : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ is defined by induction on the cardinality n of the finite set $\operatorname{supp}(f)$. If $n \leq 1$, f is defined to be irreducible. Let $n \geq 2$ and c < c+d be the largest two elements in $\operatorname{supp}(f)$, and let g be a finite function such that $\operatorname{supp}(g) = \operatorname{supp}(f_c) \cup \{c\}, g_c = f_c$ and $g(c) = f(c) + \tilde{\theta}_d(f(c+d); \mathbb{I}_N).$

Then f is irreducible iff $tl(f(c)) > \tilde{\theta}_d(f(c+d); \mathbb{I}_N)$ and g is irreducible.

Definition 3.25 Let $f, g: \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ be irreducible finite functions, and b an ordinal. Let us define a relation $f <_{lx}^b g$ by induction on the cardinality $\#\{e \in \operatorname{supp}(f) \cup \operatorname{supp}(g) : e \geq b\}$ as follows. $f <_{lx}^b g$ holds iff $f^b \neq g^b$ and for the ordinal $c = \min\{c \geq b : f(c) \neq g(c)\}$, one of the following conditions is met:

- 1. f(c) < g(c) and let μ be the shortest segment of g(c) such that $f(c) < \mu$. Then for any $c < c+d \in \operatorname{supp}(f)$, if $tl(\mu) \leq \tilde{\theta}_d(f(c+d); \mathbb{I}_N)$, then $f <_{lx}^{c+d} g$ holds.
- 2. f(c) > g(c) and let ν be the shortest segment of f(c) such that $\nu > g(c)$. Then there exist a $c < c + d \in \text{supp}(g)$ such that $f <_{lx}^{c+d} g$ and $tl(\nu) \leq \tilde{\theta}_d(g(c+d); \mathbb{I}_N)$.

In [4] the following Proposition 3.26 is shown.

Proposition 3.26 Let $f,g : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$. If $f <_{lx}^0 g$, then $Mh_{i,0}^a(f) \prec Mh_{i,0}^a(g)$.

Proposition 3.27 Let $f, g : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ be irreducible functions, and assume that $\psi_{i,\pi}^f(b) < \pi$ and $\psi_{i,\kappa}^g(a) < \kappa$.

- Then $\psi_{i,\pi}^f(b) < \psi_{i,\kappa}^g(a)$ iff one of the following cases holds:
- 1. $\pi \leq \psi^g_{i,\kappa}(a)$.
- 2. $b < a, \psi_{i,\pi}^f(b) < \kappa, and SC(f) \cup \{\pi, b\} \subset \mathcal{H}_a(\psi_{i,\kappa}^g(a)).$
- 3. b > a, and $SC(g) \cup \{\kappa, a\} \not\subset \mathcal{H}_b(\psi_{i,\pi}^f(b))$.
- 4. $b = a, \kappa < \pi, and \kappa \notin \mathcal{H}_b(\psi_{i,\pi}^f(b)).$
- 5. $b = a, \pi = \kappa, SC(f) \subset \mathcal{H}_a(\psi^g_{i,\kappa}(a)), and f <^0_{lx} g.$

6. $b = a, \pi = \kappa, SC(g) \not\subset \mathcal{H}_b(\psi_{i,\pi}^f(b)).$

Proof. This is seen from Proposition 3.26 as in [2].

3.4 A computable notation system for Π_N -collection

Although Propositions 3.17, 3.20, and 3.27 suffice for us to define a computable notation system for $\mathcal{H}_{\varepsilon(\mathbb{I}_N)}(0)$, we need a notation system closed under Mostowski collapsings to remove stable ordinals from derivations as in [5], cf. section 5. Two new constructors $\mathbb{I}_N[\cdot]$ and $\mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]$ are used to generate terms in $OT(\mathbb{I}_N)$.

Definition 3.28 $\rho \prec \sigma$ denotes the transitive closure of the relation $\{(\rho, \sigma) : \exists f, a(\rho = \psi^f_{\sigma}(a))\}$. Let $\rho \preceq \sigma :\Leftrightarrow \rho \prec \sigma \lor \rho = \sigma$.

Let $\mathbb{S} \in SSt_i$ and $\rho \prec \mathbb{S}$. We define a set $M_\rho = \mathcal{H}_b(\rho)$ from ρ in (10) in such a way that $\mathcal{H}_b(\rho) \cap \mathbb{S} \subset \rho$. Then a Mostowski collapsing $M_\rho \ni \alpha \mapsto \alpha[\rho/\mathbb{S}]$ in Definition 3.33 maps ordinal terms $\alpha \in M_\rho$ to $\alpha[\rho/\mathbb{S}] < \mathbb{S}$ isomorphically. The transitive collapse $(M_\rho)^{[\rho/\mathbb{S}]} = \{\alpha[\rho/\mathbb{S}] : \alpha \in M_\rho\}$ is an initial segment in $OT(\mathbb{I}_N)$ such that $(M_\rho)^{[\rho/\mathbb{S}]} < \kappa$ if $\rho < \kappa \prec \mathbb{S}$. Note that both ρ and κ can be interpreted as uncountable cardinals, and the cardinality of the set M_ρ is equal to ρ .

Let us define simultaneously the followings: A set $OT(\mathbb{I}_N)$ of terms over constants $0, \Omega, \mathbb{I}_N$ and constructors $+, \varphi, \psi, \mathbb{I}_N[*], *^{\dagger i} (0 < i \leq N)$, and $*_0[*_1/*_2]$. Its subsets SSt_i, LSt_i with $St_i = SSt_i \cup LSt_i$, and sets $M_\rho (\rho \in \Psi)$, finite sets $K_X(\alpha)$ of subterms of α for $X \subset OT(\mathbb{I}_N)$. Let $SSt = \bigcup_{0 < i \leq N} SSt_i$ and $LSt = \bigcup_{0 < i \leq N} LSt_i$. For each $\mathbb{S} \in SSt$, there exists a unique *i* such that $\mathbb{S} \in SSt_i$.

For i > 0, $\kappa \in St_i$ is intended to designate that κ is an *i*-shrewd cardinal, or κ is an *i*-stable ordinal. $\kappa \in SSt_i$ [$\kappa \in LSt_i$] is intended to designate that κ is a successor *i*-stable ordinal [κ is a limit of *i*-stable ordinals], resp. $\kappa \in St_0$ is intended to designate that κ is an uncountable cardinal, or κ is either a recursively regular ordinal or their limit. We have $St_i = SSt_i \cup LSt_i$ with $SSt_i \cap LSt_i = \emptyset$, and $St_{i+1} \subset LSt_i$. If $\mathbb{S} \in SSt_i$, then the ordinal term $\psi_{\mathbb{S}}^f(a)$ in Definition 3.31.5 denotes the ordinal $\psi_{i,\mathbb{S}}^f(a)$ in (7) of Definition 3.8.3.

 $\alpha =_{NF} \alpha_m + \cdots + \alpha_0$ means that $\alpha = \alpha_m + \cdots + \alpha_0$ with $\alpha_m \ge \cdots \ge \alpha_0$ and each α_i is a non-zero additive principal number. $\alpha =_{NF} \varphi \beta \gamma$ means that $\alpha = \varphi \beta \gamma$ and $\beta, \gamma < \alpha$.

Sets $SC(\alpha)$ of strongly critical numbers are slightly modified as $SC(\Omega) = SC(\mathbb{I}_N) = \emptyset$. Specifically $SC(0) = \emptyset$, $SC(\alpha) = \bigcup_{i \le m} SC(\alpha_i)$ for $\alpha =_{NF} \alpha_m + \cdots + \alpha_0$, and $SC(a) = SC(b) \cup SC(c)$ for $a =_{NF} \varphi_b(c)$. $SC(\Omega) = SC(\mathbb{I}_N) = \emptyset$. $SC(a) = \{a\}$ if $a \notin \{\Omega, \mathbb{I}_N\}$ is strongly critical.

For $\alpha = \psi_{\pi}^{f}(a)$, let $m(\alpha) = f$. $SC(f) = \bigcup \{SC(c) \cup SC(f(c)) : c \in \operatorname{supp}(f)\}$. Immediate subterms of terms are defined as follows. $k(\alpha_{m} + \cdots + \alpha_{0}) = \{\alpha_{0}, \ldots, \alpha_{m}\}, k(\varphi\alpha\beta) = \{\alpha, \beta\}, k(\psi_{\mathbb{I}_{N}}(a)) = \{\mathbb{I}_{N}, a\}, \text{ and } k(\psi_{\sigma}^{f}(\alpha)) = \{\sigma, \alpha\} \cup SC(f)$.

Note that in the following Definition 3.31, e.g., there is no clause for constructing $\kappa = \psi_{\mathbb{S}}(a)$ from a for $\mathbb{S} \notin SSt$.

Definition 3.29 1. $\alpha \in \Psi : \Leftrightarrow \exists \kappa, f, a(\alpha = \psi_{\kappa}^{f}(a)) \text{ and } \alpha \in \Psi_{\mathbb{S}} : \Leftrightarrow \exists \kappa \preceq \mathbb{S} \exists f, a(\alpha = \psi_{\kappa}^{f}(a)).$

- 2. For a sequence $\vec{i} = (i_0, i_1, \dots, i_n)$ of numbers, let $\alpha^{\dagger \vec{i}} = (\cdots ((\alpha^{\dagger i_0})^{\dagger i_1}) \cdots)^{\dagger i_n}$.
- 3. By $\vec{i} \leq i$ let us understand that $\vec{i} = (i_0, i_1, \dots, i_n)$ is a non-empty and non-increasing sequence of numbers such that $0 < i_n \leq \dots \leq i_1 \leq i_0 \leq i$.

Definition 3.30 1. Let $\alpha \preceq \psi_{\mathbb{S}}^g(b)$ for an $\mathbb{S} \in SSt$ and a g with $b = p_0(\alpha)$. Then let

$$M_{\alpha} := \mathcal{H}_b(\alpha) \tag{10}$$

- 2. For $\alpha \in \Psi$, an ordinal $p_0(\alpha)$ is defined.
 - (a) If $\alpha \leq \psi_{\mathbb{S}}^g(b)$, then $p_0(\alpha) = b$.
 - (b) If there are ρ and $\beta \in M_{\rho}$ such that $LSt_i \ni \rho \prec \mathbb{S} \in SSt_{i+1}$ and $\alpha = \beta[\rho/\mathbb{S}] \neq \beta$, then $p_0(\alpha) = p_0(\beta)$.
 - (c) $\mathbf{p}_0(\alpha) = 0$ otherwise.
- 3. $\alpha^{\dagger} := \alpha^{\dagger 1}$.

Definition 3.31 (Definitions of $OT(\mathbb{I}_N)$ and $K_X(\alpha)$) Let $St_i = SSt_i \cup LSt_i \subset OT(\mathbb{I}_N)$ with $SSt_i \cap LSt_i = \emptyset$ and $St_{i+1} \subset LSt_i$. For $\delta, \alpha \in OT(\mathbb{I}_N), K_{\delta}(\alpha) = K_X(\alpha)$, where $X = \{\beta \in OT(\mathbb{I}_N) : \beta < \delta\}$.

- 1. $\{0, \Omega, \mathbb{I}_N\} \subset OT(\mathbb{I}_N)$ and $\Omega^{\dagger i} \in SSt_i$ for $0 < i \le N$. Let $St_{N+1} = \{\mathbb{I}_N\}$. $m(\alpha) = K_X(\alpha) = \emptyset$ for $\alpha \in \{0, \mathbb{I}_N, \Omega\} \cup \{\Omega^{\dagger i} : 0 < i \le N\}.$
- 2. If $\alpha =_{NF} \alpha_m + \cdots + \alpha_0 (m > 0)$ with $\{\alpha_i : i \leq m\} \subset OT(\mathbb{I}_N)$, then $\alpha \in OT(\mathbb{I}_N)$, and $m(\alpha) = \emptyset$. Let $\alpha =_{NF} \varphi \beta \gamma < \varepsilon(\mathbb{I}_N)$ with $\{\beta, \gamma\} \subset OT(\mathbb{I}_N)$. Then $\alpha \in OT(\mathbb{I}_N)$ and $m(\alpha) = \emptyset$.

In each case $K_X(\alpha) = K_X(k(\alpha))$.

- 3. Let $\alpha = \psi_{\Omega}(a)$ with $a \in OT(\mathbb{I}_N)$ and $K_{\alpha}(a) < a$. Then $\alpha \in OT(\mathbb{I}_N)$. Let $m(\alpha) = \emptyset$. $K_X(\alpha) = \emptyset$ if $\alpha \in X$. $K_X(\alpha) = \{a\} \cup K_X(a)$ if $\alpha \notin X$.
- 4. Let $\alpha = \psi_{\mathbb{I}_N}(a)$ with $a \in OT(\mathbb{I}_N)$ such that $K_{\alpha}(a) < a$. Then $\alpha \in LSt_N$ and $\alpha^{\dagger i} \in SSt_i$ for $0 < i \leq N$. For $\beta \in \{\alpha, \alpha^{\dagger i}\}, m(\beta) = \emptyset$. Also $K_X(\alpha^{\dagger i}) = \emptyset$ if $\alpha^{\dagger i} \in X$. $K_X(\alpha^{\dagger i}) = K_X(\alpha)$ if $\alpha^{\dagger i} \notin X$. $K_X(\alpha) = \emptyset$ if $\alpha \in X$. $K_X(\alpha) = \{a\} \cup K_X(a)$ if $\alpha \notin X$.
- 5. Let $\mathbb{T} \in LSt_k \cup \{\Omega\}$ and $\mathbb{S} = \mathbb{T}^{\dagger \vec{i}} \in SSt_{i+1}$ for a non-empty and nonincreasing sequence of numbers $\vec{i} = (i_0 \ge i_1 \ge \cdots \ge i_n)$ such that $i_0 \le k$ and $i_n = i + 1$, cf. Proposition 3.32. Let $\alpha = \psi^f_{\mathbb{S}}(a)$, where $\{a, \mathbb{S}\} \subset OT(\mathbb{I}_N)$, and if $f \neq \emptyset$, then there are $\{d, \xi\} \subset OT(\mathbb{I}_N)$ such that $\operatorname{supp}(f) = \{d\}, 0 < f(d) = \xi < (\mathbb{I}_N)^2, d < \mathbb{I}_N$. If $K_{\mathbb{S}}(\{\mathbb{S}, a\} \cup SC(f)) < a$ for $SC(f) = SC(\{d, \xi\})$, and

$$SC(f) \subset \mathcal{H}_a(SC(a))$$
 (11)

then $\alpha \in LSt_i$ and $\alpha^{\dagger j} \in SSt_j$ for $0 < j \le i$.

Let $a = p_0(\alpha), \ m(\alpha) = f.$ $K_X(\alpha) = \emptyset$ if $\alpha \in X.$ $K_X(\alpha) = \{a\} \cup K_X(\{a, \mathbb{S}\} \cup SC(f))$ if $\alpha \notin X.$ $m(\alpha^{\dagger j}) = \emptyset.$ $K_X(\alpha^{\dagger j}) = \emptyset$ if $\alpha^{\dagger j} \in X.$ $K_X(\alpha^{\dagger j}) = K_X(\alpha)$ if $\alpha^{\dagger j} \notin X.$

6. Let $\{\pi, a, d\} \subset OT(\mathbb{I}_N)$ with $\pi \prec \mathbb{S} \in SSt_{i+1}, m(\pi) = f, d < c \in \operatorname{supp}(f),$ and $(d, c) \cap \operatorname{supp}(f) = \emptyset$.

When $g \neq \emptyset$, let g be an irreducible finite function such that $SC(g) \subset OT(\mathbb{I}_N)$, $g_d = f_d$, $(d,c) \cap \operatorname{supp}(g) = \emptyset$, $g(d) < f(d) + \tilde{\theta}_{c-d}(f(c);\mathbb{I}_N) \cdot \omega$, and $g <_{\mathbb{I}_N}^c f(c)$.

Then $\alpha = \psi_{\pi}^{g}(a) \in LSt_{i}$ and $\alpha^{\dagger j} \in SSt_{j}$ for $0 < j \leq i$ if $K_{\pi}(k(\alpha)) < a$, and

$$SC(g) \cup \{\mathbf{p}_0(\alpha)\} \subset M_\alpha$$
 (12)

Let $m(\alpha) = g$. $K_X(\alpha) = \emptyset$ if $\alpha \in X$. $K_X(\alpha) = \{a\} \cup K_X(k(\alpha))$ if $\alpha \notin X$. $m(\alpha^{\dagger j}) = \emptyset$. $K_X(\alpha^{\dagger j}) = \emptyset$ if $\alpha^{\dagger j} \in X$. $K_X(\alpha^{\dagger j}) = K_X(\alpha)$ if $\alpha^{\dagger j} \notin X$.

- 7. Let $\mathbb{S} \in SSt_i$ and $0 < k \leq i$. Then $\mathbb{S}^{\dagger k} \in SSt_k$. $m(\mathbb{S}^{\dagger k}) = \emptyset$. $K_X(\mathbb{S}^{\dagger k}) = \emptyset$ if $\mathbb{S}^{\dagger k} \in X$. $K_X(\mathbb{S}^{\dagger k}) = K_X(\mathbb{S})$ if $\mathbb{S}^{\dagger k} \notin X$.
- 8. Let $SSt_i^M = SSt_i \cup \{\alpha[\rho/\mathbb{S}] : \rho \prec \mathbb{S} \in SSt^M, \alpha \in M_\rho \cap SSt_i^M\}$ and $SSt^M = \bigcup_{0 < i \le N} SSt_i^M$. Also let $LSt_i^M = LSt_i \cup \{\alpha[\rho/\mathbb{S}] : \rho \prec \mathbb{S} \in SSt^M, \alpha \in M_\rho \cap LSt_i^M\}$ and $LSt^M = \bigcup_{0 < i \le N} LSt_i^M$.

Let $\rho \prec \mathbb{S} \in SSt_{i+1}^M$ and $\vec{i} = (i_0 \ge i_1 \ge \cdots \ge i_n) (n \ge 0)$ with $0 < i_n \le i_0 \le i+1$. Then $(\mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]) \in SSt_{i_n}^M \subset OT(\mathbb{I}_N)$, where a term $\mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]$ is built from terms $\mathbb{S}^{\dagger \vec{i}}$, ρ and \mathbb{S} by the constructor $*_0[*_1/*_2]$.

9. Let $\alpha = \beta[\rho/\mathbb{S}]$ with $\mathbb{S} < \beta \in M_{\rho}$, $\rho \prec \mathbb{S}$, and $\mathbb{S} \in SSt^{M}$. Then $\alpha \in OT(\mathbb{I}_{N}) \setminus St$.

Note that in Definition 3.31.5,

$$K_{\alpha}(k(\mathbb{T})) \cup \{b\} < a \tag{13}$$

follows from $\mathbb{S} = \mathbb{T}^{\dagger i} \in \mathcal{H}_a(\alpha)$ if $\mathbb{T} = \psi^g_{\sigma}(b) \in LSt_k$ with $k(\mathbb{T}) = \{\sigma, b\} \cup SC(g)$, and $\alpha = \psi^f_{\mathbb{S}}(a)$.

Proposition 3.32 Let $\alpha \in OT(\mathbb{I}_N)$.

- 1. $\alpha \in LSt_N$ iff $\alpha = \psi_{\mathbb{I}_N}(a)$ for an a. For 0 < i < N, $\alpha \in LSt_i \cap \Psi$ iff there exists an $\mathbb{S} \in SSt_{i+1}$ such that $\alpha \prec \mathbb{S}$.
- 2. $\beta \in SSt_k$ iff there exists an $\alpha \in \{\Omega\} \cup (LSt_i \cap \Psi)$ for an $k \leq i \leq N$ and a non-empty and non-increasing sequence $\vec{i} = (i_0 \geq i_1 \geq \cdots \geq i_n)$ of numbers such that $k = i_n > 0$, $\alpha \in LSt_i \Rightarrow i_0 \leq i$ and $\beta = \alpha^{\dagger \vec{i}}$.

- 3. Let $\psi_{\mathbb{S}}^{f}(a) \in OT(\mathbb{I}_{N})$ with $\mathbb{S} \in SSt$. Suppose that there exists a sequence $\{(\mathbb{T}_{m}, \mathbb{S}_{m}, \vec{i}_{m})\}_{m \leq n}$ of $\mathbb{T}_{m} \in LSt \cap \Psi$, $\mathbb{S}_{m} \in SSt$ and sequences \vec{i}_{m} of numbers such that $\mathbb{T}_{0} = \psi_{\mathbb{I}_{N}}(b)$, $\mathbb{S}_{m} = \mathbb{T}_{m}^{\dagger \vec{i}_{m}}$ and $\mathbb{T}_{m+1} \prec \mathbb{S}_{m}$ (m < n), and $\mathbb{S} = \mathbb{S}_{n}$. Then b < a holds.
- 4. $\alpha \in SSt^M$ iff there exists a ρ and an \vec{i} such that $\alpha \in \{\rho^{\dagger \vec{i}}, \mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]\}$.

Proof. 3.32.1 and 3.32.2. We see these from Definitions 3.31.1, 3.31.4, 3.31.5, 3.31.6 and 3.31.7.

3.32.3. Let $\mathbb{T}_m = \psi_{\sigma_m}^{g_m}(b_m)$ and $\mathbb{T}_m \preceq \psi_{\mathbb{S}_{m-1}}^{f_{m-1}}(a_{m-1})$ for $\psi_{\mathbb{S}_{m-1}}^{f_{m-1}} = \psi_{\mathbb{I}_N}$ and $a_{-1} = b$. In general, if $\sigma = \psi_{\tau}^f(c) \in \mathcal{H}_b(\psi_{\sigma}^g(b))$ with $\psi_{\sigma}^g(b) < \sigma$, then c < b. Hence $a_{m-1} \leq b_m$. On the other we obtain $b_m < a_m$ by (13), where $a_n = a$.

Sets $\mathcal{H}_{\gamma}(X)$ are defined for $\{\gamma\} \cup X \subset OT(\mathbb{I}_N)$ in such a way that $\alpha \in \mathcal{H}_{\gamma}(X)$ iff $K_X(\alpha) < \gamma$ for $\alpha, \gamma \in OT(\mathbb{I}_N)$ and $X \subset OT(\mathbb{I}_N)$. In particular $OT(\mathbb{I}_N) = \mathcal{H}_{\varepsilon(\mathbb{I}_N)}(0)$, and $\mathcal{H}_{\gamma}(X)$ is closed under Mostowski collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$ if $\gamma \geq \mathbb{I}_N$, and differs from sets defined in Definition 3.8.

We define terms $\alpha[\rho/\mathbb{S}]$, sets $K_X(\alpha[\rho/\mathbb{S}])$ and a relation $\beta < \gamma$ on $OT(\mathbb{I}_N)$ recursively as follows.

Definition 3.33 (Definitions of $\alpha[\rho/\mathbb{S}]$ and $K_X(\alpha[\rho/\mathbb{S}])$)

Let $\rho \prec \mathbb{S} \in SSt_{i+1}^M$. We define a term $\alpha[\rho/\mathbb{S}] \in OT(\mathbb{I}_N)$ for $\alpha \in M_\rho$ in such a way that $\alpha[\rho/\mathbb{S}] = \alpha$ iff $\alpha < \rho$. Moreover $\alpha[\rho/\mathbb{S}] \in St$ iff either $\alpha[\rho/\mathbb{S}] = \alpha \in St$ or $\alpha[\rho/\mathbb{S}] = \rho \in SSt$.

Also $K_X(\alpha[\rho/\mathbb{S}])$ is defined recursively as follows. The map $\alpha \mapsto \alpha[\rho/\mathbb{S}]$ commutes with $\psi, \varphi, \mathbb{I}_N[\cdot]$, and $+ K_X(\alpha[\rho/\mathbb{S}]) = \emptyset$ if $\alpha[\rho/\mathbb{S}] \in X$.

1. $\alpha[\rho/\mathbb{S}] := \alpha$ when $\alpha < \mathbb{S}$.

In what follows assume $\alpha \geq \mathbb{S}$, $\alpha[\rho/\mathbb{S}] \geq \rho$ and $\alpha[\rho/\mathbb{S}] \notin X$.

2. $(\mathbb{S})[\rho/\mathbb{S}] := \rho$ and $(\mathbb{I}_N)[\rho/\mathbb{S}] := \mathbb{I}_N[\rho].$

For $\vec{i} = (i_0 \ge i_1 \ge \cdots \ge i_n) \le i+1$, $(\mathbb{S}^{\dagger \vec{i}})[\rho/\mathbb{S}] := (\mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]) \in SSt^M_{i_n}$, cf. Definition 3.31.8. Here $\mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}] \ne \rho^{\dagger \vec{i}}$.

$$K_X(\alpha[\rho/\mathbb{S}]) = K_X(\rho) \text{ if } \alpha[\rho/\mathbb{S}] \in \{\mathbb{I}_N[\rho], \mathbb{S}^{\dagger i}[\rho/\mathbb{S}]\}.$$

- 3. Let $\alpha = \psi_{\mathbb{I}_N}(a)$. Then $\alpha[\rho/\mathbb{S}] = \psi_{\mathbb{I}_N[\rho]}(a[\rho/\mathbb{S}])$. $K_X(\alpha[\rho/\mathbb{S}]) = K_X(\{\rho, a[\rho/\mathbb{S}]\}) \cup \{a[\rho/\mathbb{S}]\}.$
- 4. Let $\alpha = \psi_{\kappa}^{f}(a)$. Then $\alpha[\rho/\mathbb{S}] = \psi_{\kappa[\rho/\mathbb{S}]}^{f[\rho/\mathbb{S}]}(a[\rho/\mathbb{S}])$, where $(f[\rho/\mathbb{S}]) : \mathbb{I}_{N}[\rho] \to \varphi_{\mathbb{I}_{N}[\rho]}(0)$, $\operatorname{supp}(f[\rho/\mathbb{S}]) = (\operatorname{supp}(f))[\rho/\mathbb{S}] = \{c[\rho/\mathbb{S}] : c \in \operatorname{supp}(f)\}$ and $(f[\rho/\mathbb{S}])(c[\rho/\mathbb{S}]) = (f(c))[\rho/\mathbb{S}]$ for $f : \mathbb{I}_{N}[\rho] \to \varphi_{\mathbb{I}_{N}[\rho]}(0)$ and $c \in \operatorname{supp}(f)$. $K_{X}(\alpha[\rho/\mathbb{S}]) = K_{X}(\{\kappa[\rho/\mathbb{S}], a[\rho/\mathbb{S}]\} \cup SC(f[\rho/\mathbb{S}])) \cup \{a[\rho/\mathbb{S}]\}.$ $M_{\alpha[\rho/\mathbb{S}]} = \mathcal{H}_{b[\rho/\mathbb{S}]}(\alpha[\rho/\mathbb{S}])$ for $b = p_{0}(\alpha)$ and $b[\rho/\mathbb{S}] = p_{0}(\alpha[\rho/\mathbb{S}]).$

- 5. Let $\alpha = \mathbb{I}_N[\tau] \neq \mathbb{I}_N$. Then $\alpha[\rho/\mathbb{S}] = \mathbb{I}_N[\tau[\rho/\mathbb{S}]]$, where $\mathbb{I}_N[\tau] \in M_\rho$ iff $\tau \in M_\rho$. $K_X(\alpha[\rho/\mathbb{S}]) = K_X(\tau[\rho/\mathbb{S}])$.
- 6. Let $\alpha = \psi_{\mathbb{I}_N[\tau]}(a)$ for $\mathbb{I}_N[\tau] \neq \mathbb{I}_N$. Then $\alpha[\rho/\mathbb{S}] = \psi_{\mathbb{I}_N[\tau[\rho/\mathbb{S}]]}(a[\rho/\mathbb{S}])$. $K_X(\alpha[\rho/\mathbb{S}]) = K_X(\{\tau[\rho/\mathbb{S}], a[\rho/\mathbb{S}]\}) \cup \{a[\rho/\mathbb{S}]\}.$
- 7. Let $\alpha = \tau^{\dagger \vec{j}}$ with $\mathbb{S} < \tau \in LSt^M$. Then $\alpha[\rho/\mathbb{S}] = (\tau[\rho/\mathbb{S}])^{\dagger \vec{j}}$, where $\tau^{\dagger \vec{j}} \in M_\rho$ iff $\tau \in M_\rho$. $K_X(\alpha[\rho/\mathbb{S}]) = K_X(\tau[\rho/\mathbb{S}])$.
- 8. Let $\alpha = \mathbb{T}^{\dagger \vec{j}}[\tau/\mathbb{T}]$, where $\tau \prec \mathbb{T} \in SSt^M$. Then $\alpha[\rho/\mathbb{S}] = \mathbb{T}_1^{\dagger \vec{j}}[\tau_1/\mathbb{T}_1]$, where $\tau_1 = \tau[\rho/\mathbb{S}] \prec \mathbb{T}_1 = \mathbb{T}[\rho/\mathbb{S}] \in SSt^M$ and $\mathbb{T}_1^{\dagger \vec{j}} = (\mathbb{T}_1)^{\dagger \vec{j}}$. $K_X(\alpha[\rho/\mathbb{S}]) = K_X(\tau[\rho/\mathbb{S}])$.
- 9. Let $\alpha = \varphi \beta \gamma$. Then $\alpha[\rho/\mathbb{S}] = \varphi(\beta[\rho/\mathbb{S}])(\gamma[\rho/\mathbb{S}])$. $K_X(\alpha[\rho/\mathbb{S}]) = K_X(\beta[\rho/\mathbb{S}], \gamma[\rho/\mathbb{S}])$.
- 10. For $\alpha = \alpha_m + \dots + \alpha_0 (m > 0), \ \alpha[\rho/\mathbb{S}] = (\alpha_m[\rho/\mathbb{S}]) + \dots + (\alpha_0[\rho/\mathbb{S}]).$ $K_X(\alpha[\rho/\mathbb{S}]) = \bigcup \{K_X(\alpha_i[\rho/\mathbb{S}])) : i \le m\}.$

A relation $\alpha < \beta$ for $\alpha, \beta \in OT(\mathbb{I}_N)$ is defined according to Lemmas 3.16 and 3.19, Propositions 3.17, 3.20, and 3.27, and Corollary 3.23, provided that $\alpha \in \mathcal{H}_{\gamma}(X)$ is replaced by $K_X(\alpha) < \gamma$. The relation enjoys $\psi_{\kappa}^f(a) < \kappa$ according to Lemma 3.19 and Corollary 3.23. Moreover we obtain $\mathbb{S}^{\dagger i} < \psi_{\mathbb{S}^{\dagger}(i+1)}^{g_0}(b_0) < \mathbb{S}^{\dagger(i+1)}$ for $i+1 \leq N$, and $LSt_N \ni \tau_0 = \psi_{\mathbb{I}_N}(c_0) < \psi_{\tau_0^{\dagger}}^{h_0}(d_0) < \tau_0^{\dagger} < \mathbb{I}_N$ by Proposition 3.20 and Lemma 3.16. Hence if $\mathbb{S} < \psi_{\mathbb{I}_N}(c_0)$, then $\mathbb{S} < \mathbb{S}^{\dagger i} < \psi_{\mathbb{S}^{\dagger}(i+1)}^{g_0}(b_0) < \mathbb{S}^{\dagger(i+1)} < \tau_0 = \psi_{\mathbb{I}_N}(c_0) < \psi_{\tau_0^{\dagger}}^{h_0}(d_0) < \tau_0^{\dagger} < \mathbb{I}_N$. The Mostowski collapsing $\cdot [\rho/\mathbb{S}]$ maps these inequalities isomorphically to $\rho < \mathbb{S}^{\dagger i}[\rho/\mathbb{S}] < \psi_{\mathbb{S}^{\dagger}(i+1)}[\rho/\mathbb{S}](b) < \mathbb{S}^{\dagger(i+1)}[\rho/\mathbb{S}] < \tau = \psi_{\mathbb{I}_N}[\rho](c) < \psi_{\tau^{\dagger}}^{h}(d) < \tau^{\dagger} < \mathbb{I}_N[\rho] < \rho^{\dagger 0}$, where $b = b_0[\rho/\mathbb{S}]$, etc.

Definition 3.34 For terms $\pi, \kappa \in OT(\mathbb{I}_N)$, a relation $\pi \prec^R \kappa$ is defined recursively as follows.

- 1. Let $\pi \prec \kappa \preceq \mathbb{S} \in SSt_{i+1}^M$, and $\vec{i} \leq i+1$. Then each of $\pi \prec^R \kappa$, $\mathbb{S}^{\dagger \vec{i}}[\pi/\mathbb{S}] \prec^R \kappa$ and $\mathbb{I}_N[\pi] \prec^R \kappa$ holds. Moreover $\pi^{\dagger \vec{i}} \prec^R \kappa$ holds provided that $\pi^{\dagger \vec{i}} \notin SSt$.
- 2. $\tau \prec^R \pi \prec^R \kappa \Rightarrow \tau \prec^R \kappa$.

Let $\pi \preceq^R \kappa :\Leftrightarrow \pi \prec^R \kappa \lor \pi = \kappa$. For $\mathbb{S} \in SSt$, let

$$L(\mathbb{S}) := \{ \alpha \in OT(\mathbb{I}_N) : \alpha \prec^R \mathbb{S} \}.$$

Note that $L(\mathbb{S}) \cap SSt = \emptyset$, and $SSt \ni \rho^{\vec{i}} \not\prec^R \mathbb{S}$ for $LSt_i \ni \rho \prec \mathbb{S} \in SSt_{i+1}$ and $\vec{i} \leq i$. For each strongly critical number $\Omega < \alpha \notin \{\mathbb{I}_N\} \cup St$, there exists a unique $\mathbb{S} \in SSt$ such that $\alpha \prec^R \mathbb{S}$. If $\beta \prec^R \mathbb{T}$ and $\alpha \prec^R \mathbb{S}$ with $\mathbb{T} < \mathbb{S}$, then $\beta < \alpha$. In other words, $L(\mathbb{T}) < L(\mathbb{S})$ for layers $L(\mathbb{S})$. Moreover if $\eta \notin \bigcup_{\mathbb{S} \in SSt} L(\mathbb{S}) \cup SSt$ and $\eta \in \Psi$, then either $\eta \prec \Omega$ or $\eta \prec \mathbb{I}_N$.

Definition 3.35 Let $\beta, \alpha \in OT(\mathbb{I}_N) \cap \mathbb{I}_N$ be strongly critical numbers. $\beta < \alpha$ iff one of the following cases holds:

- 1. $\beta = \psi_{\Omega}(b), \alpha = \psi_{\Omega}(a) \text{ and } b < a.$
- 2. $\beta = \psi_{\pi}(b), \ \alpha = \psi_{\kappa}(a), \ \pi = \kappa \in \{\mathbb{I}_N\} \cup \{\sigma \in OT(\mathbb{I}_N) : \exists \rho(\sigma = \mathbb{I}_N[\rho])\},\$ and b < a.
- 3. $\beta = \Omega$ and $\Omega \neq \alpha \neq \psi_{\Omega}(a)$.
- 4. $\mathbb{S}^{\dagger \vec{i}} < \mathbb{T}^{\dagger \vec{j}}$ iff $(\mathbb{S}) * \vec{i} <_{lx} (\mathbb{T}) * \vec{j}$ for $\mathbb{S}, \mathbb{T} \in \{\Omega\} \cup (LSt \cap \Psi)$, where $\vec{i} = (i_0, i_1, \ldots, i_n) <_{lx} (j_0, j_1, \ldots, j_m) = \vec{j}$ iff either $\exists k \leq \min\{n, m\} (\forall p < k(i_p = j_p) \& i_k < j_k)$ or $n < m \& \forall p \leq n(i_p = j_p)$.
- 5. (a) There is an $\mathbb{S} \in SSt$ such that $\alpha \prec^R \mathbb{S} > \beta \in LSt_N$. (b) There is a $\mathbb{T} \in SSt$ such that $\beta \prec^R \mathbb{T} < \alpha$.
- 6. There are $\mathbb{T}, \mathbb{S} \in SSt$ such that $\beta \prec^R \mathbb{T}$ and $\alpha \prec^R \mathbb{S}$ with $\mathbb{T} < \mathbb{S}$.
- 7. There is an $\mathbb{S} \in SSt$ such that $\beta, \alpha \prec^R \mathbb{S}$ and one of the following holds:
 - (a) $\beta = \psi_{\pi}^{f}(b), \alpha = \psi_{\kappa}^{g}(a)$, and there is a $\rho \preceq^{R} \mathbb{S}$ such that $\kappa, \pi \preceq \rho$ and one of the following holds:
 - i. $\pi \leq \alpha$. ii. $b < a, \beta < \kappa$, and $K_{\alpha}(SC(f) \cup \{\pi, b\}) < a$ iii. b > a and $b \leq K_{\beta}(SC(g) \cup \{\kappa, a\})$. iv. $b = a, \kappa < \pi$, and $b \leq K_{\beta}(\kappa)$. v. $b = a, \pi = \kappa, K_{\alpha}(SC(f)) < a$, and $f <_{lx}^{0} g$. vi. $b = a, \pi = \kappa$, and $b \leq K_{\beta}(SC(g))$.
 - (b) There are $\mathbb{I}_{N}[\rho] \prec^{R} \mathbb{S}$, c, d and \vec{i}, \vec{j} such that $\beta \preceq^{R} (\psi_{\mathbb{I}_{N}[\rho]}(d))^{\dagger \vec{i}}$, $\alpha \preceq^{R} (\psi_{\mathbb{I}_{N}[\rho]}(c))^{\dagger \vec{j}}$ and $\psi_{\mathbb{I}_{N}[\rho]}(d) < \psi_{\mathbb{I}_{N}[\rho]}(c)$.
 - (c) There are \vec{i} , $\mathbb{I}_N[\rho]$ such that $\rho \prec \mathbb{T} \preceq^R \mathbb{S}$, $\beta \preceq^R \mathbb{T}^{\dagger \vec{i}}[\rho/\mathbb{T}]$ and $\alpha \preceq^R \mathbb{I}_N[\rho]$.
 - (d) There are $\rho \prec \mathbb{T} \preceq^R \mathbb{S}$, $\sigma, \tau \prec \mathbb{U} = \mathbb{T}^{\dagger \vec{i}}[\rho/\mathbb{T}]$, \vec{k} and \vec{l} such that $\tau < \sigma$, $(\tau, \sigma) \neq (\beta, \alpha)$, $\alpha = \sigma \lor \alpha \preceq^R \mathbb{I}_N[\sigma] \lor \alpha \preceq^R \mathbb{U}^{\dagger \vec{k}}[\sigma/\mathbb{U}]$, and $\beta = \tau \lor \beta \preceq^R \mathbb{I}_N[\tau] \lor \beta \preceq^R \mathbb{U}^{\dagger \vec{l}}[\tau/\mathbb{U}]$.

Lemma 3.36 $(OT(\mathbb{I}_N), <)$ is a computable linear order. Specifically each of $\alpha < \beta$ and $\alpha = \beta$ is decidable for $\alpha, \beta \in OT(\mathbb{I}_N)$, and $\alpha \in OT(\mathbb{I}_N)$ is decidable for terms α over symbols $\{0, \Omega, \mathbb{I}_N, +, \varphi, \psi\}$, $\{^{\dagger i} : 0 < i \leq N\}$, $\mathbb{I}_N[*]$ and $*_0[*_1/*_2]$.

In particular the order type of the initial segment $\{\alpha \in OT(\mathbb{I}_N) : \alpha < \Omega\}$ is less than ω_1^{CK} if it is well-founded.

In what follows by ordinals we mean ordinal terms in $OT(\mathbb{I}_N)$. $\ell \alpha$ denotes the length of ordinal terms α , which means the number of occurrences of symbols in α .

Proposition 3.37 If $\mathbb{S} \in St_{i+1} = SSt_{i+1} \cup LSt_{i+1}$ and $\alpha < \mathbb{S}$, then $\alpha^{\dagger i} < \mathbb{S}$.

Proof. This is seen from Proposition 3.32 and Definition 3.35.

Proposition 3.38 $\{\mathbb{S}\} \cup SC(m(\rho)) \cup \{p_0(\rho)\} \subset M_\rho \text{ for } \rho \in \Psi_{\mathbb{S}}.$

Proof. If $\rho = \psi_{\mathbb{S}}^{f}(a)$ with an $\mathbb{S} \in SSt$, then we obtain $f = m(\rho)$, $a = \mathbf{p}_{0}(\rho)$, $\{\mathbb{S}\} \cup SC(f) \cup \{p_0(\rho)\} \subset \mathcal{H}_a(\alpha) = M_\rho$ by Definition 3.31.5. Otherwise $\{\mathbb{S}\} \cup$ $SC(m(\rho)) \cup \{\mathbf{p}_0(\rho)\} \subset M_{\rho}$ follows from (12) in Definition 3.31.6.

An ordinal term $\sigma \in OT(\mathbb{I}_N)$ is said to be *regular* if either $\sigma \in \{\Omega, \mathbb{I}_N\} \cup$ $\{\sigma \in OT(\mathbb{I}_N) : \exists \rho(\sigma = \mathbb{I}_N[\rho])\}$ or $\psi^f_{\sigma}(a)$ is in $OT(\mathbb{I}_N)$ for some f and a. Reg denotes the set of regular terms. Then $Reg = SSt^M \cup \{\mathbb{I}_N[\rho] : \exists \mathbb{S} \in SSt^M(\rho \prec \rho)\}$ \mathbb{S} \cup $\{\Omega, \mathbb{I}_N\}$. We see that for each $\alpha \in \Psi$, there exists a $\kappa \in Reg_0 := (Reg \setminus \Psi)$ such that $\alpha \prec \kappa$. Such a κ is either in $\{\Omega, \mathbb{I}_N\}$ or one of the form $\mathbb{I}_N[\rho], \rho^{\dagger i}$ or $\mathbb{S}^{\dagger i}[\rho/\mathbb{S}]$ with a non-empty \vec{i} .

Proposition 3.39 Let $\psi^f_{\pi}(a) < \psi^g_{\kappa}(b) < \pi < \kappa$ and $\pi \preceq \rho$ and $\kappa \preceq \tau$ with $\{\rho,\tau\} \subset Reg_0$. Then $\rho = \tau$.

Proof. From Definition 3.35 we see that the only possible case is Definition 3.35(7a).

Lemma 3.40 For $\rho \prec \mathbb{S}$ and $\mathbb{S} \in SSt$, $\{\alpha[\rho/\mathbb{S}] : \alpha \in M_{\rho}\}$ is a transitive collapse of M_{ρ} in the following sense. Let $\{\alpha, \beta, \gamma\} \subset M_{\rho}$.

- 1. $\beta < \alpha \Leftrightarrow \beta[\rho/\mathbb{S}] < \alpha[\rho/\mathbb{S}].$
- 2. $\beta \prec^R \alpha \Leftrightarrow \beta[\rho/\mathbb{S}] \prec^R \alpha[\rho/\mathbb{S}].$
- 3. $\mathbb{S} < \gamma \Rightarrow (K_{\gamma}(\beta) < \alpha \Leftrightarrow K_{\gamma[\rho/\mathbb{S}]}(\beta[\rho/\mathbb{S}]) < \alpha[\rho/\mathbb{S}]).$
- 4. $OT(\mathbb{I}_N) \cap \alpha[\rho/\mathbb{S}] = \{\gamma[\rho/\mathbb{S}] : \gamma \in M_\rho \cap \alpha\}.$

Proof. We show Lemmas 3.40.1- 3.40.3 simultaneously by induction on the sum $2^{\ell \alpha} + 2^{\ell \beta}$ for $\alpha, \beta \in M_{\rho}$. We see easily that $\mathbb{S} > \Gamma(\mathbb{I}_{N}[\rho]) > \alpha[\rho/\mathbb{S}] > \rho$ when $\alpha > \mathbb{S}$. Also $\alpha[\rho/\mathbb{S}] \leq \alpha$. 3.40.2 and 3.40.3 are seen from IH.

3.40.1. Let $k(\psi_{\kappa}^g(a)) = SC(g) \cup \{\kappa, a\}$. Let $\mathbb{S} < \beta = \psi_{\pi}^f(b) < \psi_{\kappa}^g(a) = \alpha$ with $k(\beta, \alpha) \subset M_{\rho}$. From IH with Definition 3.35 we see that $\beta[\rho/\mathbb{S}] = \psi_{\pi[\rho/\mathbb{S}]}^{f[\rho/\mathbb{S}]}(b[\rho/\mathbb{S}]) < \psi_{\kappa[\rho/\mathbb{S}]}^{g[\rho/\mathbb{S}]}(a[\rho/\mathbb{S}]) = \alpha[\rho/\mathbb{S}]$. Other cases are seen from IH. 3.40.3. Suppose $K_{\gamma}(\beta) < \alpha$ for $\mathbb{S} < \gamma$. Then $K_{\gamma[\rho/\mathbb{S}]}(\beta[\rho/\mathbb{S}]) < \alpha[\rho/\mathbb{S}]$ is seen

from IH and Lemma 3.40.1 using the fact $\gamma[\rho/\mathbb{S}] > \rho$.

3.40.4. Let $\beta \in OT(\mathbb{I}_N) \cap \alpha[\rho/\mathbb{S}]$ for $\alpha \in M_\rho$. We show by induction on $\ell\beta$ that there exists a $\gamma \in M_\rho$ such that $\beta = \gamma[\rho/\mathbb{S}]$. If $\beta < \rho$, then $\beta[\rho/\mathbb{S}] = \beta$. Also $\rho = \mathbb{S}[\rho/\mathbb{S}]$ and $\mathbb{I}_N[\rho] = (\mathbb{I}_N)[\rho/\mathbb{S}]$. Let $\Gamma(\mathbb{I}_N[\rho]) > \alpha[\rho/\mathbb{S}] > \beta > \rho$. We may assume $\mathbb{I}_N[\rho] > \beta > \rho$ by IH.

If $\beta = \mathbb{I}_N[\tau]$, then $\mathbb{I}_N[\tau] > \tau$. Pick a $\kappa \in M_\rho$ such that $\kappa[\rho/\mathbb{S}] = \tau$. Then $\beta = (\mathbb{I}_N[\kappa])[\rho/\mathbb{S}]$.

If $\beta = \tau^{\dagger \vec{i}}$, then $\tau^{\dagger \vec{i}} > \tau$. Pick a $\kappa \in M_{\rho}$ such that $\kappa[\rho/\mathbb{S}] = \tau$. Then $\beta = (\kappa^{\dagger \vec{i}})[\rho/\mathbb{S}]$.

If $\beta = \mathbb{T}_1^{\dagger \vec{j}}[\tau_1/\mathbb{T}_1]$, then $\mathbb{T}_1^{\dagger \vec{j}}[\tau_1/\mathbb{T}_1] > \tau_1$. Pick a $\tau \in M_\rho$ such that $\tau[\rho/\mathbb{S}] = \tau_1$. Then for $\tau \prec \mathbb{T} \in SSt^M$, we obtain $\beta = (\mathbb{T}^{\dagger \vec{j}}[\tau/\mathbb{T}])[\rho/\mathbb{S}]$.

Finally let $\beta = \psi_{\pi}^{f}(b)$ with $k(\beta) \subset \mathcal{H}_{b}(\beta)$, $b < \Gamma(\mathbb{I}_{N}[\rho])$ and $f : \Lambda \to \varphi_{\Lambda}(0)$ for $\pi \preceq \sigma^{\dagger \vec{k}}$ with a $\vec{k} \neq \emptyset$. We have $\beta \prec \sigma^{\dagger \vec{k}}$, $\rho < \beta < \mathbb{I}_{N}[\rho]$, and $\rho \prec \mathbb{S}$. By Definition 3.35 we obtain $\sigma \neq \mathbb{S}$. Suppose $\beta < \mathbb{S} < \sigma^{\dagger \vec{k}}$. Then $\alpha < \rho$ by Definition 3.35. Hence we may assume $\sigma^{\dagger \vec{k}} < \mathbb{S}$. Then we obtain $\rho < \sigma^{\dagger k} < \mathbb{I}_{N}[\rho]$. Hence $\sigma \prec^{R} \mathbb{I}_{N}[\rho]$ or $\sigma \prec^{R} \mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]$ for an \vec{i} . By IH with $\pi \leq \sigma^{\dagger \vec{k}}$ there are $\{c, \kappa, \lambda\} \subset M_{\rho}$ and $g : \lambda \to \varphi_{\lambda}(0)$ such that $c[\rho/\mathbb{S}] = b$, $\kappa[\rho/\mathbb{S}] = \pi$, $\lambda[\rho/\mathbb{S}] = \Lambda$, $SC(g) \subset M_{\rho}$, $g[\rho/\mathbb{S}] = f$ in the sense that $(\operatorname{supp}(g))[\rho/\mathbb{S}] = \operatorname{supp}(f)$ and $(g(d))[\rho/\mathbb{S}] = f(d[\rho/\mathbb{S}])$ for every $d \in \operatorname{supp}(g)$. Let $\gamma = \psi_{\kappa}^{g}(c) \in M_{\rho}$. Then $\gamma[\rho/\mathbb{S}] = \psi_{\pi}^{f}(b) = \beta$ and $k(\gamma) \subset \mathcal{H}_{c}(\gamma)$.

Other cases are seen from IH.

Lemma 3.41 1. Let $\alpha = \psi_{\Omega}(a)$ with $a \in \mathcal{H}_a(\alpha)$. Then $\mathcal{H}_a(\alpha) \cap \Omega \subset \alpha$.

- 2. Let $\alpha = \psi_{\mathbb{I}_N}(a)$ with $a \in \mathcal{H}_a(\alpha)$. Then $\mathcal{H}_a(\alpha) \cap \mathbb{I}_N \subset \alpha$.
- 3. Let $\mathbb{S} \in SSt$, and $\alpha = \psi_{\kappa}^{f}(a) < \kappa$ with $\kappa \preceq \mathbb{S}$ and $\{\kappa, a\} \cup SC(f) \subset \mathcal{H}_{a}(\alpha)$. Then $\mathcal{H}_{a}(\alpha) \cap \kappa \subset \alpha$.

Proof. We see $\beta \in \mathcal{H}_a(\alpha) \cap \Omega \Rightarrow \beta < \alpha = \psi_{\Omega}(a)$ by induction on the lengths $\ell\beta$ of β . Lemmas 3.41.2 and 3.41.3 are seen similarly using the fact $\rho < \alpha \Rightarrow \mathbb{I}_N[\rho] < \alpha$ for $\alpha \in \{\psi_{\mathbb{I}_N}(a), \psi_{\kappa}^f(a)\}$. \Box

Proposition 3.42 Let $\mathbb{S} \in SSt$, and $\rho = \psi_{\kappa}^{f}(a) < \kappa$ with $\kappa \preceq \mathbb{S}$ and $\mathcal{H}_{\gamma}(\kappa) \cap \mathbb{S} \subset \kappa$ for $\gamma \leq a$. Then $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \rho$.

Proof. If $\kappa = \mathbb{S}$, then $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \mathcal{H}_{a}(\rho) \cap \mathbb{S} \subset \rho$ by $\gamma \leq a$ and Lemma 3.41.3. Let $\kappa = \psi_{\pi}^{g}(b) < \mathbb{S}$. We have $\kappa \in \mathcal{H}_{a}(\rho)$ by (7), and hence b < a by $\mathbb{S} > \kappa > \rho$. We obtain $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \mathcal{H}_{\gamma}(\kappa) \cap \mathbb{S} \subset \kappa$. $\gamma \leq a$ with Lemma 3.41.3 yields $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \mathcal{H}_{\gamma}(\rho) \cap \kappa \subset \mathcal{H}_{a}(\rho) \cap \kappa \subset \rho$. \Box

Lemma 3.43 Let $\rho \in \Psi_{\mathbb{S}}$ for an $\mathbb{S} \in SSt$.

- 1. $\mathcal{H}_{\gamma}(M_{\rho}) \subset M_{\rho}$ if $\gamma \leq \mathfrak{p}_0(\rho)$.
- 2. $M_{\rho} \cap \mathbb{S} = \rho$ and $\rho \notin M_{\rho}$.
- 3. If $\sigma < \rho$ and $\mathbf{p}_0(\sigma) \leq \mathbf{p}_0(\rho)$, then $M_{\sigma} \subset M_{\rho}$.

Proof. Lemmas 3.43.2 and 3.43.3 are seen readily.

3.43.1. Let $\gamma \leq b = \mathbf{p}_0(\rho)$. We show $\alpha \in M_\rho = \mathcal{H}_b(\rho)$ by induction on $\ell \alpha$ for $\alpha \in \mathcal{H}_\gamma(M_\rho)$. Let $k(\alpha) \subset \mathcal{H}_\gamma(M_\rho) \cap \mathcal{H}_a(\alpha)$ be such that $a < \gamma \leq b$ and $\alpha = \psi_\kappa^g(a) \in \mathcal{H}_\gamma(M_\rho)$. If yields $k(\alpha) \subset M_\rho$. We obtain $\alpha \in \mathcal{H}_b(\rho)$.

Other cases are seen from IH.

Definition 3.44 (Mostowski uncollapsing)

Let α be an ordinal term and $\rho \prec \mathbb{S}$ with $\mathbb{S} \in SSt$. If there exists a $\beta \in M_{\rho}$ such that $\alpha = \beta[\rho/\mathbb{S}]$, then $\alpha[\rho/\mathbb{S}]^{-1} := \beta$. Otherwise $\alpha[\rho/\mathbb{S}]^{-1} := 0$. Let $X[\rho/\mathbb{S}]^{-1} := \{\alpha[\rho/\mathbb{S}]^{-1} : \alpha \in X\}$ for a set X of ordinal terms.

We see that ordinal terms ρ and $\beta \in M_{\rho}$ with $\rho \leq \alpha = \beta[\rho/\mathbb{S}] < \Gamma(\mathbb{I}_{N}[\rho])$ are uniquely determined from α , when such β and ρ exist.

4 Operator controlled derivations

We prove Theorem 1.1 assuming that the notation system $(OT(\mathbb{I}_N), <)$ is a well ordering. Operator controlled derivations are introduced by W. Buchholz[9], which we follow. In this section except otherwise stated, $\alpha, \beta, \gamma, \ldots, a, b, c, d, \ldots$ and $\xi, \zeta, \nu, \mu, \ldots$ range over ordinal terms in $OT(\mathbb{I}_N), f, g, h, \ldots$ range over finite functions.

4.1 Classes of sentences

Following Buchholz[9] let us introduce a language of ramified set theory RS.

Definition 4.1 *RS-terms* and their *levels* are inductively defined.

- 1. For each $\alpha \in OT(\mathbb{I}_N) \cap \mathbb{I}_N$, L_α is an *RS*-term of level α .
- 2. Let $\phi(x, y_1, \ldots, y_n)$ be a set-theoretic formula in the language $\{\in\}$, and a_1, \ldots, a_n RS-terms of levels $< \alpha \in OT(\mathbb{I}_N) \cap \mathbb{I}_N$. Then $[x \in \mathcal{L}_{\alpha} : \phi^{\mathcal{L}_{\alpha}}(x, a_1, \ldots, a_n)]$ is an RS-term of level α .

Let us identify the individual constant M_0 in the language of $S_{\mathbb{I}_N}$ with the RS-term L_{Ω} .

- **Definition 4.2** 1. |u| denotes the level of RS-terms u, and $Tm(\alpha)$ the set of RS-terms of level $< \alpha \in OT(\mathbb{I}_N) \cap (\mathbb{I}_N + 1)$. $Tm = Tm(\mathbb{I}_N)$ is then the set of RS-terms, which are denoted by u, v, w, \ldots
 - 2. RS-formulas are constructed from literals $u \in v, u \notin v$ and $st_i(u), \neg st_i(u)$ for $0 < i \leq N$ by propositional connectives \lor, \land , bounded quantifiers $\exists x \in u, \forall x \in u$ and unbounded quantifiers $\exists x, \forall x$. Unbounded quantifiers $\exists x, \forall x$ are denoted by $\exists x \in L_{\mathbb{I}_N}, \forall x \in L_{\mathbb{I}_N}$, resp.

It is convenient for us not to restrict propositional connectives \lor, \land to binary ones. Specifically when A_i are RS-formulas for $i < n < \omega, A_0 \lor \cdots \lor$

 A_{n-1} and $A_0 \wedge \cdots \wedge A_{n-1}$ are *RS*-formulas. Even when $n = 1, A_0 \vee \cdots \vee A_0$ is understood to be different from the formula A_0 . For $\Gamma = \{A_i : i < n\}$ we write $\bigvee \Gamma \equiv (A_0 \vee \cdots \vee A_{n-1})$ and $\bigwedge \Gamma \equiv (A_0 \wedge \cdots \wedge A_{n-1})$.

3. For *RS*-terms and *RS*-formulas ι , $k(\iota)$ denotes the set of ordinal terms α such that the constant L_{α} occurs in ι , and $|\iota| = \max(k(\iota) \cup \{0\})$.

Also let $\mathcal{B}(\mathsf{k}(\iota)) := \bigcup \{ \mathcal{B}(\alpha) : \alpha \in \mathsf{k}(\iota) \}$, cf. Definition 4.10 and (19) in Definition 4.14.

Let $k(n) = \mathcal{B}(k(n)) = \emptyset$ and |n| = 0 for natural numbers n.

- 4. $\mathcal{L}_i = \{ \in \} \cup \{ st_j : 0 < j < i \}.$
- 5. $\Delta_0(\mathcal{L}_i)$ -formulas, $\Sigma_1(\mathcal{L}_i)$ -formulas and $\Sigma(\mathcal{L}_i)$ -formulas are defined as in [6]. Specifically if ψ is a $\Sigma(\mathcal{L}_i)$ -formula, then so is the formula $\forall y \in z \psi$. $\theta^{(u)}$ denotes a $\Delta_0(\mathcal{L}_i)$ -formula obtained from a $\Sigma(\mathcal{L}_i)$ -formula θ by restricting each unbounded existential quantifier to u.
- 6. For a $\Sigma_1(\mathcal{L}_i)$ -formula $\psi(x_1, \ldots, x_m)$ and $u_1, \ldots, u_m \in Tm(\kappa)$ with $\kappa \leq \mathbb{I}_N, \ \psi^{(\mathsf{L}_\kappa)}(u_1, \ldots, u_m)$ is a $\Sigma_1(\mathcal{L}_i : \kappa)$ -formula. $\Delta_0(\mathcal{L}_i : \kappa)$ -formulas and $\Sigma(\mathcal{L}_i : \kappa)$ -formulas are defined similarly
- 7. For $\theta \equiv \psi^{(\mathsf{L}_{\kappa})}(u_1, \ldots, u_m) \in \Sigma(\mathcal{L}_i : \kappa)$ and $\lambda < \kappa$, with $u_1, \ldots, u_m \in Tm(\lambda), \theta^{(\lambda,\kappa)} :\equiv \psi^{(\mathsf{L}_{\lambda})}(u_1, \ldots, u_m).$

In what follows we consider only *sentences* without free variables. Sentences are denoted A, C possibly with indices.

For each sentence A, either a disjunction is assigned as $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, or a conjunction is assigned as $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$. By $st_i(u)$ we understand that there is a successor *i*-stable ordinal S such that $L_{\mathbb{S}} = u$.

Definition 4.3 1. For $v, u \in Tm(\mathbb{I}_N)$ with |v| < |u|, let

$$(v \dot{\in} u) :\equiv \begin{cases} A(v) & \text{if } u \equiv [x \in \mathsf{L}_{\alpha} : A(x)] \\ v \notin \mathsf{L}_{0} & \text{if } u \equiv \mathsf{L}_{\alpha} \end{cases}$$

and $(u = v) :\equiv (\forall x \in u (x \in v) \land \forall x \in v (x \in u)).$

- 2. When $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, let $\neg A \simeq \bigwedge (A_{\iota})_{\iota \in J}$.
- 3. $(v \in u) :\simeq \bigvee (A_w)_{w \in J}$ for $A_w :\equiv ((w \in u) \land (w = v))$ and J = Tm(|u|).
- 4. $(A_0 \lor \cdots \lor A_{n-1}) :\simeq \bigvee (A_{\iota})_{\iota \in J}$ for J := n.
- 5. For $u \in Tm(\mathbb{I}_N) \cup \{\mathsf{L}_{\mathbb{I}_N}\}$, $\exists x \in u A(x) :\simeq \bigvee (A_v)_{v \in J}$ for $A_v :\equiv ((v \in u) \land A(v))$ and J = Tm(|u|), where $Tm(|\mathsf{L}_{\mathbb{I}_N}|) = Tm(\mathbb{I}_N) = Tm$ and $(v \in \mathsf{L}_{\mathbb{I}_N}) :\equiv (v \notin \mathsf{L}_0)$.
- 6. $st_i(u) :\simeq \bigvee (\mathsf{L}_{\mathbb{S}} = u)_{\mathsf{L}_{\mathbb{S}} \in J_i}$ with $J_i = \{\mathsf{L}_{\mathbb{S}} : |u| \ge \mathbb{S} \in SSt_i\}$, where st_i denotes the predicate symbol in the language \mathcal{L}_{N+1} , while $SSt_i \subset OT(\mathbb{I}_N)$ in the definition of J_i .

7. For $A \simeq \bigvee (A_{\iota})_{\iota \in J}$ let $[\rho]J = \{\iota \in J : \mathsf{k}(\iota) \subset M_{\rho}\}.$

It is clear that $\mathsf{k}(A_{\iota}) \subset \mathcal{H}_0(\mathsf{k}(A) \cup \mathsf{k}(\iota))$.

The rank $rk(\iota)$ of sentences or terms ι is defined slightly modified from [9] so that the following Proposition 4.5 holds.

Definition 4.4 1. $rk(\neg A) := rk(A)$.

- 2. $\operatorname{rk}(\mathsf{L}_{\alpha}) = \omega \alpha$.
- 3. $\operatorname{rk}([x \in \mathsf{L}_{\alpha} : A(x)]) = \max\{\omega\alpha, \operatorname{rk}(A(\mathsf{L}_{0}))\}.$
- 4. $rk(v \in u) = max\{rk(v) + 4, rk(u) + 1\}.$
- 5. $\operatorname{rk}(st_i(u)) = \operatorname{rk}(u) + 5.$
- 6. $\operatorname{rk}(A_0 \lor \cdots \lor A_{n-1}) = \max(\{0\} \cup \{\operatorname{rk}(A_i) + 1 : i < n\}).$

7. $\operatorname{rk}(\exists x \in u A(x)) = \max\{\operatorname{rk}(u), \operatorname{rk}(A(\mathsf{L}_0))\} + 2 \text{ for } u \in Tm(\mathbb{I}_N) \cup \{\mathsf{L}_{\mathbb{I}_N}\}.$ For finite sets Δ of sentences, let $\operatorname{rk}(\Delta) = \max(\{0\} \cup \{\operatorname{rk}(\delta) : \delta \in \Delta\}).$

Proposition 4.5 Let A be a sentence with $A \simeq \bigvee (A_i)_{i \in J}$ or $A \simeq \bigwedge (A_i)_{i \in J}$.

- 1. $\operatorname{rk}(A) < \mathbb{I}_N + \omega$.
- 2. $rk(\bigvee \Gamma) = max(\{0\} \cup \{rk(A) + 1 : A \in \Gamma\}).$
- 3. $\omega|u| \leq \operatorname{rk}(u) \in \{\omega|u| + i : i \in \omega\}$, and $\omega|A| \leq \operatorname{rk}(A) \in \{\omega|A| + i : i \in \omega\}$.
- 4. $\operatorname{rk}(st_i(u)) \in \{\operatorname{rk}(u) + i : i < \omega\}.$
- 5. For $v \in Tm(|u|)$, $\operatorname{rk}(v \in u) \leq \operatorname{rk}(u)$.
- 6. $\forall \iota \in J(\operatorname{rk}(A_{\iota}) < \operatorname{rk}(A)).$

Proof. 4.5.5. Let $\alpha = |u|$. We obtain $\operatorname{rk}(v) < \omega(|v|+1) \leq \omega \alpha$ by Proposition 4.5.3. First let u be L_{α} . Then $(v \in u) \equiv (v \notin L_0)$, and $\operatorname{rk}(v \notin L_0) = \max\{\operatorname{rk}(v) + 4, 1\} < \omega \alpha = \operatorname{rk}(u)$.

Next let u be an RS-term $[x \in \mathsf{L}_{\alpha} : A(x)]$ with $A(x) \equiv (\phi^{\mathsf{L}_{\alpha}}(x, u_1, \ldots, u_n))$ for a set-theoretic formula $\phi(x, y_1, \ldots, y_n)$, and RS-terms $u_1, \ldots, u_n \in Tm(\alpha)$. Then $(v \in u) \equiv (A(v))$. If ϕ is a bounded formula, then we see from Proposition 4.5.3 that $\operatorname{rk}(A(v)) < \omega \alpha$. Otherwise $\operatorname{rk}(A(v)) = \omega \alpha + i$ for an $i < \omega$. Hence $\operatorname{rk}(A(v)) = \operatorname{rk}(A(\mathsf{L}_0)) = \operatorname{rk}(u)$.

4.5.6. First let A be a formula $v \in u$, and $w \in Tm(\alpha)$ with $\alpha = |u| > 0$. Then $\operatorname{rk}(w \in u) \leq \operatorname{rk}(u)$ by Proposition 4.5.5. Moreover $\max\{\operatorname{rk}(\forall x \in w(x \in v)), \operatorname{rk}(\forall x \in v(x \in w))\} = \max\{\operatorname{rk}(w), \operatorname{rk}(v), \operatorname{rk}(\mathsf{L}_0 \in v), \operatorname{rk}(\mathsf{L}_0 \in w)\} + 2$. We have $\max\{\operatorname{rk}(w), \operatorname{rk}(\mathsf{L}_0 \in w)\} + 2 < \omega\alpha \leq \operatorname{rk}(u)$, and $\operatorname{rk}(\mathsf{L}_0 \in v) = \max\{4, \operatorname{rk}(v) + 1\}$. Hence $\max\{\operatorname{rk}(w \in u), \operatorname{rk}(\forall x \in w(x \in v)), \operatorname{rk}(\forall x \in v(x \in w))\} + 2 \leq \max\{\operatorname{rk}(v) + 3, \operatorname{rk}(u)\}$. Therefore $\operatorname{rk}(A_w) < \operatorname{rk}(A)$. Next let A be a formula $\exists x \in u B(x)$, and $v \in Tm(\alpha)$ with $\alpha = |u|$. Then $\operatorname{rk}(v \in u) \leq \operatorname{rk}(u)$ by Proposition 4.5.5. Moreover either $\operatorname{rk}(B(v)) < \omega(|v|+1) \leq \omega\alpha \leq \operatorname{rk}(u)$ or $\operatorname{rk}(B(v)) = \operatorname{rk}(B(\mathsf{L}_0))$. This shows $\operatorname{rk}(A_v) < \operatorname{rk}(A)$.

Finally let A be a formula $st_i(u)$, and $A_{\alpha} \equiv (\mathsf{L}_{\alpha} = u)$ with $\alpha \leq |u|$ and $\alpha \in SSt_i$. In particular $0 < \alpha \leq |u|$. We obtain $\max\{\mathrm{rk}(\forall x \in \mathsf{L}_{\alpha}(x \in u)), \mathrm{rk}(\forall x \in u(x \in \mathsf{L}_{\alpha}))\} = \max\{\mathrm{rk}(\mathsf{L}_{\alpha}), \mathrm{rk}(u), 3\} + 3$, where $\mathrm{rk}(\mathsf{L}_{\alpha}) = \omega\alpha \leq \mathrm{rk}(u)$. Hence $\mathrm{rk}(A_{\alpha}) = \mathrm{rk}(u) + 4 < \mathrm{rk}(A)$.

Definition 4.6 Let $\rho \prec \mathbb{S} \in SSt_i$ for an $0 < i \leq N$, and $k(\iota) \subset M_\rho$ for RS-terms and RS-formulas ι . Then $\iota^{[\rho/\mathbb{S}]}$ denotes the result of replacing each unbounded quantifier Qx by $Qx \in L_{\mathbb{I}_N[\rho]}$, and each ordinal term $\alpha \in k(\iota)$ by $\alpha[\rho/\mathbb{S}]$ for the Mostowski collapse in Definition 3.33. $\iota^{[\rho/\mathbb{S}]}$ is defined recursively as follows.

- 1. $(\mathsf{L}_{\alpha})^{[\rho/\mathbb{S}]} \equiv \mathsf{L}_{\alpha[\rho/\mathbb{S}]}$ with $\alpha \in M_{\rho}$. When $\{\alpha\} \cup \bigcup\{\mathsf{k}(u_i) : i \leq n\} \subset M_{\rho}, ([x \in \mathsf{L}_{\alpha} : \phi^{\mathsf{L}_{\alpha}}(x, u_1, \dots, u_n)])^{[\rho/\mathbb{S}]}$ is defined to be the *RS*-term $[x \in \mathsf{L}_{\alpha[\rho/\mathbb{S}]} : \phi^{L_{\alpha[\rho/\mathbb{S}]}}(x, (u_1)^{[\rho/\mathbb{S}]}, \dots, (u_n)^{[\rho/\mathbb{S}]})].$
- 2. $(\neg A)^{[\rho/\mathbb{S}]} \equiv \neg A^{[\rho/\mathbb{S}]}$. $(u \in v)^{[\rho/\mathbb{S}]} \equiv (u^{[\rho/\mathbb{S}]} \in v^{[\rho/\mathbb{S}]})$. $(A_0 \lor \cdots \lor A_{n-1})^{[\rho/\mathbb{S}]} \equiv ((A_0)^{[\rho/\mathbb{S}]} \lor \cdots \lor (A_{n-1})^{[\rho/\mathbb{S}]})$. $(\exists x \in u A)^{[\rho/\mathbb{S}]} \equiv (\exists x \in u^{[\rho/\mathbb{S}]} A^{[\rho/\mathbb{S}]})$. $(\exists x A)^{[\rho/\mathbb{S}]} \equiv (\exists x \in \mathsf{L}_{\mathbb{I}_N[\rho]} A^{[\rho/\mathbb{S}]})$.

The following Propositions 4.7, 4.8 and 4.9 are seen from Lemma 3.40.

Proposition 4.7 Let $\rho \prec S$.

- 1. Let v be an RS-term with $\mathbf{k}(v) \subset M_{\rho}$, and $\alpha = |v|$. Then $v^{[\rho/\mathbb{S}]}$ is an RS-term of level $\alpha[\rho/\mathbb{S}]$, $|v^{[\rho/\mathbb{S}]}| = \alpha[\rho/\mathbb{S}]$ and $\mathbf{k}(v^{[\rho/\mathbb{S}]}) = (\mathbf{k}(v))^{[\rho/\mathbb{S}]}$.
- 2. Let $\alpha \leq \mathbb{I}_N$ be such that $\alpha \in M_\rho$. Then $(Tm(\alpha))^{[\rho/\mathbb{S}]} := \{v^{[\rho/\mathbb{S}]} : v \in Tm(\alpha), \mathbf{k}(v) \subset M_\rho\} = Tm(\alpha[\rho/\mathbb{S}]).$
- 3. Let A be an RS-formula with $\mathsf{k}(A) \subset M_{\rho}$. Then $A^{[\rho/\mathbb{S}]}$ is an RS-formula such that $\mathsf{k}(A^{[\rho/\mathbb{S}]}) \subset \{\alpha[\rho/\mathbb{S}] : \alpha \in \mathsf{k}(A)\} \cup \{\mathbb{I}_{N}[\rho]\} \cap \mathcal{H}_{\mathbb{S}}(\mathsf{k}(A) \cup \{\rho\})$.

Proof. 4.7.1. We see easily that $v^{[\rho/\mathbb{S}]}$ is an *RS*-term of level $\alpha[\rho/\mathbb{S}]$. 4.7.2. We see $(Tm(\alpha))^{[\rho/\mathbb{S}]} \subset Tm(\alpha[\rho/\mathbb{S}])$ from Proposition 4.7.1. Conversely let u be an *RS*-term with $k(u) = \{\beta_i : i < n\}$ and $\max\{\beta_i : i < n\} = |u| < \alpha[\rho/\mathbb{S}]$. By Lemma 3.40 there are ordinal terms $\gamma_i \in OT(\mathbb{I}_N)$ such that $\gamma_i \in M_\rho$ and $\gamma_i[\rho/\mathbb{S}] = \beta_i$. Let v be an *RS*-term obtained from u by replacing each constant L_{β_i} by L_{γ_i} . We obtain $v^{[\rho/\mathbb{S}]} \equiv u, v \in Tm(\alpha)$, and $\mathsf{k}(v) = \{\gamma_i : i < n\} \subset M_\rho$. This means $v \in (Tm(\alpha))^{[\rho/\mathbb{S}]}$.

4.7.3. We see readily that $\mathsf{k}(A^{[\rho/\mathbb{S}]}) \subset \{\alpha[\rho/\mathbb{S}] : \alpha \in \mathsf{k}(A)\} \cup \{\mathbb{I}_N[\rho]\}$. From this and Proposition 4.11.2, $\mathsf{k}(A^{[\rho/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}(\mathsf{k}(A) \cup \{\rho\})$ follows. \Box

Proposition 4.8 For RS-formulas A, let $A \simeq \bigvee (A_{\iota})_{\iota \in J}$ and assume $\mathsf{k}(A) \subset M_{\rho}$ with $\rho \prec \mathbb{S}$. Then $A^{[\rho/\mathbb{S}]} \simeq \bigvee ((A_{\iota})^{[\rho/\mathbb{S}]})_{\iota \in [\rho]J}$ for $[\rho]J = \{\iota \in J : \mathsf{k}(\iota) \subset M_{\rho}\}$.

Proof. This is seen from Proposition 4.7.2.

Proposition 4.9 Let $k(\iota) \subset M_{\rho}$ with $\rho \prec \mathbb{S}$. Then $\operatorname{rk}(\iota^{[\rho/\mathbb{S}]}) = (\operatorname{rk}(\iota)) [\rho/\mathbb{S}]$.

Proof. We see that $\operatorname{rk}(\iota) \in M_{\rho}$ from Proposition 4.5.3. The proposition is seen from the facts $(\omega\alpha)[\rho/\mathbb{S}] = \omega(\alpha[\rho/\mathbb{S}])$ and $(\alpha + 1)[\rho/\mathbb{S}] = \alpha[\rho/\mathbb{S}] + 1$ when $\alpha \in M_{\rho}$.

4.2 A preview of elimination procedures of stable ordinals

Let us explain briefly our elimination procedures of stable ordinals in this section and section 5. In the previous paper [5], we analyzed an axiom $L_{\mathbb{S}} \prec_{\Sigma_1} L$ prooftheoretically. The axiom is a schema $\exists x \ B(x,v) \land v \in L_{\mathbb{S}} \to \exists x \in L_{\mathbb{S}} \ B(x,v)$ for Δ_0 -formulas B. The schema says that \mathbb{S} 'reflects' $\Pi_{\mathbb{S}^+}$ -formulas in transfinite levels for a bigger ordinal $\mathbb{S}^+ > \mathbb{S}$ such that $L = L_{\mathbb{S}^+}$. In order to analyze the reflections, Mahlo classes $Mh^a_{i,c}(\xi)$ are introduced in Definition 3.8.2. $\pi \in$ $Mh^a_{i,c}(\xi)$ reflects every fact $\pi \in Mh^a_{i,0}(g_c) = \bigcap\{Mh^a_{i,d}(g(d)) : c > d \in \operatorname{supp}(g)\}$ on the ordinals $\pi \in Mh^a_{i,c}(\xi)$ in lower level, down to 'smaller' Mahlo classes $Mh^a_{i,c}(f) = \bigcap\{Mh^a_{i,d}(f(d)) : c \le d \in \operatorname{supp}(f)\}.$

This apparatus would suffice to analyze reflections in transfinite levels. We need another for the axiom $L_{\mathbb{S}} \prec_{\Sigma_1} L$, i.e., a (formal) *Mostowski collapsing*: Assume that B(u, v) with $v \in L_{\mathbb{S}}$ for a Δ_0 -formula B. We need to find a substitute $u' \in L_{\mathbb{S}}$ for $u \in L$ such that B(u', v). For simplicity let us assume that $v = \beta < \mathbb{S}$ and $u = \alpha$ are ordinals. We may assume that $\alpha \geq \mathbb{S}$. Let $\rho < \mathbb{S}$ be an ordinal, which is bigger than every ordinal $\leq \mathbb{S}$ occurring in the 'context' of $B(\alpha, \beta)$. This means that $\delta < \rho$ holds for every ordinal $\delta < \mathbb{S}$ occurring in a 'relevant' branch of a derivation of $B(\alpha, \beta)$. Then we can define a Mostwosiki collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$ for ordinal terms α such that $\beta[\rho/\mathbb{S}] = \beta$ for each relevant $\beta < \mathbb{S}$ and $\mathbb{S}[\rho/\mathbb{S}] = \rho$, cf. Definition 3.33. Then we see that $B(\alpha[\rho/\mathbb{S}], \beta)$ holds.

Let M_{ρ} denote a set of ordinal terms α such that every subterm $\beta < \mathbb{S}$ of α is smaller than ρ . It is shown in Lemma 3.43.1 that $\mathcal{H}_{\gamma}(M_{\rho}) \subset M_{\rho}$ if $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \rho$. Let $\mathcal{H}_{\gamma}[\Theta] \vdash_{c}^{a} \Gamma$, and assume that $\{\gamma, a, c\} \cup k(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta]$. Moreover let us assume that $\Theta \subset M_{\rho}$ holds. Then we obtain $\{\gamma, a, c\} \cup k(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta] \subset \mathcal{H}_{\gamma}(M_{\rho}) \subset M_{\rho}$. This means that $k(\Gamma) \subset M_{\rho}$ holds as long as $\Theta \subset M_{\rho}$ holds, i.e., as long as we are concerned with branches for $k(\iota) \subset M_{\rho}$ in, e.g., inferences $(\Lambda): A \simeq \bigwedge(A_{\iota})_{\iota \in J}$

$$\frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash^{a_{0}}_{c} \Gamma, A, A_{\iota}\}_{\iota \in J}}{\mathcal{H}_{\gamma}[\Theta] \vdash^{a}_{c} \Gamma, A} \left(\bigwedge\right) \underset{\sim}{\longrightarrow} \frac{\{\mathcal{H}_{\gamma}[\Theta] \vdash^{a_{0}}_{c} \Gamma, A, A_{\iota}\}_{\iota \in J, \mathsf{k}(\iota) \subset M_{\rho}}}{\mathcal{H}_{\gamma}[\Theta] \vdash^{a}_{c} \Gamma, A} \left(\bigwedge\right)$$
(14)

and dually $\mathsf{k}(\iota) \subset M_{\rho}$ for a minor formula A_{ι} of a (\bigvee) with the main formula $A \simeq \bigvee (A_{\iota})_{\iota \in J}$, provided that $\mathcal{H}_{\gamma}(\rho) \cap \mathbb{S} \subset \rho$. The proviso means that $\gamma_1 \geq \gamma$ when $\rho = \psi^f_{\mathbb{S}}(\gamma_1)$. Such a ρ is in $\mathcal{H}_{\gamma}[\Theta]$ only when $\rho \in \Theta$. Let us try to replace the inferences for the stability of \mathbb{S}

$$\frac{\mathcal{H}_{\gamma}[\Theta] \vdash \Gamma, B(u) \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\sigma\}] \vdash \Gamma, \neg B(u)^{[\sigma/\mathbb{S}]}\}_{\Theta \subset M_{\sigma}}}{\mathcal{H}_{\gamma}[\Theta] \vdash \Gamma}$$
(stbl)

by inferences for reflection of ρ with $\Theta \subset M_{\rho}$: If $B(u)^{[\rho/\mathbb{S}]}$ holds, then $B(u)^{[\sigma/\mathbb{S}]}$ holds for some $\sigma < \rho$.

$$\frac{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash \Gamma^{[\rho/\mathbb{S}]}, B(u)^{[\rho/\mathbb{S}]} \quad \{\mathcal{H}_{\gamma}[\Theta \cup \{\rho,\sigma\}] \vdash \Gamma^{[\rho/\mathbb{S}]}, \neg B(u)^{[\sigma/\mathbb{S}]}\}_{\Theta \subset M_{\sigma}, \sigma < \rho}}{\mathcal{H}_{\gamma}[\Theta \cup \{\rho\}] \vdash \Gamma^{[\rho/\mathbb{S}]}} \quad (\mathrm{rfl})$$

In analyzing the inferences for reflections in transfinite levels, formulas $\Gamma^{[\rho/\mathbb{S}]}$ are replaced by $\Gamma^{[\sigma/\mathbb{S}]}$. This means that $\alpha[\sigma/\mathbb{S}]$ is substituted for each $\alpha[\rho/\mathbb{S}]$. Namely a composition of uncollapsing and collapsing $\alpha[\rho/\mathbb{S}] \mapsto \alpha \mapsto \alpha[\sigma/\mathbb{S}]$ arises. Hence we need $\alpha \in M_{\sigma} \subsetneq M_{\rho}$ for $\sigma < \rho$. However we have $\sigma \notin M_{\sigma}$ although $\sigma \in M_{\rho}$, and we cannot replace $[\rho/\mathbb{S}]$ by $[\sigma/\mathbb{S}]$ in the upper part of $\Gamma^{[\rho/\mathbb{S}]}, B(u)^{[\rho/\mathbb{S}]}$. The schema seems to be broken.

Instead of an explicit collapsing $[\rho/\mathbb{S}]$, formulas could put on caps ρ, σ, \ldots in such a way that $k(A^{(\sigma)}) = k(A)$. This means that the cap σ does not 'occur' in a capped formula $A^{(\sigma)}$. If we choose an ordinal γ_0 big enough (depending on a given finite proof figure), every ordinal 'occurring' in derivations (including the subscript $\gamma \leq \gamma_0$ in the operators \mathcal{H}_{γ}) is in $\mathcal{H}_{\gamma_0}(\emptyset)$ for the ordinal γ_0 , while each cap ρ exceeds the *threshold* γ_0 in the sense that $\rho \notin \mathcal{H}_{\gamma_0}(\rho) \cap \mathbb{S} \subset \rho$. Then every ordinal 'occurring' in derivations is in the domain M_{ρ} of the Mostowski collapsing $\alpha \mapsto \alpha [\rho/\mathbb{S}]$.

The ordinal γ_0 is a threshold, which means that every ordinal occurring in derivations is in $\mathcal{H}_{\gamma_0}(0)$ and the subscript $\gamma \leq \gamma_0$ in \mathcal{H}_{γ} , while each $\rho \in \mathbb{Q}$ for a finite set \mathbb{Q} of ordinals, exceeds γ_0 in such a way that $\mathbf{p}_0(\rho) \geq \gamma_0$ for the ordinal $\mathbf{p}_0(\rho)$ in Definition 3.30.2. This ensures us that $\mathcal{H}_{\gamma}(M_{\rho}) \subset M_{\rho}$. In the end, inferences for reflections are removed in [5] by moving outside $\mathcal{H}_{\gamma_0}(0)$.

Now we have several (successor) stable ordinals $\mathbb{S}, \mathbb{T}, \ldots \in dom(\mathbb{Q})$ for a *finite* collection $dom(\mathbb{Q})$ of successor stable ordinals, cf. Definition 4.22.1. Inferences for stability and their children for reflections are eliminated first for bigger $\mathbb{S} > \mathbb{T}$, and then smaller ones \mathbb{T} . Therefore we need an assignment $dom(\mathbb{Q}) \ni \mathbb{S} \mapsto \gamma_{\mathbb{S}}^{\mathbb{Q}}$ for thresholds so that $\gamma_{\mathbb{S}}^{\mathbb{Q}} < \gamma_{\mathbb{T}}^{\mathbb{Q}}$ if $\mathbb{S} > \mathbb{T}$ in Definition 4.36.4.

We define two derivability relations $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$ and

 $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,d,e,\beta}^{a} \Gamma$ in subsections 4.4 and 4.5, resp. In the former relation, c is a bound of ranks of the inference rules for stability and of cut formulas as well as successor stable ordinals collected in $dom(\mathbb{Q})$. In each an operator \mathcal{H}_{γ} together with a finite set Θ of ordinals and a finite family $\mathbb{Q} \subset \coprod_{\mathbb{S}} \Psi_{\mathbb{S}}$ controls ordinals occurring in derivations, where $dom(\mathbb{Q})$ is a finite set of successor stable ordinals \mathbb{S} and $\mathbb{Q}(\mathbb{S})$ is a finite set of ordinals $\rho \in \Psi_{\mathbb{S}}$ for each $\mathbb{S} \in dom(\mathbb{Q})$. Furthermore in the latter relation, \mathbb{Q} carries thresholds.

The rôle of the former calculus \vdash_c^{*a} is twofold: first finite proof figures are embedded in the calculus, and second the cut rank c in \vdash_c^{*a} is lowered to \mathbb{I}_N . Then the derivation is collapsed down to a $\beta < \mathbb{I}_N$ using the collapsing function $\psi_{\mathbb{I}_N}(\alpha)$.

The standard requirement $\mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta]$ in operator controlled derivations is weakened to (22) and (28) in Definitions 4.23 and 4.39. These say the following: Assume that, e.g., $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$ holds, and an ordinal α occurs in a formula $A \in \Gamma$. Then α is in the set $\mathcal{H}_{\gamma}[\Theta(\mathbb{Q})]$, where $\Theta(\mathbb{Q}) = \Theta \cup \bigcup_{\mathbb{S}} \mathbb{Q}(\mathbb{S})$.

The weakened condition comes from a proof of Tautology lemma 4.24.2 as follows. Let $\sigma \in \Psi_{\mathbb{S}}$, $A \simeq \bigvee (A_{\iota})_{\iota \in J}$ and $I = \{\iota^{[\sigma/\mathbb{S}]} : \iota \in [\sigma]J\}$, where $\iota \in [\sigma]J$ iff $\iota \in J$ and $\mathsf{k}(\iota) \subset M_{\sigma}$. Let $\mathsf{rk}(A) \geq \mathbb{S}$. Otherwise we don't need to collapse the formula A. Then $A^{[\sigma/\mathbb{S}]} \simeq \bigvee (B_{\nu})_{\nu \in I}$ with $B_{\nu} \equiv A_{\iota}^{[\sigma/\mathbb{S}]}$ for $\nu = \iota^{[\sigma/\mathbb{S}]}$, $\mathsf{rk}(A^{[\sigma/\mathbb{S}]}) = \mathsf{rk}(A)[\sigma/\mathbb{S}]$ and $\mathsf{k}(\iota^{[\sigma/\mathbb{S}]}) = \mathsf{k}(\iota)^{[\sigma/\mathbb{S}]}$ by Proposition 4.8. A standard proof of the tautology $\neg A^{[\sigma/\mathbb{S}]}$, $A^{[\sigma/\mathbb{S}]}$ runs as follows:

$$\frac{\mathcal{H}_{\gamma}[\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \cup \mathsf{k}(\iota^{[\sigma/\mathbb{S}]})] \vdash_{0}^{2d_{\iota}[\sigma/\mathbb{S}]} \neg A_{\iota}^{[\sigma/\mathbb{S}]}, A_{\iota}^{[\sigma/\mathbb{S}]}}{\mathcal{H}_{\gamma}[\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \cup \mathsf{k}(\iota^{[\sigma/\mathbb{S}]})] \vdash_{0}^{2d_{\iota}[\sigma/\mathbb{S}]+1} \neg A_{\iota}^{[\sigma/\mathbb{S}]}, A^{[\sigma/\mathbb{S}]}}{\mathcal{H}_{\gamma}[\mathsf{k}(A^{[\sigma/\mathbb{S}]}] \vdash_{0}^{2d[\sigma/\mathbb{S}]} \neg A^{[\sigma/\mathbb{S}]}, A^{[\sigma/\mathbb{S}]}} (\Lambda)$$

$$(15)$$

where $d = \operatorname{rk}(A)$ and $d_{\iota} = \operatorname{rk}(A_{\iota})$ with $\iota \in [\sigma]J$, and $\mathbb{S} \in \operatorname{dom}(\mathbb{Q})$ with $\sigma \in \mathbb{Q}(\mathbb{S})$. Here $\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \not\subset M_{\sigma}$.

We obtain $\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}[\mathsf{k}(A) \cup \{\sigma\}]$ and $\mathsf{k}(\iota^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}[\mathsf{k}(\iota) \cup \{\sigma\}]$ by Proposition 4.11. For every ordinal $\alpha[\sigma/\mathbb{S}]$ occurring in $A^{[\sigma/\mathbb{S}]}$, either $\alpha \in \mathcal{H}_{\mathbb{S}}[\mathsf{k}(A)]$ or there exists a $\beta \in \mathcal{H}_{\mathbb{S}}[\mathsf{k}(A)]$ such that $\alpha = \beta[\sigma/\mathbb{S}]$. Thus we arrive at the weakened condition (22), and obtain $\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}[\mathsf{k}(A) \cup \mathsf{Q}(\mathbb{S})]$. In Definition 4.23 of the *-calculus, the operator \mathcal{H}_{γ} controls ordinals occurring in derivations of $(\mathcal{H}_{\gamma}, \Theta; \mathsf{Q}) \vdash_{c}^{*a} \Gamma; \Pi^{(\cdot)}$ using ordinals in Θ with the help of the family Q . Instead of a standard one, we prove the tautology $\neg A^{[\sigma/\mathbb{S}]}, A^{[\sigma/\mathbb{S}]}$ as follows:

$$\frac{(\mathcal{H}_{\mathbb{I}_{N}},\mathsf{k}(A)\cup\mathsf{k}(\iota),\mathsf{Q})\vdash_{\mathbb{I}_{N}}^{2d_{\iota}}\neg A_{\iota}^{[\sigma/\mathbb{S}]},A_{\iota}^{[\sigma/\mathbb{S}]}}{(\mathcal{H}_{\mathbb{I}_{N}},\mathsf{k}(A)\cup\mathsf{k}(\iota),\mathsf{Q})\vdash_{\mathbb{I}_{N}}^{2d_{\iota}+1}\neg A_{\iota}^{[\sigma/\mathbb{S}]},A^{[\sigma/\mathbb{S}]}}}(\mathsf{V})$$

$$(\mathcal{H}_{\mathbb{I}_{N}},\mathsf{k}(A),\mathsf{Q})\vdash_{\mathbb{I}_{N}}^{2d}\neg A^{[\sigma/\mathbb{S}]},A^{[\sigma/\mathbb{S}]}}(\mathsf{A})$$
(16)

where $2d \in \mathcal{H}_0[\mathsf{k}(A)] \subset \mathcal{H}_{\mathbb{I}_N}[\mathsf{k}(A)]$ for (21). Observe that the derivation in (16) is obtained from the standard one in (15) by uncollapsing $\alpha[\sigma/\mathbb{S}] \mapsto \alpha$.

Let $B(\mathsf{L}_0)$ be a formula with $\operatorname{rk}(B(\mathsf{L}_0)) < \mathbb{S}$ and u an RS-term such that $\mathsf{k}(B(u)) \subset M_{\sigma}$. We have $B(u)^{[\sigma/\mathbb{S}]} \equiv B(u^{[\sigma/\mathbb{S}]})$. From the derivation of the tautology $\neg B(u)^{[\sigma/\mathbb{S}]}, B(u)^{[\sigma/\mathbb{S}]}$, the axiom $\neg \exists x B(x), \exists x \in L_{\mathbb{S}}B(x)$ is derived in Lemma 4.26 using an inference (stbl) for the stability of a successor stable ordinal \mathbb{S} as follows.

$$\frac{\neg B(u), B(u)}{\neg B(u), B(u)} \quad \frac{\neg B(u)^{[\sigma/\mathbb{S}]}, B(u^{[\sigma/\mathbb{S}]})}{\{\neg B(u)^{[\sigma/\mathbb{S}]}, \exists x \in L_{\mathbb{S}}B(x)\}_{\mathsf{k}(B(u)) \subset M_{\sigma}}} \quad (\bigvee)$$
$$\frac{\neg B(u), \exists x \in L_{\mathbb{S}}B(x)}{\neg \exists x B(x), \exists x \in L_{\mathbb{S}}B(x)} \quad (\bigwedge)$$

where $u^{[\sigma/\mathbb{S}]} \in Tm(\mathbb{S})$ and σ ranges over ordinals such that $k(B(u)) \subset M_{\sigma}$. The inference says that 'if B(u), then there exists an ordinal σ such that $B(u)^{[\sigma/\mathbb{S}]}$ '.

In Capping lemma 5.1 of subsection 4.5 the relation \vdash_c^{*a} is embedded in another derivability relation $\vdash_{c.d.e.\beta}^{a}$ by putting caps ρ on formulas. Let $\sigma < \rho$.

Then $\mathsf{k}(B(u^{[\sigma/\mathbb{S}]})) \subset M_{\rho}$. In the above derivation each formula puts on the cap ρ except $\neg B(u)^{[\sigma/\mathbb{S}]}$. An inference (rfl) for reflection says that 'if $B(u)^{(\rho)}$, then there exists an ordinal σ such that $B(u)^{(\sigma)}$ '. Therefore the above derivation turns to the following.

$$\frac{\neg B(u)^{(\rho)}, B(u)^{(\rho)}}{\left\{ \frac{\neg B(u)^{[\sigma/\mathbb{S}]}, (\exists x \in L_{\mathbb{S}}B(x))^{(\rho)} \right\}_{\mathsf{k}(B(u)) \subset M_{\sigma}, \sigma < \rho}}{(\neg B(u)^{(\rho)}, (\exists x \in L_{\mathbb{S}}B(x))^{(\rho)}}} (\mathsf{A})} (\mathsf{V})$$

$$\frac{\neg B(u)^{(\rho)}, (\exists x \in L_{\mathbb{S}}B(x))^{(\rho)}}{(\neg \exists x B(x))^{(\rho)}, (\exists x \in L_{\mathbb{S}}B(x))^{(\rho)}}} (\mathsf{A})$$

$$(17)$$

In doing so, it is better to distinguish $\neg B(u)^{[\sigma/\mathbb{S}]}$ from $B(u^{[\sigma/\mathbb{S}]})$ formally. The latter $B(u^{[\sigma/\mathbb{S}]})$ puts on a bigger cap ρ as $B(u^{[\sigma/\mathbb{S}]})^{(\rho)}$, while the former $\neg B(u)^{[\sigma/\mathbb{S}]}$ changes to $\neg B(u)^{(\sigma)}$ with a smaller cap $\sigma < \rho$. Let us replace the collapsed formula $\neg B(u)^{[\sigma/\mathbb{S}]}$ by an uncollapsed $\neg B(u)^{\{\sigma\}}$, and collect uncollapsed formulas to the right of the semicolon as ; $\Pi^{\{\cdot\}}$. This results in the *-calculus $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$, and a derivation of $\neg A^{[\sigma/\mathbb{S}]}; A^{\{\sigma\}}$ runs as follows.

$$\frac{(\mathcal{H}_{\mathbb{I}_{N}},\mathsf{k}(A)\cup\mathsf{k}(\iota);\mathbb{Q})\vdash_{\mathbb{I}_{N}}^{2d_{\iota}}\neg A_{\iota}^{[\sigma/\mathbb{S}]};A_{\iota}^{\{\sigma\}}}{(\mathcal{H}_{\mathbb{I}_{N}},\mathsf{k}(A)\cup\mathsf{k}(\iota);\mathbb{Q})\vdash_{\mathbb{I}_{N}}^{2d_{\iota}+1}\neg A_{\iota}^{[\sigma/\mathbb{S}]};A^{\{\sigma\}}}}(\bigvee)$$
$$\frac{(\mathcal{H}_{\mathbb{I}_{N}},\mathsf{k}(A);\mathbb{Q})\vdash_{\mathbb{I}_{N}}^{2d}\neg A^{[\sigma/\mathbb{S}]};A^{\{\sigma\}}}}{(\mathcal{H}_{\mathbb{I}_{N}},\mathsf{k}(A);\mathbb{Q})\vdash_{\mathbb{I}_{N}}^{2d}\neg A^{[\sigma/\mathbb{S}]};A^{\{\sigma\}}}}(\bigwedge)$$

The derivation (17) turns to the following:

$$\frac{-B(u)^{(\rho)}, B(u)^{(\rho)}; \emptyset}{\frac{(\exists x \in L_{\mathbb{S}}B(x))^{(\rho)}; \neg B(u)^{(\sigma)}}{(\exists x \in L_{\mathbb{S}}B(x))^{(\rho)}; \emptyset}} (\mathsf{V})} \frac{\nabla B(u)^{(\rho)}, (\exists x \in L_{\mathbb{S}}B(x))^{(\rho)}; \emptyset}{(\neg \exists x B(x))^{(\rho)}, (\exists x \in L_{\mathbb{S}}B(x))^{(\rho)}; \emptyset}} (\mathsf{A})$$
(18)

 $\mathsf{k}(A) \subset M_{\rho}$ should be satisfied for each capped formula $A^{(\rho)}$, and this would follow from $\mathsf{k}(A) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q})]$ and $\Theta(\mathbb{Q}) \subset M_{\rho}$. However $\rho \notin M_{\rho}$ for $\rho \in \mathbb{Q}(\mathbb{S})$. Looking back the derivation (16) and $\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}[\mathsf{k}(A) \cup \mathbb{Q}(\mathbb{S})]$, we see that the extra part $\bigcup_{\mathbb{S}} \mathbb{Q}(\mathbb{S})$ in $\Theta(\mathbb{Q})$ is needed to capture the ordinals $\sigma < \rho$ in the derivation (18). Thus we arrive at a classification of ordinals in the set $\bigcup_{\mathbb{S}} \mathbb{Q}(\mathbb{S})$: The temporary part denoted by $\partial \mathbb{Q}$ and the fixed part by \mathbb{Q}° in Definition 4.36.2. Ordinals ρ in $\partial \mathbb{Q}$ are caps on which formulas B(u) put, while the formulas $\neg B(u)^{(\sigma)}$ in derivations (18) puts on caps σ in \mathbb{Q}° , cf. Capping lemma 5.1. Ordinals in $\bigcup_{\mathbb{S}} \mathbb{Q}(\mathbb{S})$ might occur actually in derivations only when these are in \mathbb{Q}° . See the conditions (27) and (28) in Definition 4.39.

(27) says that $\Theta(\mathbb{Q}^{\circ}) = \Theta \cup \bigcup_{\mathbb{S}} \mathbb{Q}^{\circ}(\mathbb{S}) \subset M_{\partial \mathbb{Q}} = \bigcap_{\rho \in \partial \mathbb{Q}} M_{\rho}$, while $\mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ is imposed in (28). One of the reasons for the constraint (27) is to ensure the condition (12) in Definition 3.31.6, which says that every ordinal occurring in the finite function $m(\rho)$ has to be in M_{ρ} . A cap $\rho \in \partial \mathbb{Q}$ of the capped formula $A^{(\rho)}$ is replaced by another cap κ to $A^{(\kappa)}$ in the main lemma of Recapping 5.4, and the rank of the reflected formulas B(u) in inferences (rfl)

is lowered. In doing so, a new ordinal $\kappa = \psi_{\rho}^{h}(\alpha)$ 'enters' in derivation. Here a finite function $h = m(\kappa)$ is constructed from the function $m(\rho)$ and some ordinals b, d, a, where ordinals b and d are ranks of formulas in derivations, and a the ordinal height of the derivation. Two constraints yield $\{b, d, a\} \subset M_{\rho}$, and the ordinal κ is chosen so that a specified finite subset of M_{ρ} is a subset of M_{κ} , cf. Definition 4.38.

The ordinals in the temporary part \mathbb{Q}° are finally removed from $\Theta(\mathbb{Q}^{\circ})$ in Lemma 5.11 as follows. For this we need another constraint (29), which says that $\mathbb{Q}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathsf{q}} + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})]$, where $\mathbb{Q}^{\circ} \upharpoonright \mathbb{S}$ denotes the restriction of \mathbb{Q}° to \mathbb{S} .

In Lemma 5.7 we show that the largest successor stable ordinal \mathbb{S} in $dom(\mathbb{Q}) \cap \mathbb{S}^{\dagger}$ as well as caps $\rho \in \mathbb{Q}(\mathbb{S})$ can be removed from derivations in the following way: Let $\operatorname{rk}(\Xi) < \mathbb{S}$ and each cap ρ in Ξ is in $\mathbb{Q} \upharpoonright \mathbb{S}$. If $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\mathbb{S}^{\dagger}, \mathbb{S}^{\dagger}, \mathbb{S}^{\dagger}, \beta}^{a} \Xi$, then $(\mathcal{H}_{\gamma_{1}}, \Theta, \mathbb{Q} \upharpoonright \mathbb{S}) \vdash_{\mathbb{S}, \mathbb{S}, \mathbb{S}, \beta}^{a} \Xi$ holds for an ordinal \tilde{a} and $\gamma_{1} = \gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}_{N}$ if $\mathbb{S} \in dom(\mathbb{Q})$. This is done as follows. First Recapping 5.4 yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\mathbb{S}^{+}, \mathbb{S}^{\dagger}, \mathbb{S}}^{\pm} \Xi$, and we obtain a derivation in which the rank of each reflected formula A in inferences (rfl) is less than \mathbb{S} . Then we obtain $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\mathbb{S}, \mathbb{S}, \mathbb{S}^{\dagger}, \beta}^{\Xi} \Xi$ for $\tilde{a} = \varphi_{\mathbb{S}^{\dagger}}(\mathbb{S} + \omega a)$ by Cut-elimination 4.44. Thus we obtain a derivation in which the rank of every formula is less than \mathbb{S} . Then the formula $A^{(\rho)}$ takes off the cap $\rho \in \mathbb{Q}(\mathbb{S})$, and the set $\mathbb{Q}(\mathbb{S})$ no longer helps operators \mathcal{H}_{γ} . Now we have $\mathbb{Q}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{1}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})]$ for $\gamma_{1} = \gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}_{N}$ by (29). By lifting the threshold $\gamma_{0} \leq \gamma_{\mathbb{S}}^{\mathbb{Q}}$ to a larger one γ_{1} , we obtain $\mathbb{Q}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{1}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})]$ and $\mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S}^{\dagger})] \subset \mathcal{H}_{\gamma_{1}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})]$. This explains the constraint (29).

The reason of the introduction of trail and the set $\mathcal{B}_0(\alpha)$ of ordinals α in Definition 4.14 are two fold. For a stable ordinal \mathbb{S} and its next stable ordinal \mathbb{S}^{\dagger} , we see that if $\mathcal{B}_0(\mathbb{S}^{\dagger}) \subset \mathcal{H}_{\gamma}[\Theta]$, then $\mathbb{S} \in \mathcal{B}_0(\mathbb{S}) \subset \mathcal{H}_{\gamma}[\Theta]$ since the set $\mathcal{H}_{\gamma}[\Theta]$ is closed under $\mathbb{T} \mapsto \mathbb{T}^{\dagger}$. The fact is used in Lemma 5.7. On the other side, in proving the axiom (2) in Lemma 4.26 we need the fact that if both of a limit *i*-stable ordinal \mathbb{T} and an ordinal $\alpha < \mathbb{T}$ are 'captured' in $\mathcal{H}_{\gamma}[\Theta]$, then so is a successor *i*-stable ordinal \mathbb{S} such that $\alpha < \mathbb{S} < \mathbb{T}$. Or in other words, such an \mathbb{S} should be constructed from data included in ordinals \mathbb{T} and α . The data we need are trails, cf. Proposition 4.16. Then the finite sets Θ should satisfy $\mathcal{B}(\Theta) \subset \Theta$, cf. Propositions 4.15.2, 4.17.3, 4.15.6 and 4.15.9. As we said above, the addition of $E_{\mathbb{S}}(\alpha)$ to $\mathcal{B}(\alpha)$ is to construct the collapsed ordinals $\alpha[\rho/\mathbb{S}]$ from $E_{\mathbb{S}}(\alpha)$ and ρ .

Now details follow.

4.3 Sets M_{ρ} , trails and stepping-down

In this subsection some facts on sets M_{ρ} , ordinal terms and finite functions are established. These facts are needed in this and next section 5.

Definition 4.10 For $\alpha \in OT(\mathbb{I}_N)$ and $\mathbb{S} \in SSt$, a finite set $E_{\mathbb{S}}(\alpha) \subset \mathbb{S}$ of subterms of α is defined recursively as follows.

1.
$$E_{\mathbb{S}}(\alpha) = E_{\mathbb{S}}(SC(\alpha)) := \bigcup \{ E_{\mathbb{S}}(\beta) : \beta \in SC(\alpha) \}$$
 if $\alpha \notin SC(\alpha)$.

In what follows let $SC(\alpha) = \{\alpha\}.$

- 2. $E_{\mathbb{S}}(\alpha) = \{\alpha\}$ if $SC(\alpha) \ni \alpha < \mathbb{S}$. In what follows let $SC(\alpha) \ni \alpha \ge \mathbb{S}$.
- 3. $E_{\mathbb{S}}(\mathbb{S}) = \emptyset$.
- 4. $E_{\mathbb{S}}(\alpha) = E_{\mathbb{S}}(\{\sigma, a\} \cup SC(f)) = \bigcup \{E_{\mathbb{S}}(\beta) : \beta \in \{\sigma, a\} \cup SC(f)\}$ if $\alpha = \psi^f_{\sigma}(a)$.
- 5. $E_{\mathbb{S}}(\alpha) = E_{\mathbb{S}}(\mathbb{T})$ if $\alpha = \mathbb{T}^{\dagger i}$.
- 6. $E_{\mathbb{S}}(\alpha) = E_{\mathbb{S}}(\tau)$ if $\alpha = \mathbb{I}_N[\tau]$.
- 7. $E_{\mathbb{S}}(\alpha) = E_{\mathbb{S}}(\{\tau, \mathbb{T}\})$ if $\alpha = \mathbb{T}^{\dagger \vec{i}}[\tau/\mathbb{T}].$

Let $E(\alpha) = \bigcup \{ E_{\mathbb{S}}(\alpha) : \mathbb{S} \in SSt \}.$

- **Proposition 4.11** 1. $SC(\alpha) \subset E(\alpha) = E(E(\alpha))$, where $E(X) = \bigcup \{E(\beta) : \beta \in X\}$ for stes X of ordinals.
 - 2. Let $\alpha \in M_{\rho}$ with $\rho \in \Psi_{\mathbb{S}}$. Then $\alpha[\rho/\mathbb{S}] \in \mathcal{H}_{\mathbb{S}}(E_{\mathbb{S}}(\alpha) \cup \{\rho\})$ and $E(\alpha[\rho/\mathbb{S}]) \subset E(\alpha) \cup E(\rho) \cup SC(\alpha[\rho/\mathbb{S}])$.
 - 3. $\forall \beta \in E(\alpha) \exists \gamma \in SC(\alpha) (\beta \leq \gamma).$

Proof. 4.11.1. Let $\beta \in E_{\mathbb{S}}(\alpha)$. By induction on $\ell \alpha$ we show $E_{\mathbb{T}}(\beta) \subset E_{\mathbb{T}}(\alpha) \cup E_{\mathbb{S}}(\alpha)$. By IH we may assume $SC(\alpha) \ni \alpha < \mathbb{S}$, $E_{\mathbb{S}}(\alpha) = \{\alpha\}$ and $\beta = \alpha$. If $\alpha < \mathbb{T}$, then $E_{\mathbb{T}}(\alpha) = \{\alpha\} \subset E_{\mathbb{S}}(\alpha)$. Let $\mathbb{T} \leq \alpha$. Then $E_{\mathbb{T}}(\beta) = E_{\mathbb{T}}(\alpha)$. Hence $E(E(\alpha)) \subset E(\alpha)$.

Conversely let $\beta \in SC(\alpha)$ and $\beta < S \in SSt$. Then $E_{\mathbb{S}}(\beta) = \{\beta\}$, and $SC(\alpha) \subset E(\alpha)$. Hence $E(\alpha) = E(SC(\alpha)) \subset E(E(\alpha))$.

4.11.2. By induction on $\ell \alpha$. $\alpha[\rho/\mathbb{S}] \in \mathcal{H}_{\mathbb{S}}(E_{\mathbb{S}}(\alpha) \cup \{\rho\})$ follows from the facts $M_{\rho} \cap \mathbb{S} = \rho$ and $\alpha[\rho/\mathbb{S}] < \mathbb{S}$. For each \mathbb{T} we show $E_{\mathbb{T}}(\alpha[\rho/\mathbb{S}]) \subset E_{\mathbb{T}}(\alpha) \cup E_{\mathbb{T}}(\rho) \cup SC(\alpha[\rho/\mathbb{S}])$. If $\mathbb{T} \geq \mathbb{S}$, then $E_{\mathbb{T}}(\alpha[\rho/\mathbb{S}]) \subset SC(\alpha[\rho/\mathbb{S}])$. Let $\mathbb{T} < \mathbb{S} \leq \alpha$. Then $\mathbb{T} < \alpha[\rho/\mathbb{S}]$. $E_{\mathbb{T}}(\alpha[\rho/\mathbb{S}]) \subset E_{\mathbb{T}}(\alpha) \cup E_{\mathbb{T}}(\rho)$ is seen by induction on $\ell \alpha$.

4.11.3. By induction on $\ell \alpha$. By IH we may assume that $\alpha \in SC(\alpha)$. Let $\beta \in E_{\mathbb{T}}(\alpha)$. If $\alpha < \mathbb{T}$, then $\beta = \alpha$. Let $\mathbb{T} \leq \alpha$. Then $\beta < \mathbb{T} \leq \alpha$. \Box

Proposition 4.12 Let α be a strongly critical number such that $\Omega < \alpha < \mathbb{I}_N$. There exists a unique sequence $(\alpha_n)_{n \leq m}$ such that $\alpha_0 = \psi_{\mathbb{I}_N}(a)$ for an $a, \alpha_m = \alpha$ and each α_{n+1} is one of the forms $\psi_{\alpha_n}^f(b), \alpha_n^{\dagger \vec{i}}, \mathbb{I}_N[\alpha_n], \mathbb{S}^{\dagger \vec{i}}[\alpha_n/\mathbb{S}]$ for some f, b, \vec{i} and \mathbb{S} . The sequence $(\alpha_n)_{n \leq m}$ is said to be the trail to α , and denoted by trail(α).

For a term α_n in the trail to α , if $\alpha_n < \alpha$, then $\alpha_n < \alpha_k$ for $n < k \le m$, and $E_{\mathbb{T}}(\alpha_n) \subset E_{\mathbb{T}}(\alpha)$ for every $SSt \ni \mathbb{T} \le \alpha_n$.

Furthermore $\alpha_0 \leq \alpha$, and $E_{\mathbb{T}}(\alpha_0) \subset E_{\mathbb{T}}(\alpha)$ holds for every $SSt \ni \mathbb{T} \leq \alpha_0$.

Proof. This is seen by inspection of Definitions 3.31 and 3.33. If $\alpha_n > \alpha_{n+1}$, then we would have $\alpha_{n+1} \prec \alpha_n$ and $\alpha < \alpha_n$ by Definition 3.35.

Proposition 4.13 Let $\rho \in \Psi_{\mathbb{S}}$ with a successor stable ordinal \mathbb{S} . Assume $\mathbb{S} < \psi_{\mathbb{I}_N}(\gamma)$, $\mathbb{I}_N \leq \gamma \leq p_0(\rho)$, $\alpha \in \mathcal{H}_{\gamma}(\psi_{\mathbb{I}_N}(\gamma))$ and $E_{\mathbb{S}}(\alpha) \subset \rho \in \Psi_{\mathbb{S}}$. Then $\alpha \in M_{\rho} = \mathcal{H}_{p_0(\rho)}(\rho)$.

Proof. By induction on $\ell \alpha$. By IH we may assume that $\mathbb{S} < \alpha < \mathbb{I}_N$. Let $\alpha = \psi_{\mathbb{I}_N}(a)$. Then $a \in \mathcal{H}_{\gamma}(\psi_{\mathbb{I}_N}(\gamma)) \cap \gamma$ and $E_{\mathbb{S}}(\alpha) = E_{\mathbb{S}}(a)$. IH yields $a \in M_{\rho}$, and $\alpha \in M_{\rho}$ by $a < \gamma \leq p_0(\rho)$.

Definition 4.14 For $\alpha \in OT(\mathbb{I}_N)$, a finite set $\mathcal{B}_0(\alpha)$ is defined recursively as follows.

- 1. $\mathcal{B}_0(\alpha) = \mathcal{B}_0(SC(\alpha)) := \bigcup \{ \mathcal{B}_0(\beta) : \beta \in SC(\alpha) \}$ if $\alpha \notin SC(\alpha)$.
- 2. $\mathcal{B}_0(\alpha) = \{\alpha\}$ if $SC(\alpha) \ni \alpha < \Omega$.
- 3. $\mathcal{B}_0(\alpha) = \{\alpha\} \cup (\operatorname{trail}(\alpha) \cap St \cap \alpha) \text{ if } \Omega < \alpha \in SC(\alpha).$

Let $\mathcal{B}_0(X) = \bigcup \{ \mathcal{B}_0(\beta) : \beta \in X \}$ for sets X of ordinals, and

$$\mathcal{B}(\alpha) = \mathcal{B}_0(E(\alpha)) \tag{19}$$

Proposition 4.15 *1.* $SC(\alpha) \subset \mathcal{B}_0(\alpha)$ and $E(\alpha) \subset \mathcal{B}(\alpha)$.

- 2. $SC(\alpha) \subset \mathcal{B}(\alpha)$ and $\mathcal{B}(\alpha) = \mathcal{B}(SC(\alpha))$.
- 3. $\mathcal{B}_0(\mathcal{B}_0(\alpha)) \subset \mathcal{B}_0(\alpha)$.
- 4. $\forall \beta \in \mathcal{B}_0(\alpha) \exists \gamma \in SC(\alpha) (\beta \leq \gamma) \text{ and } \forall \beta \in \mathcal{B}(\alpha) \exists \gamma \in SC(\alpha) (\beta \leq \gamma).$
- 5. $E(\mathcal{B}_0(\alpha)) \subset E(\alpha) \cup \mathcal{B}_0(\alpha).$
- 6. $\mathcal{B}(\mathcal{B}(\alpha)) = \mathcal{B}(\alpha).$
- 7. Let $\rho \in \Psi_{\mathbb{S}}$ with $\mathbb{S} \in SSt$. Then $\mathcal{B}(\alpha[\rho/\mathbb{S}]) \subset \mathcal{B}(\{\alpha, \rho, \mathbb{S}\}) \cup SC(\alpha[\rho/\mathbb{S}])$.
- 8. For $\alpha = \psi^f_{\sigma}(a), \ \mathcal{B}(\alpha) \subset \{\alpha\} \cup \mathcal{B}(\{\sigma, a\} \cup SC(f)).$
- 9. Let $\mathcal{B}(\Theta) \subset \Theta$ for a finite set Θ of ordinals, and $\alpha \in \mathcal{H}_{\gamma}[\Theta]$ with $\gamma \geq \mathbb{I}_N$. Then $\mathcal{B}(\alpha) \subset \mathcal{H}_{\gamma}[\Theta]$.

Proof. 4.15.1. We have $SC(\alpha) \subset \mathcal{B}_0(\alpha)$. Hence $E(\alpha) \subset \mathcal{B}_0(E(\alpha)) = \mathcal{B}(\alpha)$. 4.15.2. By Proposition 4.11.1 we have $SC(\alpha) \subset E(\alpha)$, and hence $SC(\alpha) \subset \mathcal{B}(\alpha)$ by Proposition 4.15.1.

4.15.3. This is seen by induction on $\ell \alpha$ using the fact that $\operatorname{trail}(\mathbb{S}) \cap \mathbb{S} \subset \operatorname{trail}(\alpha)$ for $\mathbb{S} \in \operatorname{trail}(\alpha) \cap St \cap \alpha$.

4.15.4. By induction on $\ell \alpha$ we show $\forall \beta \in \mathcal{B}_0(\alpha) \exists \gamma \in SC(\alpha) (\beta \leq \gamma)$. $\forall \beta \in \mathcal{B}(\alpha) \exists \gamma \in SC(\alpha) (\beta \leq \gamma)$ follows from this and Proposition 4.11.3. By IH we may assume that $\Omega < \alpha \in SC(\alpha)$. For $\beta \in \mathcal{B}_0(\alpha)$ we see $\beta \leq \alpha$.

4.15.5. By induction on $\ell \alpha$. By IH we may assume that $\Omega < \alpha \in SC(\alpha)$. For $\beta \in \mathcal{B}_0(\alpha)$, we show $E(\beta) \subset E(\alpha) \cup \mathcal{B}_0(\alpha)$. Let $\beta \in \operatorname{trail}(\alpha) \cap St \cap \alpha$. Then we obtain $E(\beta) \subset E(\alpha)$ by Proposition 4.12.

4.15.6. By Propositions 4.11.1 and 4.15.1 we obtain $E(\alpha) = E(E(\alpha)) \subset E(\mathcal{B}(\alpha))$, and $\mathcal{B}(\alpha) = \mathcal{B}_0(E(\alpha)) \subset \mathcal{B}_0(E(\mathcal{B}(\alpha))) = \mathcal{B}(\mathcal{B}(\alpha))$. Conversely we obtain $E(\mathcal{B}_0(\alpha)) \subset E(\alpha) \cup \mathcal{B}_0(\alpha)$ by Proposition 4.15.5. Hence $E(\mathcal{B}_0(E(\alpha))) \subset E(\alpha) \cup \mathcal{B}_0(E(\alpha))$ by Proposition 4.11.1. Therefore $\mathcal{B}(\mathcal{B}(\alpha)) = \mathcal{B}_0(E(\mathcal{B}_0(E(\alpha)))) \subset \mathcal{B}_0(E(\alpha)) \cup \mathcal{B}_0(\mathcal{B}_0(E(\alpha))) \subset \mathcal{B}(\alpha)$ by Proposition 4.15.3.

4.15.7. By Proposition 4.11.2 we have $E(\alpha[\rho/\mathbb{S}]) \subset E(\alpha) \cup E(\rho) \cup SC(\alpha[\rho/\mathbb{S}])$. On the other side, we see $\mathcal{B}_0(\alpha[\rho/\mathbb{S}]) \subset \mathcal{B}_0(\alpha) \cup \mathcal{B}_0(\mathbb{S}) \cup SC(\alpha[\rho/\mathbb{S}])$ by induction on $\ell\alpha$. When $\mathbb{S} \leq \alpha \in SC(\alpha)$, we obtain trail $(\alpha[\rho/\mathbb{S}]) \cap St \cap (\alpha[\rho/\mathbb{S}]) \subset trail(\mathbb{S}) \cap \mathbb{S}$.

4.15.8. We have $E(\alpha) \subset \{\alpha\} \cup E(\{\sigma, a\} \cup SC(f))$, and $\mathcal{B}(\alpha) \subset \mathcal{B}_0(\alpha) \cup \mathcal{B}(\{\sigma, a\} \cup SC(f))$. On the other hand we have $\mathcal{B}_0(\alpha) \subset \{\alpha\} \cup \mathcal{B}_0(\sigma)$. Hence $\mathcal{B}(\alpha) \subset \{\alpha\} \cup \mathcal{B}(\{\sigma, a\} \cup SC(f))$. 4.15.9. By induction on $\ell\alpha$.

Proposition 4.16 Let $\mathbb{T} \in SSt_{i+1}$ be a successor (i + 1)-stable ordinal, and $\alpha < \mathbb{T}$ an ordinal. Then there exists a successor *i*-stable ordinal $\alpha < \mathbb{S} < \mathbb{T}$ such that $\mathcal{B}(\mathbb{S}) \subset \mathcal{H}_0(\mathcal{B}(\alpha, \mathbb{T}))$ for $\mathcal{B}(\alpha, \mathbb{T}) = \mathcal{B}(\alpha) \cup \mathcal{B}(\mathbb{T})$.

Proof. By induction on the lengths $\ell \alpha$ of ordinal terms α . By IH we may assume that $\Omega < \alpha < \mathbb{I}_N$ and $\alpha \in SC(\alpha)$. Let $\mathbb{T} = \mathbb{U}^{\dagger(i+1)}$ with $\mathbb{U} \in St \cup \{\Omega\}$. Then trail(\mathbb{U}) \subset trail(\mathbb{T}) and $\mathcal{B}(\mathbb{U}) \subset \mathcal{H}_0(\mathcal{B}(\mathbb{T}))$.

Case 1. There exists a k > 0 such that $\alpha < \mathbb{U}^{\dagger i^{(k)}}$, where $\mathbb{U}^{\dagger i^{(0)}} = \mathbb{U}$ and $\mathbb{U}^{\dagger i^{(k+1)}} = (\mathbb{U}^{\dagger i^{(k)}})^{\dagger i}$: Pick a k > 0 such that $\alpha < \mathbb{S} = \mathbb{U}^{\dagger i^{(k)}}$. We obtain $\mathcal{B}(\mathbb{S}) \subset \mathcal{H}_0(\mathcal{B}(\mathbb{T}))$, and $\mathbb{S} < \mathbb{T}$ is seen from $\mathbb{T} \in LSt_i$.

Case 2. Otherwise: Then we see from Definition 3.35 that there exists a $\rho \in \mathcal{B}_0(\alpha)$ such that $\rho \prec \mathbb{T}$. We obtain $\rho \leq \alpha$ and $\operatorname{trail}(\rho) \subset \operatorname{trail}(\alpha)$. Pick a k > 0 such that $\alpha < \mathbb{S} = \rho^{\dagger i^{(k)}} < \mathbb{T}$. We obtain $\operatorname{trail}(\mathbb{S}) = \{\mathbb{S}\} \cup \operatorname{trail}(\rho)$ and $\mathcal{B}(\mathbb{S}) \subset \mathcal{H}_0(\mathcal{B}(\alpha))$.

Proposition 4.17 Let $\alpha \in OT(\mathbb{I}_N)$ and $\rho \in \Psi_{\mathbb{S}}$ with $\mathbb{S} \in SSt$.

- 1. If $\alpha \in M_{\rho}$, then $E(\alpha) \subset M_{\rho}$.
- 2. If $\alpha \in M_{\rho}$, then $\mathcal{B}_0(\alpha) \subset M_{\rho}$.
- 3. If $\alpha \in M_{\rho}$, then $\mathcal{B}(\alpha) \subset M_{\rho}$.

Proof. Proposition 4.17.3 follows from Propositions 4.17.1 and 4.17.2, each of which is shown by induction on $\ell \alpha$. By IH we may assume that $\Omega < \alpha < \mathbb{I}_N$ and $\alpha \in SC(\alpha)$. Let $M_{\rho} = \mathcal{H}_b(\rho)$ with $b = \mathbf{p}_0(\rho)$.

4.17.1. Let $\beta \in E_{\mathbb{T}}(\alpha)$. If $\mathbb{T} < \mathbb{S}$, then $\beta < \mathbb{T} < \rho$. If $\alpha < \mathbb{T}$, then $\beta = \alpha$. We may assume that $\rho < \mathbb{S} \le \mathbb{T} \le \alpha$. For example let $\alpha = \psi^f_{\sigma}(a) \in M_{\rho} = \mathcal{H}_b(\rho)$. Then $E_{\mathbb{T}}(\alpha) = E_{\mathbb{T}}(\{\sigma, a\} \cup SC(f))$ and $\{\sigma, a\} \cup SC(f) \subset M_{\rho}$. It yields $E_{\mathbb{T}}(\alpha) \subset M_{\rho}$. Other cases are seen similarly.

4.17.2. Let $(\alpha_n)_{n \leq m}$ be the trail to α . First let $\alpha_n \in \operatorname{trail}(\alpha) \cap \alpha$. If $\alpha < \mathbb{S}$, then $\alpha_n < \alpha < \rho$ by Proposition 4.15.4. Let $\rho < \mathbb{S} \leq \alpha_m = \alpha \in M_{\rho}$. Let $k = \min\{k : n \leq k \leq m, \alpha_k \geq \rho\}$. If n < k, then $\alpha_n < \rho$ and $\alpha \in M_{\rho}$.

Otherwise we obtain $\rho \leq \alpha_n < \alpha_k$ for every k with $n < k \leq m$ by Proposition 4.12. Hence $\alpha_n \in M_\rho = \mathcal{H}_b(\rho)$.

The following Definition 4.18 is needed in subsection 5.2.

Definition 4.18 Let $s(f) = \max(\{0\} \cup \operatorname{supp}(f))$ for finite function f, and $s(\rho) = s(m(\rho))$.

Let $\Lambda < \mathbb{I}_N$ be a strongly critical number, which is a base for $\tilde{\theta}$ -function. Let $f : \Lambda \to \varphi_{\Lambda}(0)$ be a non-empty and irreducible finite function. Then f is said to be *special* if there exists an ordinal α such that $f(s(f)) = \alpha + \Lambda$. For a special finite function f, f' denotes a finite function such that $\sup(f') = \sup(f)$, f'(c) = f(c) for $c \neq s(f)$, and $f'(s(f)) = \alpha$ with $f(s(f)) = \alpha + \Lambda$.

A special function $h^b(g; a)$ is defined from ordinals a, b and a finite function g as in [5].

Definition 4.19 Let $\Lambda < \mathbb{I}_N$ be a strongly critical number, which is a base for $\tilde{\theta}$ -function. Let f, g be special finite functions.

- 1. For ordinals $a \leq \Lambda$, b < s(g), let us define a special finite function $h = h^b(g; a)$ as follows. s(h) = b, and $h_b = g_b$. To define h(b), let $\{b = b_0 < b_1 < \cdots < b_n = s(g)\} = \{b, s(g)\} \cup ((b, s(g)) \cap \operatorname{supp}(g))$. Define recursively ordinals α_i by $\alpha_n = \alpha + a$ with $g(s(g)) = \alpha + \Lambda$. $\alpha_i = g(b_i) + \tilde{\theta}_{c_i}(\alpha_{i+1}; \Lambda)$ for $c_i = b_{i+1} b_i$. Finally let $h(b) = \alpha_0 + \Lambda$.
- 2. $f_b * g^b$ denotes a special function h such that $\operatorname{supp}(h) = \operatorname{supp}(f_b) \cup \operatorname{supp}(g^b)$, h'(c) = f'(c) for c < b, and h'(c) = g'(c) for $c \ge b$.

The following Proposition 4.20 is seen as in [5].

Proposition 4.20 Let k be a finite function, f, g special finite functions such that $f_d = g_d$ and $f <^d g'(d)$ for a $d \in \text{supp}(g)$, and $\rho \in \Psi_{\mathbb{S}}$ with $g = m(\rho)$. $\tilde{\theta}$ denotes the function $\tilde{\theta}_b(\xi; \Lambda)$ in Definition 3.1 with base Λ .

- 1. For b < d and $a < \Lambda$, $f_b = (h^b(g; a))_b$ and $f < (h^b(g; a))'(b)$.
- 2. Let $b \leq e < d$, $a_0 < a < \Lambda$, and $h = (h^e(g; a_0)) * f^{e+1}$. Then $h_b = (h^b(g; a))_b$ and $h < (h^b(g; a))'(b)$.

Proof. 4.20.1. Let $h = h^b(g; a)$. We have $h_b = g_b = f_b$. Let $b + x \in$ $\operatorname{supp}(f) \cap d \subset \operatorname{supp}(g) \cap d$. Then $f(b + x) = g(b + x) < \tilde{\theta}_{-x}(h'(b))$ and $g'(d) < \tilde{\theta}_{-(d-b)}(h'(b))$. Proposition 3.6 yields the proposition. 4.20.2. Note that $h = (h^e(g; a_0))' * f^{e+1}$. We have $h_b = g_b = (h^b(g; a))_b$. For $b + x \in \operatorname{supp}(g) \cap e, h(b + x) = (h^e(g; a_0))(b + x) = g(b + x) < \tilde{\theta}_{-x}((h^b(g; a))'(b)),$ and $h(e) = (h^e(g; a_0))(e) < \tilde{\theta}_{-(e-b)}((h^b(g; a))'(b))$ by $a_0 < a$. For $e < e + x \in$ $\operatorname{supp}(f) \cap d$, we obtain $h(e+x) = f(e+x) = g(e+x) < \tilde{\theta}_{-(e+x-b)}((h^b(g; a))'(b)).$ For $d+x \in \operatorname{supp}(f)$, we obtain $h(d+x) = f(d+x) < \tilde{\theta}_{-x}(g'(d)) \le \tilde{\theta}_{-(d+x-b)}((h^b(g; a))'(b)).$ Therefore $h < b (h^b(g; a))'(b)$.

4.4 Operator controlled *-derivations

Let $\mathcal{H}_{\gamma}[\Theta] := \mathcal{H}_{\gamma}(\Theta)$ and $\mathcal{H}_{\gamma} := \mathcal{H}_{\gamma}(0)$. By a successor stable ordinal we mean ordinals in $SSt = \bigcup_{0 < i \leq N} SSt_i$, and $\mathbb{S}^{\dagger} := \mathbb{S}^{\dagger 1}$. In this section and the next section 5 let us fix an ordinal $\mathbb{I}_N \leq \gamma_0 \in \mathcal{H}_0$. The ordinal γ_0 depends on a given finite proof figure in $S_{\mathbb{I}_N}$, and is specified in the end of section 5.

Definition 4.21 By an uncollapsed formula we mean a pair $\{A, \rho\}$ of RSsentence A and an ordinal $\rho \prec \mathbb{S}$ for a successor stable ordinal \mathbb{S} such that $\mathsf{k}(A) \subset M_{\rho}$. Such a pair is denoted by $A^{\{\rho\}}$. When we write $\Gamma^{\{\rho\}}$, we tacitly assume that $\mathsf{k}(\Gamma) \subset M_{\rho}$.

 $\mathcal{B}(\alpha)$ denotes the set defined in (19) of Definition 4.14. For ordinals α , we see $\mathcal{B}(\alpha) \subset M_{\rho}$ iff $\alpha \in M_{\rho}$ from Propositions 4.15.2 and 4.17.3. Hence $\mathcal{B}(\mathsf{k}(\iota)) \subset M_{\rho}$ iff $\mathsf{k}(\iota) \subset M_{\rho}$ for RS-terms and RS-formulas ι . On the other hand we have $\max(\{0\} \cup \mathcal{B}(\alpha)) \leq \max(\{0\} \cup SC(\alpha))$ by Proposition 4.15.4.

- **Definition 4.22** 1. A finite family for an ordinal γ_0 is a finite function $\mathbb{Q} \subset \coprod_{\mathbb{S}} \Psi_{\mathbb{S}}$ such that its domain $dom(\mathbb{Q})$ is a finite set of successor stable ordinals and $\mathbb{Q}(\mathbb{S})$ is a finite set of ordinals κ in $\Psi_{\mathbb{S}}$ for each $\mathbb{S} \in dom(\mathbb{Q})$ with a special finite function $m(\kappa)$, and $\gamma_0 \leq p_0(\kappa)$, where $M_{\mathbb{Q}} = \bigcap_{\mathbb{S} \in dom(\mathbb{Q})} M_{\mathbb{Q}(\mathbb{S})}$ with $M_{\mathbb{Q}(\mathbb{S})} = \bigcap_{\sigma \in \mathbb{Q}(\mathbb{S})} M_{\sigma}$ and $M_{\emptyset} = OT(\mathbb{I}_N)$. Let $\mathbb{Q}(\mathbb{T}) = \emptyset$ for $\mathbb{T} \notin dom(\mathbb{Q})$.
 - 2. Let Θ be a finite set of ordinals and Q a finite family. Let

$$\Theta(\mathbf{Q}) := \Theta \cup \mathcal{B}\left(\bigcup \{\mathbf{Q}(\mathbb{S}) : \mathbb{S} \in dom(\mathbf{Q})\}\right)$$
(20)

We define a derivability relation $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$ where *c* is a bound of ranks of the inference rules $(i-\operatorname{stbl}(\mathbb{S}))$, one of ranks of cut formulas, and of $\operatorname{dom}(\mathbb{Q}_{\Pi})$. The relation depends on an ordinal γ_{0} , and should be written as $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c,\gamma_{0}}^{*a} \Gamma; \Pi^{\{\cdot\}}$. However the ordinal γ_{0} will be fixed. So let us omit it. Note that if $\gamma_{0} \leq p_{0}(\sigma)$ for $\sigma \prec \mathbb{S}$, then $\mathcal{H}_{\gamma_{0}}(\sigma) \cap \mathbb{S} \subset \sigma$ by Proposition 3.42.

Definition 4.23 Let Θ be a finite set of ordinals such that $\mathcal{B}(\Theta) \subset \Theta$, a, c ordinals, and \mathbb{Q}_{Π} a finite family for γ_0 such that $dom(\mathbb{Q}_{\Pi}) \subset c$. Let $\Pi = \bigcup_{(\mathbb{S},\sigma)\in\mathbb{Q}_{\Pi}} \Pi_{\sigma}$ be a set of formulas such that $\Pi \subset \Delta_0(\mathcal{L}_{N+1})$, $\mathsf{k}(\Pi_{\sigma}) \subset M_{\sigma}$ for each $(\mathbb{S}, \sigma) \in \mathbb{Q}_{\Pi}$. Let $\Pi^{\{\cdot\}} = \bigcup_{(\mathbb{S},\sigma)\in\mathbb{Q}_{\Pi}} \Pi_{\sigma}^{\{\sigma\}}$.

 $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{c, \gamma_0}^{*a} \Gamma; \Pi^{\{\cdot\}}$ holds for a set Γ of formulas if $\mathbb{I}_N \leq \gamma \leq \gamma_0$,

$$\{\gamma, a, c, \gamma_0\} \cup dom(\mathbf{Q}_{\Pi}) \subset \mathcal{H}_{\gamma}[\Theta]$$
(21)

$$\mathsf{k}(\Gamma \cup \Pi) \subset \mathcal{H}_{\gamma}[\Theta(\mathsf{Q}_{\Pi})] \tag{22}$$

and one of the following cases holds:

- (V) There exist $A \simeq \bigvee (A_{\iota})_{\iota \in J}, \ \iota \in J$, and an ordinal $a(\iota) < a$ such that $A \in \Gamma$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{\{\cdot\}}.$
- $(\bigvee)^{\{\cdot\}} \text{ There exist } A^{\{\sigma\}} \in \Pi^{\{\cdot\}}, A \simeq \bigvee (A_{\iota})_{\iota \in J}, \iota \in [\sigma]J \text{, and an ordinal } a(\iota) < a \text{ such that } (\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma; \Pi^{\{\cdot\}}, A_{\iota}^{\{\sigma\}}.$
- (\bigwedge) There exist an $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$ such that $A \in \Gamma$. For each $\iota \in J$, $(\mathcal{H}_{\gamma}, \Theta \cup \mathcal{B}(\mathsf{k}(\iota)); \mathsf{Q}_{\Pi}) \vdash_{c}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{\{\cdot\}}$ holds for an ordinal $a(\iota) < a$.
- $(\bigwedge)^{\{\cdot\}} \text{ There exist } A^{\{\sigma\}} \in \Pi^{\{\cdot\}} \text{ such that } A \simeq \bigwedge (A_{\iota})_{\iota \in J}. \text{ For each } \iota \in [\sigma]J, \\ (\mathcal{H}_{\gamma}, \Theta \cup \mathcal{B}(\mathsf{k}(\iota)); \mathsf{Q}_{\Pi} \vdash_{c}^{*a(\iota)} \Gamma; A_{\iota}^{\{\sigma\}}, \Pi^{\{\cdot\}} \text{ holds for an ordinal } a(\iota) < a.$
- (*cut*) There exist an ordinal $a_0 < a$ and a formula C such that $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{c}^{*a_0} \Gamma, \neg C; \Pi^{\{\cdot\}}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{c}^{*a_0} C, \Gamma; \Pi^{\{\cdot\}}$ with $\operatorname{rk}(C) < c$.
- $(\Sigma(St)\text{-rfl})$ There exist ordinals $a_{\ell}, a_r < a$ and a formula $C \in \Sigma(\mathcal{L}_{N+1})$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_{\ell}} \Gamma, C; \Pi^{\{\cdot\}}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a_{r}} \neg \exists x C^{(x, \mathbb{I}_{N})}, \Gamma; \Pi^{\{\cdot\}},$ where $c \geq \mathbb{I}_{N}$.
- ($\Sigma(\Omega)$ -rfl) There exist ordinals $a_{\ell}, a_r < a$ and a formula $C \in \Sigma(\mathcal{L}_0 : \Omega)$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_c^{*a_{\ell}} \Gamma, C; \Pi^{\{\cdot\}}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_c^{*a_r} \neg \exists x < \Omega C^{(x,\Omega)}, \Gamma; \Pi^{\{\cdot\}},$ where $c \geq \Omega$.
- $(i-\operatorname{stbl}(\mathbb{S}))$ Let $0 < i \leq N$. There exist an ordinal $a_0 < a$, a successor *i*-stable ordinal $\mathbb{S} \in SSt_i \cap c$, a formula $B(\mathsf{L}_0) \in \Delta_0(\mathcal{L}_i)$ with $\operatorname{rk}(B(\mathsf{L}_0)) < \mathbb{S}$, and a $u \in Tm(\mathbb{I}_N)$ such that $\mathbb{S} \leq \operatorname{rk}(B(u)) < c$ for which the following hold:

$$\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta] \tag{23}$$

and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{R}_{\Pi}) \vdash_{c}^{*a_{0}} \Gamma, B(u); \Pi^{\{\cdot\}}$ for $dom(\mathbb{R}_{\Pi}) = dom(\mathbb{Q}_{\Pi}) \cup \{\mathbb{S}\}$ and $\mathbb{R}_{\Pi}(\mathbb{S}) = \mathbb{Q}_{\Pi}(\mathbb{S}).$

For every $\sigma \in \Psi_{\mathbb{S}}$ such that $\mathbb{R}^{\sigma}_{\Pi} = \mathbb{R}_{\Pi} \cup \{(\mathbb{S}, \sigma)\}$ is a finite family for γ_0 and

$$\Theta(\mathbf{Q}_{\Pi}) \subset M_{\sigma} \tag{24}$$

 $(\mathcal{H}_{\gamma}, \Theta; \mathbb{R}^{\sigma}_{\Pi}) \vdash^{*a_0}_{c} \Gamma; \neg B(u)^{\{\sigma\}}, \Pi^{\{\cdot\}} \text{ holds, where } dom(\mathbb{R}^{\sigma}_{\Pi}) = dom(\mathbb{R}_{\Pi}) \text{ and} (\mathbb{R}^{\sigma}_{\Pi})(\mathbb{S}) = \mathbb{R}_{\Pi}(\mathbb{S}) \cup \{\sigma\}.$

$$\frac{(\mathcal{H}_{\gamma},\Theta;\mathbf{R}_{\Pi})\vdash^{*a_{0}}_{c}\Gamma,B(u);\Pi^{\{\cdot\}}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{R}_{\Pi})\vdash^{*a_{0}}_{c}\Gamma;\neg B(u)^{\{\sigma\}},\Pi^{\{\cdot\}}\}_{\sigma}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{Q}_{\Pi})\vdash^{*a}_{c}\Gamma;\Pi^{\{\cdot\}}}$$

Note that in (24) we have $\mathbb{S} \in M_{\sigma}$ by Proposition 3.38. Let $\mathcal{B}(\Theta) \subset \Theta$. By Propositions 4.15.6 and 4.15.9 we have $\mathcal{B}(\alpha) \subset \mathcal{H}_{\gamma}[\Theta]$ if $\alpha \in \mathcal{H}_{\gamma}[\Theta]$. In particular $\mathcal{B}(\mathsf{k}(\iota)) \subset \mathcal{H}_{\gamma}[\Theta]$ holds when $\mathsf{k}(\iota) \subset \mathcal{H}_{\gamma}[\Theta]$.

We will state some lemmas for the operator controlled derivations. These can be shown as in [9].

Lemma 4.24 (Tautology) Let $d = \operatorname{rk}(A)$, $\mathbb{I}_N \leq \gamma \leq \gamma_0$ and $\{\gamma, \gamma_0\} \subset \mathcal{H}_{\gamma}[\mathsf{k}(A)]$.

- 1. $(\mathcal{H}_{\gamma}, \mathcal{B}(\mathsf{k}(A)); \emptyset) \vdash_{\mathbb{I}_{N}, \gamma_{0}}^{*2d} \neg A, A; \emptyset.$
- $2. \ (\mathcal{H}_{\gamma}, \mathcal{B}(\mathsf{k}(A) \cup \{\mathbb{S}\}); \{(\mathbb{S}, \sigma)\}) \vdash_{\mathbb{I}_{N}, \gamma_{0}}^{\ast 2d} \neg A^{[\sigma/\mathbb{S}]}; A^{\{\sigma\}} \ if \ \sigma \in \Psi_{\mathbb{S}}, \ \mathsf{k}(A) \subset M_{\sigma}$ and $A \in \Delta_0(\mathcal{L}_{N+1})$.

Proof. Each is seen by induction on $d = \operatorname{rk}(A)$. Let us consider Lemma 4.24.2. Let $\Theta = \mathcal{B}(\mathsf{k}(A) \cup \{\mathbb{S}\}), \ \mathsf{Q}_{\Pi} = \{(\mathbb{S}, \sigma)\} \text{ and } B \equiv A^{[\sigma/\mathbb{S}]}.$ Then $\Theta(\mathsf{Q}_{\Pi}) =$ $\mathcal{B}(\mathsf{k}(A) \cup \{\mathbb{S}, \sigma\})$. We have $\{\gamma, 2d, \mathbb{I}_N, \gamma_0\} \cup \mathsf{k}(A) \subset \mathcal{H}_{\gamma}[\Theta]$. For (22), we obtain by Proposition 4.7.3, $\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\mathbb{S}}(\mathsf{k}(A) \cup \{\sigma\}) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}_{\Pi})]$ with $\mathbb{S} < \mathbb{I}_N \leq \gamma$ if $B \neq A$, and $\mathsf{k}(A^{[\sigma/\mathbb{S}]}) \subset \mathcal{H}_{\gamma}[\mathsf{k}(A)]$ else. Moreover $\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta]$ for (21).

Let $A \simeq \bigvee (A_{\iota})_{\iota \in J}$. We obtain $B \simeq \bigvee (A_{\iota}^{[\sigma/\mathbb{S}]})_{\iota \in [\sigma]J}$ by Proposition 4.8. Let $\Theta_{\iota} = \Theta \cup \mathcal{B}(\mathsf{k}(\iota))$ and $\iota \in [\sigma]J$. For $d > d_{\iota} = \operatorname{rk}(A_{\iota})$ with $d_{\iota} \subset \mathcal{H}_{\gamma}[\Theta_{\iota}]$ we obtain $(\mathcal{H}_{\gamma}, \Theta_{\iota}; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{I}_{N}}^{*2d_{\iota}} \neg A_{\iota}^{[\sigma/\mathbb{S}]}; A_{\iota}^{\{\sigma\}}$ by IH.

$$\frac{\overline{(\mathcal{H}_{\gamma},\Theta_{\iota};\mathbf{Q}_{\Pi})\vdash_{\mathbb{I}_{N}}^{\ast 2d_{\iota}}\neg A_{\iota}^{[\sigma/\mathbb{S}]};A_{\iota}^{\{\sigma\}}}}{\{(\mathcal{H}_{\gamma},\Theta_{\iota};\mathbf{Q}_{\Pi})\vdash_{\mathbb{I}_{N}}^{\ast 2d_{\iota}+1}\neg A_{\iota}^{[\sigma/\mathbb{S}]};A^{\{\sigma\}}\}_{\iota\in[\sigma]J}}} (\bigvee)^{\{\cdot\}}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{Q}_{\Pi})\vdash_{\mathbb{I}_{N}}^{\ast 2d}\neg A^{[\sigma/\mathbb{S}]};A^{\{\sigma\}}}} (\wedge)$$

and

$$\frac{\overline{(\mathcal{H}_{\gamma},\Theta_{\iota};\mathbb{Q}_{\Pi})\vdash_{\mathbb{I}_{N}}^{\ast 2d_{\iota}}A_{\iota}^{[\sigma/\mathbb{S}]};\neg A_{\iota}^{\{\sigma\}}} \text{ IH}}{\{(\mathcal{H}_{\gamma},\Theta_{\iota};\mathbb{Q}_{\Pi})\vdash_{\mathbb{I}_{N}}^{\ast 2d_{\iota}+1}A^{[\sigma/\mathbb{S}]};\neg A_{\iota}^{\{\sigma\}}\}_{\iota\in[\sigma]J}} (\bigvee)}_{(\mathcal{H}_{\gamma},\Theta;\mathbb{Q}_{\Pi})\vdash_{\mathbb{I}_{N}}^{\ast 2d}A^{[\sigma/\mathbb{S}]};\neg A^{\{\sigma\}}} (\bigwedge)^{\{\cdot\}}$$

Lemma 4.25 (Equality) Let $d = \operatorname{rk}(A(\mathsf{L}_0)), \gamma \geq \mathbb{I}_N, \mathcal{B}(\mathsf{k}(A, u, v)) = \mathcal{B}(\mathsf{k}(A)) \cup$ $\begin{aligned} &\mathcal{B}(\mathsf{k}(u)) \cup \mathcal{B}(\mathsf{k}(v)) \text{ and } \{\gamma, \gamma_0\} \subset \mathcal{H}_{\gamma}[\mathcal{B}(\mathsf{k}(A, u, v))]. \\ & \text{Then } (\mathcal{H}_{\gamma}, \mathcal{B}(\mathsf{k}(A, u, v)); \emptyset) \vdash_{\mathbb{I}_N, \gamma_0}^{*\omega(|u| \# |v|) \# 2d} u \neq v, \neg A(u), A(v); \emptyset. \end{aligned}$

Proof. This is seen by induction on $d = \operatorname{rk}(A)$ as in [9, 3].

First show that $(\mathcal{H}_{\gamma}, \mathcal{B}(\mathsf{k}(u, v, w)); \emptyset) \vdash_{\mathbb{I}_{N}, \gamma_{0}}^{*\alpha} u \neq v, u \notin w, v \in w; \emptyset,$ $(\mathcal{H}_{\gamma}, \mathcal{B}(\mathsf{k}(u, v, w)); \emptyset) \vdash_{0, \gamma_{0}}^{*\alpha} u \neq v, u \neq w, v = w; \emptyset \text{ and}$ $(\mathcal{H}_{\gamma}, \mathcal{B}(\mathsf{k}(u, v, w)); \emptyset) \vdash_{\mathbb{I}_{N}, \gamma_{0}}^{*\alpha} u \neq v, w \notin u, w \in v; \emptyset \text{ simultaneously by induction}$ on the natural sum |u| # |v| # |w|, where $\alpha = \omega(|u| \# |v| \# |w|)$. Then the lemma is seen by induction on $d = \operatorname{rk}(A(\mathsf{L}_0))$.

Lemma 4.26 (Embedding of Axioms) For each axiom A in $S_{\mathbb{I}_N}$ there is an $m < \omega$ such that $(\mathcal{H}_{\mathbb{I}_N}, \emptyset; \emptyset) \vdash_{\mathbb{I}_N + m, \gamma_0}^{*\mathbb{I}_N \cdot 2 + m} A; \emptyset$ holds.

Proof. In the proof, let us suppress the operator $\mathcal{H}_{\mathbb{I}_N}$, the second subscript γ_0 , and write \vdash^* for $\vdash_{\mathbb{I}_N+m,\gamma_0}^{*\mathbb{I}_N+m}$ for an $m < \omega$.

We show first that the axiom (3) follows from an inference (i-stbl(S)). Let $\varphi(y) \equiv (\exists x \, \theta(x, y))$ be a $\Sigma_1(\{st_j\}_{j < i})$ -formula such that $\text{rk}(\theta(\mathsf{L}_0, \mathsf{L}_0)) < \omega$. Also let u, w be RS-terms, S a successor *i*-stable ordinal, and $B(x) \equiv \theta(x, w)$.

Let $\mathsf{k}_w = \mathsf{k}(B(\mathsf{L}_0)) = \mathsf{k}(w)$, $\mathsf{k}_u = \mathsf{k}(u)$, and $\Theta := \mathcal{B}(\mathsf{k}_w \cup \mathsf{k}_u \cup \{\mathbb{S}\})$, where $\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta]$ for (23). We show

$$\mathcal{B}(\mathsf{k}_w) \cup \mathcal{B}(\mathbb{S}); \emptyset \vdash^* w \notin \mathsf{L}_{\mathbb{S}}, \neg \exists x \, B(x), \exists x \in \mathsf{L}_{\mathbb{S}}B(x); \tag{25}$$

First assume $|w| < \mathbb{S}$. Then $\operatorname{rk}(B(\mathsf{L}_0)) = \operatorname{rk}(\theta(\mathsf{L}_0, w)) < \mathbb{S}$. We obtain by Tautology 4.24.1, $\Theta; \mathbb{Q} \models_{\mathbb{I}_N}^{*2d} \neg B(u), B(u); \emptyset$, where $d=\operatorname{rk}(B(u)), dom(\mathbb{Q}) = \{\mathbb{S}\}$ and $\mathbb{Q}(\mathbb{S}) = \emptyset$. We may assume that $\mathbb{I}_N > d \ge \mathbb{S}$ with $|u| \ge \mathbb{S}$. Let $\sigma \in \Psi_{\mathbb{S}}$ be an ordinal such that $\Theta \subset M_{\sigma}$ and $\gamma_0 \le p_0(\sigma)$. Tautology

Let $\sigma \in \Psi_{\mathbb{S}}$ be an ordinal such that $\Theta \subset M_{\sigma}$ and $\gamma_0 \leq p_0(\sigma)$. Tautology 4.24.2 yields $\Theta; \{(\mathbb{S}, \sigma)\} \vdash_{\mathbb{I}_N}^{*2d} B(u)^{[\sigma/\mathbb{S}]}; \neg B(u)^{\{\sigma\}}$. Then for $\exists x \in \mathsf{L}_{\mathbb{S}}B(x) \simeq \bigvee (B(v))_{v \in J}$ we obtain $u^{[\sigma/\mathbb{S}]} \in Tm(\mathbb{S}) = J$ with $B(u^{[\sigma/\mathbb{S}]}) \equiv B(u)^{[\sigma/\mathbb{S}]}$. When $|w| < \mathbb{S}$, (25) is seen as follows:

$$\frac{\Theta; \{(\mathbb{S}, \sigma)\} \vdash_{\mathbb{I}_{N}^{*2d}}^{*2d} B(u^{[\sigma/\mathbb{S}]}); \neg B(u)^{\{\sigma\}}}{\{\Theta; \{(\mathbb{S}, \sigma)\} \vdash_{\mathbb{I}_{N}^{*2d+1}}^{*2d+1} \exists x \in \mathsf{L}_{\mathbb{S}}B(x); \neg B(u)^{\{\sigma\}}\}_{\sigma}} \frac{(\bigvee)}{(i-\mathrm{stbl}(\mathbb{S}))}}{\frac{\Theta; \vdash_{\mathbb{I}_{N}^{*2d+1}}^{*2d+1} \neg B(u), \exists x \in \mathsf{L}_{\mathbb{S}}B(x);}{\mathcal{B}(\mathsf{k}_{w}) \cup \mathcal{B}(\mathbb{S}); \vdash_{\mathbb{I}_{N}^{*2d+2}}^{*2d+2} \neg \exists x B(x), \exists x \in \mathsf{L}_{\mathbb{S}}B(x);}} (\wedge)$$

Assume $|w| \ge S$, and let $v \in Tm(S)$. Then |v| < S and $(v \in L_S) \equiv (v \notin L_0)$. We obtain by (25)

$$\mathcal{B}(\mathsf{k}(v)) \cup \mathcal{B}(\mathbb{S}); \emptyset \vdash^* \neg \exists x \, \theta(x, v), \exists x \in \mathsf{L}_{\mathbb{S}}\theta(x, v);$$

We obtain

$$\mathcal{B}(\mathsf{k}(w,v)) \cup \mathcal{B}(\mathbb{S}); \emptyset \vdash^* \neg (v \in \mathsf{L}_{\mathbb{S}}), w \neq v, \neg \exists x \, \theta(x,w), \exists x \in \mathsf{L}_{\mathbb{S}} \theta(x,w);$$

by Equality 4.25 followed by (cut)'s with $|v|, |w| < \mathbb{I}_N$ and $\operatorname{rk}(\exists x \, \theta(x, w)) = \mathbb{I}_N + 2$. Then a (\bigvee) followed by a (\bigwedge) yields (25), where $(w \notin \mathsf{L}_{\mathbb{S}}) \simeq \bigwedge (\neg (v \in \mathsf{L}_{\mathbb{S}}) \lor w \neq v)_{v \in Tm(\mathbb{S})}$.

Let v be an RS-term with $|v| \ge S$. We obtain by (25) and Equality 4.25

$$\mathcal{B}(\mathsf{k}(w,v)) \cup \mathcal{B}(\mathbb{S}); \vdash^* \mathsf{L}_{\mathbb{S}} \neq v, w \notin v, \neg \exists x \, \theta(x,w), \exists x \in v \, \theta(x,w);$$

We have $\neg st_i(v) \simeq \bigwedge (\mathsf{L}_{\mathbb{S}} \neq v)_J$ with $J = \{\mathsf{L}_{\mathbb{S}} : |v| \ge \mathbb{S} \in SSt_i\}$. A (\bigwedge) yields the axiom (3)

$$\mathcal{B}(\mathsf{k}(w,v));\vdash^* \neg st_i(v), \neg \varphi(w), w \notin v, \varphi^v(w);$$

Next we show the axiom (1). Let u be an RS-term and $\beta = \alpha^{\dagger N}$ for $\alpha = |u|$. Then $\beta \in \mathcal{H}_0[\mathsf{k}(u)]$. We obtain $\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^* u = u; \emptyset$ and $\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^* \mathsf{L}_\beta = \mathsf{L}_\beta; \emptyset$. Hence

$$\frac{\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^{*} u = u; \emptyset}{\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^{*} u \in \mathsf{L}_{\beta}; \emptyset} (\mathsf{V}) \quad \frac{\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^{*} \mathsf{L}_{\beta} = \mathsf{L}_{\beta}; \emptyset}{\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^{*} u \in \mathsf{L}_{\beta} \land st_{N}(\mathsf{L}_{\beta}); \emptyset} (\mathsf{V})}{\frac{\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^{*} \exists y (u \in y \land st_{N}(\mathsf{L}_{\beta}); \emptyset}{\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^{*} \exists y (u \in y \land st_{N}(y)); \emptyset} (\mathsf{V})} (\mathsf{A})}{\frac{\mathcal{B}(\mathsf{k}(u)); \emptyset \vdash^{*} \exists y (u \in y \land st_{N}(y)); \emptyset}{\emptyset; \emptyset \vdash^{*} \forall x \exists y (x \in y \land st_{N}(y)); \emptyset}} (\mathsf{A})}$$

Third we show the axiom (2). Let $\mathbb{T} \in SSt_{i+1}$ be a successor (i+1)-stable ordinal. We obtain $\mathcal{B}(\mathbb{T}); \emptyset \vdash^* \theta(\mathsf{L}_{\mathbb{T}})$ for $\theta(x) \equiv (st_i(x) \land \mathsf{L}_{\Omega} \in x \land \forall y \in x \forall z \in y(z \in x))$ with $\mathsf{L}_{\Omega} \equiv M_0$.

For a given $\alpha < \mathbb{T}$ pick a successor *i*-stable ordinal $\alpha < \mathbb{S} < \mathbb{T}$ such that $\mathbb{S} \in \mathcal{H}_0[\mathcal{B}(\alpha, \mathbb{T})]$ by Proposition 4.16.

Let $|v| = \alpha < \mathbb{T}$. We obtain $(\mathsf{L}_{\mathbb{S}} \dot{\in} \mathsf{L}_{\mathbb{T}}) \equiv (\mathsf{L}_{\mathbb{S}} \notin \mathsf{L}_{0}), \mathcal{B}(v); \emptyset \vdash^{*} v = v; \emptyset$, and $\mathcal{B}(\mathsf{k}(v) \cup \{\mathbb{T}\}); \emptyset \vdash^{*} \mathsf{L}_{\mathbb{S}} = \mathsf{L}_{\mathbb{S}}; \emptyset$. Hence $\mathcal{B}(\mathsf{k}(v) \cup \{\mathbb{T}\}); \emptyset \vdash^{*} v \in \mathsf{L}_{\mathbb{S}} \land st_{i}(\mathsf{L}_{\mathbb{S}}); \emptyset$, and $\mathcal{B}(\mathsf{k}(v) \cup \{\mathbb{T}\}); \emptyset \vdash^{*} \exists z \in \mathsf{L}_{\mathbb{T}}(v \in z \land st_{i}(z)); \emptyset$. Let w and u be RS-terms. Equality 4.25 yields $\mathcal{B}(\mathsf{k}(w) \cup \{\mathbb{T}\}); \emptyset \vdash^{*} w \notin \mathsf{L}_{\mathbb{T}}, \exists z \in \mathsf{L}_{\mathbb{T}}(w \in z \land st_{i}(z)); \emptyset$, and $\mathcal{B}(\mathsf{k}(w, u) \cup \{\mathbb{T}\}); \emptyset \vdash^{*} u \neq \mathsf{L}_{\mathbb{T}}, w \notin u, \exists z \in u(w \in z \land st_{i}(z)); \emptyset$. A (\bigwedge) yields $\mathcal{B}(\mathsf{k}(w, u)); \emptyset \vdash^{*} \neg st_{i+1}(u), w \notin u, \exists z \in u(w \in z \land st_{i}(z)); \emptyset$.

 $\Delta_0(\mathcal{L}_{N+1})$ -Collection follows from an inference $(\Sigma(St)-\mathrm{rfl})$, and the Δ_0 collection for the set $M_0 = \mathsf{L}_\Omega$ follows from an inference $(\Sigma(\Omega)-\mathrm{rfl})$. Other
axioms in $\mathsf{KP}\omega$, i.e., axioms for pair, union, Δ_0 -Separation and foundation are
seen as in [9, 3].

Lemma 4.27 (Embedding) If $S_{\mathbb{I}_N} \vdash \Gamma$ for sets Γ of sentences, there are $m, k < \omega$ such that $(\mathcal{H}_{\mathbb{I}_N}, \emptyset; \emptyset) \vdash_{\mathbb{I}_N}^{*\mathbb{I}_N \cdot 2 + k} \Gamma; \emptyset$ holds.

Proof. This follows from Lemma 4.26 as in [9, 3].

Lemma 4.28 Let
$$(\mathcal{H}_{\gamma}, \Theta; Q_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}, \gamma \leq \gamma_{1} \leq \gamma_{0}$$
 with $\gamma_{1} \in \mathcal{H}_{\gamma_{1}}[\Theta_{1}]$ and $\Theta \subset \mathcal{B}(\Theta_{1}) \subset \Theta_{1}$. Then $(\mathcal{H}_{\gamma_{1}}, \Theta_{1}; Q_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$ holds.

Proof. By induction on *a*. We need to prune some branches at inferences $(i-\operatorname{stbl}(\mathbb{S}))$ for (24) with $\Theta(\mathbb{Q}_{\Pi}) \subset \Theta_1(\mathbb{Q}_{\Pi})$.

Lemma 4.29 Let $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$, and $\mathbb{S} < \mathbb{I}_{N} \leq c$ be a successor stable ordinal and $\sigma \in \Psi_{\mathbb{S}}$. Assume $\mathbb{P} = \mathbb{Q}_{\Pi} \cup \{(\mathbb{S}, \sigma)\}$ is a finite family for γ_{0} , and $\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta]$. Then $(\mathcal{H}_{\gamma}, \Theta; \mathbb{P}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$ holds.

Proof. By induction on *a*. By the assumption (21) is enjoyed in $(\mathcal{H}_{\gamma}, \Theta; \mathbb{P}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$. We need to prune some branches at inferences $(i-\operatorname{stbl}(\mathbb{S}))$ for (24) with $\Theta(\mathbb{Q}_{\Pi}) \subset \Theta(\mathbb{P})$.

Lemma 4.30 (Inversion) Let $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$ with $A \simeq \bigwedge (A_{\iota})_{\iota \in J}, A \in \Gamma$, and $\iota \in J$.

Then $(\mathcal{H}_{\gamma}, \Theta_{\iota}; \mathbf{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma, A_{\iota}; \Pi^{\{\cdot\}}$ holds for $\Theta_{\iota} = \Theta \cup \mathcal{B}(\mathsf{k}(\iota)).$

Proof. By induction on *a*. We obtain $(\mathcal{H}_{\gamma}, \Theta_{\iota}; \mathbf{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma; \Pi^{\{\cdot\}}$ by Lemma 4.28.

Lemma 4.31 (Reduction) Let $C \simeq \bigvee (C_{\iota})_{\iota \in J}$ and $\neg (\Omega \leq c < \mathbb{I}_N)$ with $\operatorname{rk}(C) \leq c$. Assume $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma_0, \neg C; \Pi^{\{\cdot\}}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*b} C, \Gamma_1; \Pi^{\{\cdot\}}$. Then $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a+b} \Gamma_0, \Gamma_1; \Pi^{\{\cdot\}}$.

Proof. By induction on *b*.

Case 1. Consider first the case when $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*b} C, \Gamma_{1}; \Pi^{\{\cdot\}}$ follows from a (\bigvee) with its major formula C. We have $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*b(\iota)} C_{\iota}, C, \Gamma_{1}; \Pi^{\{\cdot\}}$ for an $\iota \in J$. IH yields $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*a+b(\iota)} C_{\iota}, \Gamma_{0}, \Gamma_{1}; \Pi^{\{\cdot\}}$.

Let $\Theta_{\iota} = \Theta \cup \mathcal{B}(\mathsf{k}(\iota))$. We obtain $(\mathcal{H}_{\gamma}, \Theta_{\iota}; \mathsf{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma_{0}, \neg C_{\iota}; \Pi^{\{\cdot\}}$ by Inversion 4.30. On the other hand we have $\mathcal{B}(\mathsf{k}(C_{\iota})) \subset \mathcal{H}_{\gamma}[\Theta(\mathsf{Q}_{\Pi})]$ by (22) and Propositions 4.15.6 and 4.15.9. $\mathcal{H}_{\gamma}[(\Theta_{\iota})(\mathsf{Q}_{\Pi})] = \mathcal{H}_{\gamma}[\Theta(\mathsf{Q}_{\Pi})]$ follows provided that $\mathsf{k}(\iota) \subset \mathsf{k}(C_{\iota})$. Hence $(\mathcal{H}_{\gamma}, \Theta; \mathsf{Q}_{\Pi}) \vdash_{c}^{*a} \Gamma_{0}, \neg C_{\iota}; \Pi^{\{\cdot\}}$.

A (*cut*) with the cut formula C_{ι} yields $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{c}^{*a+b} \Gamma_{0}, \Gamma_{1}; \Pi^{\{\cdot\}}$ for $\operatorname{rk}(C_{\iota}) < \operatorname{rk}(C) \leq c$.

Case 2. Second assume that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c}^{*b} C, \Gamma_{1}; \Pi^{\{\cdot\}}$ follows from an $(i-\mathrm{stbl}(\mathbb{S}))$. We have an ordinal $b_{0} < b$ and a formula B(u) such that for $dom(\mathbb{R}_{\Pi}) = dom(\mathbb{Q}_{\Pi}) \cup \{\mathbb{S}\}$ and $\mathbb{R}_{\Pi}^{\sigma} = \mathbb{R}_{\Pi} \cup \{(\mathbb{S}, \sigma)\}$

$$\frac{(\mathcal{H}_{\gamma},\Theta;\mathbf{R}_{\Pi})\vdash_{c}^{*b_{0}}C,\Gamma_{1},B(u);\Pi^{\{\cdot\}}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{R}_{\Pi}^{\sigma})\vdash_{c}^{*b_{0}}C,\Gamma_{1};\neg B(u)^{\{\sigma\}},\Pi^{\{\cdot\}}\}_{\sigma}}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{Q}_{\Pi})\vdash_{c}^{*b}C,\Gamma_{1};\Pi^{\{\cdot\}}}$$

where $\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta]$ and $\Theta(\mathbb{Q}_{\Pi}) \subset M_{\sigma}$ by (24). By Lemma 4.29 we obtain $(\mathcal{H}_{\gamma}, \Theta; \mathbb{R}_{\Pi}^{\sigma}) \vdash_{c}^{*a} \Gamma_{0}, \neg C; \Pi^{\{\cdot\}}$ for each σ . IH followed by an $(i-\mathrm{stbl}(\mathbb{S}))$ yields

$$\frac{(\mathcal{H}_{\gamma},\Theta;\mathbf{R}_{\Pi})\vdash_{c}^{*a+b_{0}}\Gamma_{0},\Gamma_{1},B(u);\Pi^{\{\cdot\}}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{Q}_{\Pi})\vdash_{c}^{*a+b_{0}}\Gamma_{0},\Gamma_{1};\neg B(u)^{\{\sigma\}},\Pi^{\{\cdot\}}\}_{\sigma}}$$
$$(\mathcal{H}_{\gamma},\Theta;\mathbf{Q}_{\Pi})\vdash_{c}^{*a+b}\Gamma_{0},\Gamma_{1};\Pi^{\{\cdot\}}$$

Other cases are seen from IH.

Lemma 4.32 (Cut-elimination) Let $c \in \mathcal{H}_{\gamma}[\Theta]$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{c+b}^{*a} \Gamma; \Pi^{\{\cdot\}},$ where either $c \geq \mathbb{I}_N$ or $\neg (c < \Omega < c + b)$. Then $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_c^{*\varphi_b(a)} \Gamma; \Pi^{\{\cdot\}}.$

Proof. By main induction on b with subsidiary induction on a using Reduction 4.31.

Lemma 4.33 (Σ -persistency) Let $A \in \Sigma(\mathcal{L}_{N+1})$ with $\operatorname{rk}(A) \leq \mathbb{I}_N$, $\operatorname{dom}(\mathbb{Q}_{\Pi}) \subset \alpha < \beta, \ \beta \in \mathcal{H}_{\gamma}[\Theta] \cap \mathbb{I}_N$, and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_c^{*a} \Gamma, A^{(\alpha, \mathbb{I}_N)}; \Pi^{\{\cdot\}}$. Then $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_c^{*a} \Gamma, A^{(\beta, \mathbb{I}_N)}; \Pi^{\{\cdot\}}$.

Proof. This is seen by induction on a. (22) follows from $\beta \in \mathcal{H}_{\gamma}[\Theta]$.

Lemma 4.34 (Collapsing) Assume $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{I}_{N}, \gamma_{0}}^{*a} \Gamma; \Pi^{\{\cdot\}}$ for $\Gamma \subset \Sigma(\mathcal{L}_{N+1})$. Assume $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{I}_{N}}(\gamma))$ and $\hat{a} := \gamma + \omega^{a} < \gamma_{0}$. Then $(\mathcal{H}_{\hat{a}+1}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta, \gamma_{0}}^{*\beta} \Gamma^{(\beta, \mathbb{I}_{N})}; \Pi^{\{\cdot\}}$ holds for $\beta = \psi_{\mathbb{I}_{N}}(\hat{a})$.

Proof. By induction on a as in [9]. Let us omit the second subscript γ_0 in the proof.

We have $\{\gamma, a\} \cup dom(\mathbb{Q}_{\Pi}) \subset \mathcal{H}_{\gamma}[\Theta]$ by (21). We obtain $\beta \in \mathcal{H}_{\hat{a}+1}[\Theta]$, and $dom(\mathbb{Q}_{\Pi}) \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{I}_{N}}(\gamma)) \cap \mathbb{I}_{N} = \psi_{\mathbb{I}_{N}}(\gamma) \subset \beta$ by the assumption. This yields $\mathbb{Q}_{\Pi}(\mathbb{S}) \subset \mathbb{S} \subset \psi_{\mathbb{I}_{N}}(\gamma)$ for every $\mathbb{S} \in dom(\mathbb{Q}_{\Pi})$, and $\Theta(\mathbb{Q}_{\Pi}) \subset \mathcal{H}_{\gamma}(\psi_{\mathbb{I}_{N}}(\gamma))$.

 $\beta = \psi_{\mathbb{I}_N}(\hat{a})$ needs to be in LSt_N due to the axiom (1). On the other hand we have $\mathsf{k}(\Gamma \cup \Pi) \subset \mathcal{H}_{\gamma}[\Theta(\mathsf{Q}_{\Pi})]$ by (22). We obtain

$$\mathsf{k}(\Gamma \cup \Pi) \subset \psi_{\mathbb{I}_N}(\gamma) \subset \beta \tag{26}$$

Case 1. The last inference is an $(i - \text{stbl}(\mathbb{S}))$: We have $\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta]$. Let $B(\mathsf{L}_0) \in \Delta_0(\mathcal{L}_{N+1})$ be a \bigwedge -formula with $\operatorname{rk}(B(\mathsf{L}_0)) < \mathbb{S}$ and a term $u \in Tm(\mathbb{I}_N)$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbf{R}_{\Pi}) \vdash_{\mathbb{I}_{N}}^{*a_{0}} \Gamma, B(u); \Pi^{\{\cdot\}}$ for an ordinal $a_{0} \in \mathcal{H}_{\gamma}[\Theta] \cap a$ and $dom(\mathbf{R}_{\Pi}) = dom(\mathbf{Q}_{\Pi}) \cup \{\mathbb{S}\}.$ $(\mathcal{H}_{\hat{a}+1}, \Theta; \mathbf{R}_{\Pi}) \vdash_{\mathbb{I}_{N}}^{*\beta_{0}} \Gamma^{(\beta,\mathbb{I}_{N})}, B(u); \Pi^{\{\cdot\}}$ follows from IH with Σ -persistency 4.33, where $\beta_{0} = \psi_{\mathbb{I}_{N}}(\widehat{a}_{0})$ with $\widehat{a}_{0} = \gamma + \omega^{a_{0}}.$

We obtain $\mathsf{k}(B(u)) \subset \mathcal{H}_{\gamma}(\beta)$ by (26), and $\mathrm{rk}(B(u)) < \beta$ for $\mathrm{rk}(B(u)) < \mathbb{I}_N$ by Proposition 4.5.3.

On the other hand we have $(\mathcal{H}_{\gamma}, \Theta; \mathbf{R}_{\Pi}^{\sigma}) \vdash_{\mathbb{I}_{N}}^{*a_{0}} \Gamma; \neg B(u)^{\{\sigma\}}, \Pi^{\{\cdot\}}$ for every $\sigma \in$ $\Psi_{\mathbb{S}}$ such that $\Theta(\mathbf{Q}_{\Pi}) \subset M_{\sigma}$. IH with Σ -persistency 4.33 yields $(\mathcal{H}_{\hat{a}+1}, \Theta; \mathbf{R}_{\Pi}^{\sigma}) \vdash_{\mathbb{I}_{N}}^{*\beta_{0}}$ $\Gamma^{(\beta,\mathbb{I}_N)}; \neg B(u)^{\{\sigma\}}, \Pi^{\{\cdot\}}. \quad (\mathcal{H}_{\hat{a}+1}, \Theta; \mathsf{Q}_{\Pi}) \vdash_{\beta,\gamma_0}^{*\beta} \Gamma^{(\beta,\mathbb{I}_N)}; \Pi^{\{\cdot\}}. \text{ follows from an } (i - 1)^{\mathsf{I}_N}$ $stbl(\mathbb{S})).$

Case 2. The case when the last inference is a $(\Sigma(St)-rfl)$ on \mathbb{I}_N : We have ordinals $a_{\ell}, a_r < a$ and a formula $C \in \Sigma(\mathcal{L}_{N+1})$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{\mathbb{I}_N}^{*a_{\ell}}$
$$\begin{split} & \Gamma, C; \Pi^{\{\cdot\}} \text{ and } (\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{\mathbb{I}_{N}}^{*a_{r}} \neg \exists x \, C^{(x,\mathbb{I}_{N})}, \Gamma; \Pi^{\{\cdot\}}. \\ & \text{Let } \beta_{\ell} = \psi_{\mathbb{I}_{N}}(\widehat{a_{\ell}}) \in \mathcal{H}_{\widehat{a}+1}[\Theta(\mathbf{Q}_{\Pi})] \cap \beta \text{ with } \widehat{a_{\ell}} = \gamma + \omega^{a_{\ell}}. \ \beta_{\ell} < \beta \text{ follows from} \end{split}$$

 $a_{\ell} \in \mathcal{H}_{\gamma}[\Theta(\mathbf{Q}_{\Pi})] \subset \mathcal{H}_{\gamma}(\beta)$ and Proposition 3.17.1. IH with Σ -persistency 4.33 yields $(\mathcal{H}_{\hat{a}+1},\Theta; \mathsf{Q}_{\Pi}) \vdash_{\beta}^{\langle *\beta_{\ell}} \Gamma^{(\beta,\mathbb{I}_{N})}, C^{(\beta_{\ell},\mathbb{I}_{N})}; \Pi^{\{\cdot\}}.$

Inversion 4.30 yields $(\mathcal{H}_{\hat{a}_{\ell}+1}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{\mathbb{I}_N}^{*a_r} \neg C^{(\beta_{\ell}, \mathbb{I}_N)}, \Gamma; \Pi^{\{\cdot\}}.$ For $\beta_r = \psi_{\mathbb{I}_N}(\hat{a_r}) \in \mathcal{H}_{\hat{a}+1}[\Theta(\mathbf{Q}_{\Pi})] \cap \beta$ with $\hat{a_r} = \hat{a_{\ell}} + 1 + \omega^{a_r}$, we obtain $\widehat{a_r} < \widehat{a}$ by $a_\ell, a_r < a$, and $\beta_r < \beta$ follows from $\{a_\ell, a_r\} \subset \mathcal{H}_{\gamma}[\Theta(\mathbf{Q}_{\Pi})] \subset \mathcal{H}_{\gamma}(\beta)$ and Proposition 3.17.1. IH with Σ -persistency 4.33 yields $(\mathcal{H}_{\hat{a}+1}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{\beta}^{*\beta_r}$ $\neg C^{(\beta_{\ell},\mathbb{I}_{N})}, \Gamma^{(\beta,\mathbb{I}_{N})}; \Pi^{\{\cdot\}}. \text{ We obtain } (\mathcal{H}_{\hat{a}+1}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*\beta} \Gamma^{(\beta,\mathbb{I}_{N})}; \Pi^{\{\cdot\}} \text{ by a } (cut).$ **Case 3.** The last inference is a (Λ) : We have an $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$ such that

 $A \in \Gamma \subset \Sigma(\mathcal{L}_{N+1}) \text{ and } (\mathcal{H}_{\gamma}, \Theta_{\iota}; \mathbb{Q}_{\Pi}) \vdash_{\mathbb{I}_{N}}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{\{\cdot\}} \text{ with } a(\iota) < a \text{ and } \Theta_{\iota} =$ $\Theta \cup \mathcal{B}(\mathsf{k}(\iota))$ for each $\iota \in J$.

We obtain $\mathsf{k}(A) \subset \psi_{\mathbb{I}_N}(\gamma)$ by (26). Let $\iota \in J$. Since $A \in \Sigma(\mathcal{L}_{N+1})$, we obtain $\mathsf{k}(\iota) \subset \psi_{\mathbb{I}_N}(\gamma)$, and $\mathcal{B}(\mathsf{k}(\iota)) \subset \psi_{\mathbb{I}_N}(\gamma)$ by Proposition 4.15.4. Let $\widehat{a_{\iota}} = \gamma + \omega^{a(\iota)} < 0$ \hat{a} by $a(\iota) < a$. Then $a(\iota) \in \mathcal{H}_{\gamma}[(\Theta_{\iota})(\mathbb{Q}_{\Pi})] \subset \mathcal{H}_{\gamma}(\beta)$ and $\beta_{\iota} = \psi_{\mathbb{I}_{N}}(\widehat{a}_{\iota}) < \beta$. IH with Σ -persistency 4.33 yields $(\mathcal{H}_{\hat{a}+1}, \Theta_{\iota}; \mathbf{Q}_{\Pi}) \vdash_{\beta}^{*\beta_{\iota}} \Gamma^{(\beta, \mathbb{I}_{N})}, (A_{\iota})^{(\beta, \mathbb{I}_{N})}; \Pi^{\{\cdot\}}.$ $(\mathcal{H}_{\hat{a}+1},\Theta; \mathbf{Q}_{\Pi}) \vdash_{\beta}^{*\beta} \Gamma^{(\beta,\mathbb{I}_N)}; \Pi^{\{\cdot\}}$ follows by a (\bigwedge) .

Case 4. The last inference is a (\bigvee) : We have an $A \simeq \bigvee (A_{\iota})_{\iota \in J}$ such that $A \in \Gamma$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbf{Q}_{\Pi}) \vdash_{\mathbb{I}_{N}}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{\{\cdot\}}$ with $a(\iota) < a$ and an $\iota \in J$. Assuming $k(\iota) \subset k(A_{\iota})$, we obtain $k(\iota) \subset \beta$ by (26). IH followed by a (\bigvee) yields the lemma. Other cases are seen from IH as in [9].

Lemma 4.35 Let $\Gamma \subset \Sigma(\mathcal{L}_0 : \Omega)$ be a set of formulas. Suppose $\Theta \subset \mathcal{H}_{\gamma}(\psi_{\Omega}(\gamma))$ and $(\mathcal{H}_{\gamma}, \Theta; \emptyset) \vdash_{\Omega, \gamma_1}^{*a} \Gamma; \emptyset$. Let $\beta = \psi_{\Omega}(\hat{a})$ with $\hat{a} = \gamma + \omega^a < \gamma_1$. Then $(\mathcal{H}_{\hat{a}+1},\Theta;\emptyset)\vdash_{\beta,\gamma_1}^{*\beta}\Gamma^{(\beta,\Omega)};\emptyset \ holds.$

Proof. By induction on a as in [9].

4.5 Operator controlled derivations with caps

Let β be the ordinal in Collapsing 4.34, and $\Lambda := \Gamma(\beta)$. Λ is the base of the $\tilde{\theta}$ -function $\tilde{\theta}_b(\xi) = \tilde{\theta}_b(\xi; \Lambda)$ in Definition 3.1. Definitions 4.36.4, 4.38 and 4.39 depend on the ordinals γ_0, Λ .

Definition 4.36 1. For a finite set Γ of formulas let $\operatorname{rk}(\Gamma) = \max(\{0\} \cup \{\operatorname{rk}(A) : A \in \Gamma\})$ and $\operatorname{rk}(\bigvee \Gamma) = \max(\{0\} \cup \{\operatorname{rk}(A) + 1 : A \in \Gamma\})$.

2. For a finite family $Q \subset \coprod_{\mathbb{S}} \Psi_{\mathbb{S}}$ in the sense of Definition 4.22.1 let

$$\partial \mathsf{Q} := \{(\mathbb{S}, \max(\mathsf{Q}(\mathbb{S}))) : \mathbb{S} \in dom(\mathsf{Q}), \mathsf{Q}(\mathbb{S}) \neq \emptyset\}$$

and

$$\mathbf{Q}^{\circ} := \mathbf{Q} \setminus \partial \mathbf{Q} = \{ (\mathbb{S}, \sigma) \in \mathbf{Q} : \sigma < \max(\mathbf{Q}(\mathbb{S})) \}.$$

Let $M_{\partial \mathbf{Q}} := \bigcap_{(\mathbb{S}, \rho) \in \partial \mathbf{Q}} M_{\rho}$, and $\iota \in [\partial \mathbf{Q}] J : \Leftrightarrow \mathsf{k}(\iota) \subset M_{\partial \mathbf{Q}}$ for $\iota \in J$.

3. By a capped formula we mean a pair (A, ρ) of RS-sentence A and an ordinal $\rho \prec \mathbb{S}$ with a successor stable ordinal \mathbb{S} such that $k(A) \subset M_{\rho}$. Such a pair is denoted by $A^{(\rho)}$. It is convenient for us to regard uncapped formulas A as capped formulas $A^{(u)}$ with its cap u, where [u]J = J with $M_{u} = OT(\mathbb{I}_{N}) \cap \mathbb{I}_{N}$.

A sequent is a finite set of capped or uncapped formulas, denoted by $\Gamma_0^{(\rho_0)}, \ldots, \Gamma_n^{(\rho_n)}, \Pi^{(u)}$, where each formula in the set $\Gamma_i^{(\rho_i)}$ puts on the cap ρ_i . When we write $\Gamma^{(\rho)}$, we tacitly assume that $\mathsf{k}(\Gamma) \subset M_{\rho}$.

A capped formula $A^{(\rho)}$ is said to be a $\Sigma(\mathcal{L}_i : \pi)$ -formula if $A \in \Sigma(\mathcal{L}_i : \pi)$. Let $\mathsf{k}(A^{(\rho)}) := \mathsf{k}(A)$.

- 4. A pair $\mathbf{Q} = ((\mathbf{Q})_0, \gamma^{\mathbf{Q}})$ is said to be a finite family for γ_0 with thresholds if $(\mathbf{Q})_0$ is a finite family in the sense of Definition 4.22 and the following conditions are met. Let $dom(\mathbf{Q}) = dom((\mathbf{Q})_0), \ \mathbf{Q}(\mathbb{S}) = (\mathbf{Q})_0(\mathbb{S}), \text{ and } \bigcup \mathbf{Q} = \bigcup \{\mathbf{Q}(\mathbb{S}) : \mathbb{S} \in dom(\mathbf{Q})\}.$
 - (a) $\gamma^{\mathsf{Q}}_{:}$ is a map $dom(\mathsf{Q}) \ni \mathbb{S} \mapsto \gamma^{\mathsf{Q}}_{\mathbb{S}}$ such that $\gamma_{0} + (\mathbb{I}_{N})^{2} > \gamma^{\mathsf{Q}}_{\mathbb{S}} \ge \gamma_{0} + \mathbb{I}_{N}$, $\gamma^{\mathsf{Q}}_{\mathbb{S}} \ge \gamma^{\mathsf{Q}}_{\mathbb{T}} + \mathbb{I}_{N}$ for $\{\mathbb{S} < \mathbb{T}\} \subset dom(\mathsf{Q})$. Q is said to have $gaps \eta$ if $\gamma^{\mathsf{Q}}_{\mathbb{S}} \ge \gamma^{\mathsf{Q}}_{\mathbb{T}} + \mathbb{I}_{N} \cdot \eta$ holds for $\{\mathbb{S} < \mathbb{T}\} \subset dom(\mathsf{Q})$, and $\gamma^{\mathsf{Q}}_{\mathbb{S}} \ge \gamma_{0} + \mathbb{I}_{N} \cdot \eta$ for $\mathbb{S} \in dom(\mathsf{Q})$.
 - (b) For each $\rho \in \mathbf{Q}(\mathbb{S}), m(\rho) : \Lambda \to \varphi_{\Lambda}(0)$ is special, and $\gamma_{\mathbb{S}}^{\mathbf{Q}} \leq \mathbf{p}_{0}(\rho)$.

The thresholds function $\gamma^{\mathbb{Q}}_{\mathbb{S}}$ is uniquely extended for $\mathbb{S} \in {\Omega} \cup St$ by $\gamma^{\mathbb{Q}}_{\mathbb{S}} := \gamma^{\mathbb{Q}}_{\mathbb{T}}$ for $\mathbb{T} = \min{\{\mathbb{T} \in dom(\mathbb{Q}) : \mathbb{T} \geq \mathbb{S}\}}$ if such a \mathbb{T} exists. Otherwise let $\gamma^{\mathbb{Q}}_{\mathbb{S}} = \gamma_{0}$.

For an ordinal e, let $\mathbb{Q} \upharpoonright e$ denote the restriction of \mathbb{Q} to e. Namely $dom(\mathbb{Q} \upharpoonright e) = \{ \mathbb{S} \in dom(\mathbb{Q}) : \mathbb{S} < e \}$ and $\gamma_{\mathbb{S}}^{\mathbb{Q} \upharpoonright e} = \gamma_{\mathbb{S}}^{\mathbb{Q}}$ for every $\mathbb{S} \in dom(\mathbb{Q} \upharpoonright e)$.

- 5. For a finite family \mathbb{Q} for γ_0 with thresholds and a pair (\mathbb{S}, ρ) such that $(\mathbb{Q})_0 \cup \{(\mathbb{S}, \rho)\}$ is a finite family for $\gamma_0, \mathbb{Q} \cup \{(\mathbb{S}, \rho)\} = \mathbb{R} = ((\mathbb{R})_0, \gamma^{\mathbb{R}})$ denotes a finite family for γ_0 with thresholds enjoying the following:
 - (a) $dom(\mathbf{R}) = dom(\mathbf{Q}) \cup \{\mathbb{S}\}, \mathbf{R}(\mathbb{T}) = \mathbf{Q}(\mathbb{T}) \text{ for } \mathbb{T} \neq \mathbb{S} \text{ and } \mathbf{R}(\mathbb{S}) = \mathbf{Q}(\mathbb{S}) \cup \{\rho\}.$
 - (b) $\gamma^{\mathtt{R}}_{\cdot}$ extends $\gamma^{\mathtt{Q}}_{\cdot}$ in such a way that $\gamma^{\mathtt{R}}_{\mathbb{T}} = \gamma^{\mathtt{Q}}_{\mathbb{T}}$ for $\mathbb{T} \in dom(\mathtt{Q}), \gamma^{\mathtt{R}}_{\mathbb{S}} \ge \gamma^{\mathtt{Q}}_{\mathbb{T}} + \mathbb{I}_{N}$ for every $\mathbb{S} < \mathbb{T} \in dom(\mathtt{Q}), \gamma^{\mathtt{Q}}_{\mathbb{U}} \ge \gamma^{\mathtt{R}}_{\mathbb{S}} + \mathbb{I}_{N}$ for every $\mathbb{S} > \mathbb{U} \in dom(\mathtt{Q}),$ and $\gamma^{\mathtt{R}}_{\mathbb{S}} \ge \gamma_{0} + \mathbb{I}_{N}$.

A pair $\mathbf{Q} = ((\mathbf{Q})_0, \gamma^{\mathbf{Q}})$ is simply denoted by \mathbf{Q} when $\gamma^{\mathbf{Q}}$ is irrelevant.

Lemma 4.37 Let $\rho \in \partial \mathbb{Q}(\mathbb{S})$ for a finite family \mathbb{Q} for γ_0 with thresholds function $\gamma^{\mathbb{Q}}$. Assume $\Theta \cup dom(\mathbb{Q}) \subset M_{\rho}$ and $\forall \mathbb{T} \in dom(\mathbb{Q}) \left(\mathbb{Q}^{\circ}(\mathbb{T}) \subset \mathcal{H}_{\gamma^{\mathbb{Q}}_{\mathbb{S}} + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{T})] \right)$ for a finite set Θ of ordinals, cf. (29). Then $\bigcup_{\mathbb{T} \in dom(\mathbb{Q})} \mathbb{Q}^{\circ}(\mathbb{T}) \subset M_{\rho}$ holds.

Proof. Let $\mathbb{S}, \mathbb{T} \in dom(\mathbb{Q})$ with $\rho \in \partial \mathbb{Q}(\mathbb{S})$. We show $\mathbb{Q}^{\circ}(\mathbb{T}) \subset M_{\rho}$ by induction on the cardinality of the finite set $\{\mathbb{U} \in dom(\mathbb{Q}) : \mathbb{U} < \mathbb{T}\}$. First let $\mathbb{S} \geq \mathbb{T}$ and $\sigma \in \mathbb{Q}^{\circ}(\mathbb{T})$. If $\mathbb{S} > \mathbb{T}$, then $\sigma < \mathbb{T} < \rho \in \Psi_{\mathbb{S}}$. $\sigma \in M_{\rho}$ follows. Otherwise $\sigma \in \mathbb{Q}^{\circ}(\mathbb{S}) \subset \rho$ follows from $\rho \in \partial \mathbb{Q}(\mathbb{S})$. Next let $\mathbb{S} < \mathbb{T}$. We have $\Theta \subset M_{\rho}$ and $\mathbb{Q}^{\circ}(\mathbb{T}) \subset \mathcal{H}_{\gamma_{\mathbb{T}}^{\mathfrak{q}} + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{T})]$ by the assumption. For $dom(\mathbb{Q}) \ni \mathbb{U} < \mathbb{T}$ we have $\mathbb{Q}^{\circ}(\mathbb{U}) \subset M_{\rho}$ by IH, and hence $\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{T}) \subset M_{\rho}$. On the other hand we have $\gamma_{\mathbb{T}}^{\mathbb{Q}} + \mathbb{I}_{N} < \gamma_{\mathbb{S}}^{\mathbb{Q}} \leq p_{0}(\rho)$. Lemma 3.43.1 yields $\mathbb{Q}^{\circ}(\mathbb{T}) \subset \mathcal{H}_{p_{0}(\rho)}(M_{\rho}) \subset M_{\rho}$. \Box

Definition 4.38 Let $\rho \in \Psi_{\mathbb{S}}$ and Θ, Θ_1 be finite sets of ordinals.

- 1. $\kappa \in L^{\mathbb{Q}}_{\rho}(\Theta, \Theta_1)$ iff $\kappa \in \Psi_{\mathbb{S}} \cap \rho, \Theta \cup \Theta_1 \cup \{p_0(\rho)\} \cup SC(m(\rho)) \cup \mathbb{Q}^{\circ}(\mathbb{S}) \subset M_{\kappa}, \gamma^{\mathbb{Q}}_{\mathbb{S}} \leq p_0(\kappa) \leq p_0(\rho), \kappa \in \mathcal{H}_{\gamma^{\mathbb{Q}}_{\sigma} + \mathbb{I}_N}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})], \text{ and } m(\kappa) \text{ is special.}$
- 2. $H^{\mathbb{Q}}_{\rho}(f, \Theta, \Theta_1)$ denotes the resolvent class defined by $\kappa \in H^{\mathbb{Q}}_{\rho}(f, \Theta, \Theta_1)$ iff $\kappa \in L^{\mathbb{Q}}_{\rho}(\Theta, \Theta_1)$ and $f \leq m(\kappa)$, where $f \leq g : \Leftrightarrow \forall i(f'(i) \leq g'(i))$ for special finite functions f, g.

Let Γ be a sequent, Θ a finite set of ordinals $< \mathbb{I}_N, \{\gamma, a, c, d, e\} \subset OT(\mathbb{I}_N),$ and \mathbb{Q} a finite family for γ_0 with thresholds.

We define another derivability relation $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,d,e,\gamma_0}^a \Gamma$, where *c* is a bound of ranks of cut formulas, *d* a bound of ranks in the inference rules $(i-\mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$, and *e* a bound of ordinals S. The relation depends on ordinals β, γ_0 , and should be written as $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}) \vdash_{c,d,e,\beta,\gamma_0}^a \Gamma$. However the ordinals β, γ_0 will be fixed. So let us omit it.

Definition 4.39 Let $\mathbf{Q} = ((\mathbf{Q})_0, \gamma^{\mathbf{Q}})$ be a finite family for γ_0 with thresholds, Θ a finite set of ordinals such that $\mathcal{B}(\Theta) \subset \Theta$, and a, c, d, e ordinals such that $dom(\mathbf{Q}) \subset e$. Let $\beta < \psi_{\mathbb{I}_N}(\gamma_0)$ be a fixed ordinal in Collapsing 4.34 and $\Lambda = \Gamma(\beta)$.

Let $\Gamma = \bigcup \{\Gamma_{\rho}^{(\rho)} : \rho \in \{u\} \cup \bigcup Q\}$ be a set of formulas such that $\mathsf{k}(\Gamma_{\rho}) \subset M_{\rho} \cap M_{\partial Q}$ for each cap $\rho \in \{u\} \cup \bigcup Q$.

 $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,d,e}^{a} \Gamma$ holds if $\gamma_{0} \leq \gamma$, each of the following (27), (28) and (29) holds, cf. (21) and (22), and one of the following cases (\bigvee), (\bigwedge), (*cut*), ($\Sigma(\Omega)$ -rfl) and (*i*-rfl_S(ρ, f, Θ_{1})) holds:

$$\Theta(\mathbf{Q}^{\circ}) \subset M_{\partial \mathbf{Q}} \tag{27}$$

$$\{\mathbb{S}, \gamma^{\mathsf{Q}}_{\mathbb{S}} : \mathbb{S} \in dom(\mathbb{Q})\} \cup \{\gamma, a, c, d, e, \beta, \gamma_0\} \cup \mathsf{k}(\Gamma) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^\circ)]$$
(28)

$$\forall \mathbb{S} \in dom(\mathbb{Q}) \left(\mathbb{Q}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})] \right)$$
(29)

- $\begin{array}{l} (\bigvee) \ \, \text{There exist an } A \simeq \bigvee (A_{\iota})_{\iota \in J}, \text{ a cap } \rho \in \{\mathtt{u}\} \cup \bigcup \mathtt{Q}, \, \iota \in [\rho]J, \text{ and an ordinal} \\ a(\iota) < a \text{ such that } A^{(\rho)} \in \Gamma \text{ and } (\mathcal{H}_{\gamma}, \Theta, \mathtt{Q}) \vdash_{c,d,e}^{a(\iota)} \Gamma, (A_{\iota})^{(\rho)}. \end{array}$
- (\bigwedge) There exist an $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$ and a cap $\rho \in \{\mathbf{u}\} \cup \bigcup \mathbb{Q}$ such that $A^{(\rho)} \in \Gamma$. For $\iota \in [\rho] J \cap [\partial \mathbb{Q}] J$, there is an ordinal $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta_{\iota}, \mathbb{Q}) \vdash_{c,d,e}^{a(\iota)} \Gamma, (A_{\iota})^{(\rho)}$ holds for $\Theta_{\iota} = \Theta \cup \mathcal{B}(\mathbf{k}(\iota))$.
- (cut) There exist $\rho \in \{\mathbf{u}\} \cup \bigcup \mathbf{Q}$ an ordinal $a_0 < a$, and a formula C with $\operatorname{rk}(C) < c$, for which $(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q}) \vdash_{c,d,e}^{a_0} \Gamma, \neg C^{(\rho)}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q}) \vdash_{c,d,e}^{a_0} C^{(\rho)}, \Gamma$ hold.
- $(\Sigma(\Omega)$ -rfl) There exist ordinals $a_{\ell}, a_r < a$ and an uncapped formula $C \in \Sigma(\mathcal{L}_0 : \Omega)$ such that $c \geq \Omega$, $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,d,e}^{a_{\ell}} \Gamma, C$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,d,e}^{a_r} \neg \exists x < \pi C^{(x,\Omega)}, \Gamma$.
- $(i-\mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$ There exists a successor *i*-stable ordinal $\mathbb{S} < e$ such that

$$\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})] \tag{30}$$

 $\rho \in \Psi_{\mathbb{S}}$ is an ordinal such that $\rho = \max(\mathbb{Q}^{\rho}(\mathbb{S}))$, i.e., $\rho \in \partial \mathbb{Q}^{\rho}(\mathbb{S})$ and

$$\Theta \subset M_{\rho} \& SC(\rho) \cup \{ \mathfrak{p}_{0}(\rho) \} \subset M_{\partial \mathfrak{q}} \& \rho \in \mathcal{H}_{\gamma_{\mathfrak{s}}^{\mathfrak{q}^{\rho}} + \mathbb{I}_{N}}[\Theta(\mathfrak{q}^{\circ} \upharpoonright \mathbb{S})]$$
(31)

where $\mathbb{Q}^{\rho} = \mathbb{Q} \cup \{(\mathbb{S}, \rho)\}$, cf. (27) and (29), and $s \in \operatorname{supp}(m(\rho))$ is an ordinal, f is a special function, $a_0 < a$ is an ordinal, D is an \mathcal{L}_i -formula, which is a finite conjunction with $D \equiv \bigwedge (D_n)_{n < m}$, and Θ_1 is a finite set of ordinals such that $\Theta_1 \subset M_{\partial \mathbb{Q}^{\rho}}$ enjoying the following conditions (r1), (r2), (r3) and (r4).

- (r1) $\operatorname{rk}(D) < \min\{s, d\}.$
- (r2) For $g = m(\rho)$, $SC(f) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ and $f_s = g_s \& f^s <^s_{\Lambda} g'(s)$, cf. Definition 3.31.6.
- (r3) For each n < m, $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\rho}) \vdash_{c,d,e}^{a_0} \Gamma, D_n^{(\rho)}$ holds.
- (r4) $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\rho\sigma}) \vdash_{c,d,e}^{a_0} \Gamma, \neg D^{(\sigma)}$ holds for every $\sigma \in H^{\mathbb{Q}^{\rho}}_{\rho}(f, \Theta, \Theta_1)$, where $(\mathbb{Q}^{\rho\sigma})_0 = (\mathbb{Q}^{\rho})_0 \cup \{(\mathbb{S}, \sigma)\}$ and $\gamma_{\cdot}^{\mathbb{Q}^{\rho\sigma}} = \gamma_{\cdot}^{\mathbb{Q}^{\rho}}$.

In this subsection the ordinals β and γ_0 will be fixed, and we write $\vdash_{c,d,e}^a$ for $\vdash^{a}_{c,d,e,\beta,\gamma_{0}}$. Note that $\mathbb{Q}(\mathbb{S}) \subset \mathcal{H}_{\gamma}[\Theta]$ need not to hold.

Lemma 4.40 (Tautology) Let Q be a finite family for γ_0 with thresholds γ_{\cdot}^{Q} . b, e, γ be ordinals, and $\rho \in {\mathbf{u}} \cup \bigcup {\mathbf{Q}}$ such that $\mathsf{k}(A) \subset M_{\rho}$ for a formula A.

Assume that $\mathcal{B}(\Theta) \subset \Theta$, and $\Theta, \mathbb{Q}, b, e, \beta, \gamma_0, \gamma, \gamma^{\mathbb{Q}}$ and A enjoy (27), (28), and (29).

 $\overset{\,\,}{Then} (\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash^{2d}_{0,b,e,\beta,\gamma_0} \neg A^{(\rho)}, A^{(\rho)} \text{ holds for } d = \mathrm{rk}(A).$

Proof. By induction on $d = \operatorname{rk}(A)$. By (28) we have $\mathsf{k}(A) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$. Let $A \simeq \bigvee (A_{\iota})_{\iota \in J}$ and $\iota \in [\partial \mathbb{Q}]J \cap [\rho]J$. Then $\mathsf{k}(\iota) \subset M_{\partial \mathbb{Q}} \cap M_{\rho}$ for (27). On the other hand we have $d_{\iota} = \operatorname{rk}(A_{\iota}) < \operatorname{rk}(A) = d$ and $d_{\iota} \in \mathcal{H}_0[\mathsf{k}(A_{\iota})] \subset \mathcal{H}_0[\mathsf{k}(A,\iota)] \subset$ $\mathcal{H}_{\gamma}[\Theta_{\iota}(\mathbb{Q}^{\circ})]$ for $\Theta_{\iota} = \Theta \cup \mathcal{B}(\mathsf{k}(\iota))$. Hence (28) is enjoyed in $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{0,b,e,\beta,\gamma_0}^{2d_{\iota}}$ $\neg A_{\iota}^{(\rho)}, A_{\iota}^{(\rho)}.$

Lemma 4.41 Let $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash^{a}_{c,d,e} \Gamma$. Let $\rho \in \Psi_{\mathbb{S}}$ be an ordinal such that $\mathbb{R} = \mathbb{Q} \cup \{(\mathbb{S}, \rho)\}$ is a finite family for γ_0 with thresholds, $\{\mathbb{S}, \gamma_{\mathbb{S}}^{\mathbb{R}}\} \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})],$ $\Theta \cup dom(\mathbf{Q}) \subset M_{\rho}, \ SC(\rho) \cup \{\mathbf{p}_0(\rho)\} \subset M_{\partial \mathbf{Q}} \ and \ \rho \in \mathcal{H}_{\gamma^{\mathbf{R}}_{\mathbb{S}} + \mathbb{I}_N}[\Theta(\mathbf{Q}^\circ \upharpoonright \mathbb{S})], \ cf. \ (31).$ Then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}) \vdash^{a}_{c,d,e} \Gamma$ holds.

Proof. By induction on a as in Lemma 4.29. Let $\rho \in \partial \mathbb{R}(\mathbb{S})$. By $\Theta \subset M_{\rho}$ and Lemma 4.37, (27) holds in $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}) \vdash_{c,d,e}^{a} \Gamma$. Also we have $\mathbb{Q}^{\circ} \subset \mathbb{R}^{\circ}$ for (28).

Lemma 4.42 (Reduction) Let $C \simeq \bigvee (C_{\iota})_{\iota \in J}$, and $\operatorname{rk}(C) \leq c$ with $\Omega \leq c < \mathbb{I}_N$. Assume $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash^a_{c,d,e,\beta,\gamma_0} \Gamma_0, \neg C^{(\tau)}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash^b_{c,d,e,\beta,\gamma_0} C^{(\tau)}, \Gamma_1$. Then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash^{a\#b}_{c,d,e,\beta} \Gamma_0, \Gamma_1$ holds for the natural sum a#b of ordinals a

and b.

Proof. By induction on a#b. In the proof let us write \vdash^a_c for $\vdash^a_{c,d,e,\beta,\gamma_0}$. **Case 1.** The last inference in $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a} \Gamma_{0}, \neg C^{(\tau)}$ is a (\bigwedge) with its major formula $\neg C^{(\tau)}$, and one in $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{b} C^{(\tau)}, \Gamma_{1}$ is a (\bigvee) with its major formula $C^{(\tau)}$: We have $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{b(\iota)} (C_{\iota})^{(\tau)}, C^{(\tau)}, \Gamma_{1}$ for an $\iota \in [\tau]J$ and a $b(\iota) < b$. We obtain $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a \# b(\iota)} (C_{\iota})^{(\tau)}, \Gamma_{0}, \Gamma_{1}$ by IH.

We obtain $\mathsf{k}(C_{\iota}) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ by (28). On the other hand we have $\Theta(\mathbb{Q}^{\circ}) \subset$ $M_{\partial \mathbf{q}}$ by (27). Hence $\mathbf{k}(\iota) \subset M_{\partial \mathbf{q}}$, i.e., $\iota \in [\partial \mathbf{q}]J$ provided that $\mathbf{k}(\iota) \subset \mathbf{k}(C_{\iota})$. $\begin{array}{l} \mathcal{H}_{\gamma}[\Theta_{\iota}(\mathtt{Q}^{\circ})] = \mathcal{H}_{\gamma}[\Theta(\mathtt{Q}^{\circ})] \text{ follows by Propositions 4.15.6 and 4.15.9 for } \Theta_{\iota} = \\ \Theta \cup \mathcal{B}(\mathsf{k}(\iota)). \text{ Moreover } \mathtt{Q}(\mathbb{S}) \subset \mathcal{H}_{\gamma^{\mathsf{q}}_{\mathbb{S}} + \mathbb{I}_{N}}[\Theta(\mathtt{Q}^{\circ} \upharpoonright \mathbb{S})] \text{ for every } \mathbb{S} \in dom(\mathtt{Q}) \text{ by (29).} \end{array}$ On the other hand we have $(\mathcal{H}_{\gamma}, \Theta_{\iota}, \mathbb{Q}) \vdash_{c}^{a(\iota)} \Gamma_{0}, \neg C^{(\tau)}, \neg (C_{\iota})^{(\tau)}$ for an $a(\iota) < 0$ a. $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a(\iota)} \Gamma_{0}, \neg C^{(\tau)}, \neg (C_{\iota})^{(\tau)}$ follows. IH yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a(\iota) \# b}$ $\Gamma_0, \Gamma_1, \neg(C_\iota)^{(\tau)}$. We obtain $(\mathcal{H}_\gamma, \Theta, \mathbb{Q}) \vdash_c^{a\#b} \Gamma_0, \Gamma_1$ by a (*cut*) with $\operatorname{rk}(C_\iota) < \mathcal{O}(\mathcal{H})$ $\operatorname{rk}(C) = c$. Suppressing the part $(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q})$, let us depict it as follows.

$$\frac{\vdash_{c}^{a(\iota)} \Gamma_{0}, \neg C^{(\tau)}, \neg (C_{\iota})^{(\tau)} \vdash_{c}^{b} C^{(\tau)}, \Gamma_{1}}{\vdash_{c}^{a(\iota)\#b} \Gamma_{0}, \Gamma_{1}, \neg (C_{\iota})^{(\tau)}} \text{ IH } \frac{\vdash_{c}^{a} \Gamma_{0}, \neg C^{(\tau)} \vdash_{c}^{b(\iota)} (C_{\iota})^{(\tau)}, C^{(\tau)}, \Gamma_{1}}{\vdash_{c}^{a\#b(\iota)} (C_{\iota})^{(\tau)}, \Gamma_{0}, \Gamma_{1}} (cut) \text{ IH } (\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a\#b} \Gamma_{0}, \Gamma_{1}$$

Case 2. One of $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a} \Gamma_{0}, \neg C^{(\tau)}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{b} C^{(\tau)}, \Gamma_{1}$ follows from a (*cut*): For example let for rk(D) < c and $b_0 < b$

$$\frac{(\mathcal{H}_{\gamma},\Theta,\mathbf{Q})\vdash^{b_{0}}_{c}C^{(\tau)},\Gamma_{1},\neg D^{(\rho)}\quad(\mathcal{H}_{\gamma},\Theta,\mathbf{Q})\vdash^{b_{0}}_{c}C^{(\tau)},\Gamma_{1},D^{(\rho)}}{(\mathcal{H}_{\gamma},\Theta,\mathbf{Q})\vdash^{b}_{c}C^{(\tau)},\Gamma_{1}}\ (cut)$$

We obtain $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a \# b_{0}} \Gamma_{0}, \Gamma_{1}, \neg D^{(\rho)}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a \# b_{0}} \Gamma_{0}, \Gamma_{1}, D^{(\rho)}$ by IH. $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a \# b} \Gamma_{0}, \Gamma_{1}$ follows by a (*cut*).

Case 3. Otherwise: Consider the case when the last inference in $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a}$ $\Gamma_0, \neg C^{(\tau)}$ is an $(i - \operatorname{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$ with an ordinal $\mathbb{S} < e$. We have $\Theta \subset M_{\rho}$ by (31) and D is a finite conjunction $D \simeq \bigwedge (D_n)_{n < m}$. For n < m and each $\sigma \in H^{\mathbb{Q}^{\rho}}_{\rho}(f,\Theta,\Theta_1)$ we have

$$(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q}^{\rho}) \vdash^{a_0}_c \Gamma_0, \neg C^{(\tau)}, D_n^{(\rho)}$$

and

$$(\mathcal{H}_{\gamma}, \Theta, \mathsf{Q}^{\rho\sigma}) \vdash^{a_0}_{c} \Gamma_0, \neg C^{(\tau)}, \neg D^{(\sigma)}$$

Lemma 4.41 yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\rho}) \vdash_{c}^{b} C^{(\tau)}, \Gamma_{1} \text{ and } (\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\rho\sigma}) \vdash_{c}^{b} C^{(\tau)}, \Gamma_{1}.$ By IH we obtain $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\rho}) \vdash_{c}^{a_{0} \# b} \Gamma_{0}, \Gamma_{1}, D_{n}^{(\rho)}$, and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\rho\sigma}) \vdash_{c}^{a_{0} \# b} \Gamma_{0}, \Gamma_{1}, \neg D^{(\sigma)}$ for each σ . An $(i - \mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$ yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c}^{a \# b} \Gamma_{0}, \Gamma_{1}$.

Other cases are seen similarly.

Remark 4.43 In the **Case 3** of the proof of Reduction 4.42, e.g., when $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}^{\rho\sigma}) \vdash_{c,d,e,\beta}^{a_0}$ $\Gamma_0, \neg C^{(\tau)}, \neg D^{(\sigma)}$ is derived from a (\bigwedge) with $\Theta_2 \supset \Theta$

$$\frac{\{(\mathcal{H}_{\gamma},\Theta_{\iota},\mathbb{Q}^{\rho\sigma})\vdash^{a_{0}(k,\iota)}_{c,d,e,\beta}\Gamma_{0},\neg C^{(\tau)},\neg (C_{\iota})^{(\tau)},\neg D^{(\sigma)}\}_{\iota\in[\partial\mathbb{Q}^{\rho\sigma}]J\cap[\tau]J}}{(\mathcal{H}_{\gamma},\Theta,\mathbb{Q}^{\rho\sigma})\vdash^{a_{0}}_{c,d,e,\beta}\Gamma_{0},\neg C^{(\tau)},\neg D^{(\sigma)}} (\wedge)$$

it is not possible to exchange the inference (\bigwedge) with $(i - \mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$ since there may exist a $\sigma \in H^{\mathbb{Q}^{\rho}}_{\rho}(f, \Theta_{\iota}, \Theta_1)$ such that $\sigma \notin H^{\mathbb{Q}^{\rho}}_{\rho}(f, \Theta, \Theta_1)$. Specifically $\mathcal{H}_{\gamma^{\mathbb{Q}^{\rho}}_{\mathbb{S}} + \mathbb{I}_N}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})] \subsetneq \mathcal{H}_{\gamma^{\mathbb{Q}^{\rho}}_{\mathbb{S}} + \mathbb{I}_N}[\Theta_{\iota}(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})]$, cf. Definition 4.38. This means that an Inversion lemma does not hold for the derivability relation \vdash .

Lemma 4.44 (Cut-elimination) If $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash^{a}_{c+c_{1},d,e,\beta,\gamma_{0}} \Gamma$ with $\Omega \leq c \in \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ and $c+c_{1} < \mathbb{I}_{N}$, then $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash^{\varphi_{c_{1}}(a)}_{c,d,e,\beta,\gamma_{0}} \Gamma$.

Proof. By main induction on c_1 with subsidiary induction on a using Reduction 4.42. \square

Elimination of stable ordinals $\mathbf{5}$

*(***1**)

Capping and recapping 5.1

In this subsection the relation \vdash^* is embedded in \vdash by putting caps on formulas, and then caps are changed to smaller caps.

Lemma 5.1 (Capping) Let $\Gamma \cup \Pi \subset \Delta_0(\mathcal{L}_{N+1})$ be a set of uncapped formulas with $\operatorname{rk}(\Gamma \cup \Pi) < \beta$, where $\beta < \psi_{\mathbb{I}_N}(\gamma_0)$ is a fixed limit ordinal in Collapsing 4.34 such that $a, \beta < \mathbb{I}_N$ and $\operatorname{dom}(\mathbb{Q}_{\Pi}) \subset \beta$. Let $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta,\gamma_0}^{*a} \Gamma; \Pi^{\{\cdot\}},$ where $\mathbb{I}_N \leq \gamma \leq \gamma_0$, $\Gamma = \Gamma_{\mathfrak{u}} \cup \bigcup_{\mathbb{S} \in \operatorname{dom}(\mathbb{Q}_{\Pi})} \Gamma_{\mathbb{S}}$, and $\Pi^{\{\cdot\}} = \bigcup_{(\mathbb{S},\sigma) \in \mathbb{Q}_{\Pi}} \Pi_{\sigma}^{\{\sigma\}}$. Let $\Lambda = \Gamma(\beta)$.

For each $\mathbb{S} \in dom(\mathbb{Q}_{\Pi})$, let $\rho_{\mathbb{S}} = \psi_{\mathbb{S}}^{g_{\mathbb{S}}}(\delta_{\mathbb{S}})$ be an ordinal with a $\delta_{\mathbb{S}}$ and a special finite function $g_{\mathbb{S}} = m(\rho_{\mathbb{S}}) : \Lambda \to \varphi_{\Lambda}(0)$ such that $\operatorname{supp}(g_{\mathbb{S}}) = \{\beta\}$ with $g_{\mathbb{S}}(\beta) = \alpha_{\mathbb{S}} + \Lambda$, $\Lambda(2a + 1) \leq \alpha_{\mathbb{S}} + \Lambda$, $SC(g_{\mathbb{S}}) = SC(\beta, \alpha_{\mathbb{S}}) \subset \mathcal{H}_0(SC(\delta_{\mathbb{S}}))$, cf. (11), and $\{\alpha_{\mathbb{S}}, \delta_{\mathbb{S}}\} \subset \mathcal{H}_{\gamma}[\Theta]$.

Let $\mathbf{Q} = ((\mathbf{Q})_0, \gamma^{\mathbf{Q}})$ be a finite family for γ_0 with thresholds such that the following holds.

- 1. The thresholds function $\gamma^{\mathbb{Q}}_{\cdot}$ enjoys $\gamma^{\mathbb{Q}}_{\mathbb{S}} \leq \delta_{\mathbb{S}} < \gamma^{\mathbb{Q}}_{\mathbb{S}} + \mathbb{I}_{N}$ for each $\mathbb{S} \in dom(\mathbb{Q})$.
- 2. $Q(\mathbb{S}) = Q_{\Pi}(\mathbb{S}) \cup \{\rho_{\mathbb{S}}\}$ for $\mathbb{S} \in dom(Q) = dom(Q_{\Pi})$.

Let $\widehat{\Gamma} = \Gamma_{\mathfrak{u}} \cup \bigcup_{\mathbb{S} \in dom(\mathfrak{q}_{\Pi})} \{ A^{(\rho_{\mathbb{S}})} : A \in \Gamma_{\mathbb{S}} \}$, and $\Pi^{(\cdot)} = \bigcup_{(\mathbb{S},\sigma) \in \mathfrak{q}_{\Pi}} \Pi_{\sigma}^{(\sigma)}$. Assume the following:

- 1. $\Theta \subset \mathcal{H}_{\gamma_0}(\psi_{\mathbb{I}_N}(\gamma_0)).$
- 2. $\gamma_{\mathbb{S}}^{\mathsf{q}} \in \mathcal{H}_{\gamma}[\Theta], \Theta \cup \mathsf{q}_{\Pi}(\mathbb{S}) \subset M_{\rho_{\mathbb{S}}} \text{ and } \mathsf{q}_{\Pi}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathsf{q}} + \mathbb{I}_{N}}[\Theta(\mathsf{q}_{\Pi} \upharpoonright \mathbb{S})] \text{ for every} \\ \mathbb{S} \in dom(\mathsf{q}_{\Pi}).$
- 3. $\mathbf{p}_0(\sigma) \leq \mathbf{p}_0(\rho_{\mathbb{S}}) = \delta_{\mathbb{S}}$ for each $(\mathbb{S}, \sigma) \in \mathbf{Q}_{\Pi}$.
- 4. Q has gaps $(\varphi_{\beta+1}(\beta)+1) \cdot 2^a$.

Then $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{Q}) \vdash^{2a}_{\beta, \beta, \beta, \beta, \gamma_0} \widehat{\Gamma}, \Pi^{(\cdot)}$ holds.

Remark 5.2 We have $\{\gamma_0, a, \beta\} \subset \mathcal{H}_{\gamma}[\Theta]$ by (21). Let $\gamma_{\mathbb{S}}^{\mathsf{Q}} = \gamma_0 + \mathbb{I}_N \cdot (\varphi_{\beta+1}(\beta) + 1) \cdot 2^a \cdot k$ for $k = \#\{\mathbb{T} \in dom(\mathsf{Q}) : \mathbb{T} \geq \mathbb{S}\}$. Then $\gamma_{\mathbb{S}}^{\mathsf{Q}} \in \mathcal{H}_{\gamma}[\Theta]$ for (28). $\gamma_{\cdot}^{\mathsf{Q}}$ is a threshold function in Definition 4.36.4a.

For the gap $\varphi_{\beta+1}(\beta) + 1$, see Lemma 5.11.

Proof of Lemma 5.1. This is seen by induction on *a*. Let us write \vdash^{a}_{β} for $\vdash^{a}_{\beta,\beta,\beta,\beta,\gamma_{0}}$ in the proof.

We have $dom(\mathbf{Q}_{\Pi}) \subset \beta$, $\{\gamma, a, \beta, \gamma_0\} \cup dom(\mathbf{Q}_{\Pi}) \subset \mathcal{H}_{\gamma}[\Theta]$ by (21), and for each $A \in \Gamma \cup \Pi$, $\mathsf{k}(A) \subset \mathcal{H}_{\gamma}[\Theta(\mathbf{Q}_{\Pi})]$ by (22).

The assumption $\mathbf{Q}_{\Pi}(\mathbb{S}) \subset M_{\rho_{\mathbb{S}}}$ means that $\rho_{\mathbb{S}} = \max(\mathbf{Q}(\mathbb{S}))$ and $\rho_{\mathbb{S}} \in \partial \mathbf{Q}(\mathbb{S})$. Hence $\mathbf{Q}^{\circ} = \mathbf{Q}_{\Pi}$. We have $\forall \mathbb{S} \in dom(\mathbf{Q}_{\Pi})(\gamma_{\mathbb{S}}^{\mathbf{Q}} \in \mathcal{H}_{\gamma}[\Theta])$ by the assumption.

On the other hand we have $\forall \mathbb{S} \in dom(\mathbb{Q}_{\Pi})(\mathbb{Q}_{\Pi}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathsf{q}}+\mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})])$ by the assumption, and $\{\mathbb{S}, \beta, \alpha_{\mathbb{S}}, \delta_{\mathbb{S}}\} \subset \mathcal{H}_{\gamma}[\Theta]$ with $\delta_{\mathbb{S}} < \gamma_{\mathbb{S}}^{\mathsf{q}} + \mathbb{I}_{N}$ by (21) and the assumptions. Hence by Proposition 4.15.8 we obtain $\rho_{\mathbb{S}} \in \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathsf{q}}+\mathbb{I}_{N}}[\Theta]$, and (29) is enjoyed. Therefore (28) and (29) are enjoyed in $(\mathcal{H}_{\gamma_{0}}, \Theta, \mathbb{Q}) \vdash_{\beta, \beta, \beta, \beta, \gamma_{0}}^{2a} \widehat{\Gamma}, \Pi^{(\cdot)}$. We have $\Theta(\mathbb{Q}^{\circ}) = \Theta(\mathbb{Q}_{\Pi}) = \Theta \cup \mathcal{B}(\bigcup \{\mathbb{Q}_{\Pi}(\mathbb{T}) : \mathbb{T} \in dom(\mathbb{Q}_{\Pi})\})$ with $\mathbb{Q}_{\Pi}(\mathbb{T}) = \mathbb{Q}^{\circ}(\mathbb{T})$ and $M_{\partial \mathbb{Q}} = \bigcap_{\mathbb{S} \in dom(\mathbb{Q})} M_{\rho_{\mathbb{S}}}$. We obtain $\Theta \subset M_{\rho_{\mathbb{S}}}$ and for $\mathbb{T} \in dom(\mathbb{Q})$, $\mathbb{Q}_{\Pi}(\mathbb{T}) \subset \mathcal{H}_{\gamma_{\pi}^{q} + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} | \mathbb{T})]$ by the assumption. Hence Lemma 4.37 yields

$$\Theta(\mathbf{Q}^{\circ}) \subset M_{\partial \mathbf{Q}} \tag{32}$$

and (27) is enjoyed.

We obtain $\mathsf{k}(\Gamma \cup \Pi) \subset M_{\partial \mathsf{Q}}$. Furthermore when $A \in \Pi_{\sigma}$, $\mathsf{k}(A) \subset M_{\sigma}$ is assumed. We obtain $\mathsf{k}(\Pi) \subset M_{\partial \mathsf{Q}} \cap M_{\sigma}$.

Case 1. First consider the case when the last inference is an $(i-\operatorname{stbl}(\mathbb{S}))$: We have a successor *i*-stable ordinal \mathbb{S} such that $\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta]$ by (23), a formula $B(0) \in \Delta_0(\mathcal{L}_i)$ with $\operatorname{rk}(B(0)) < \mathbb{S}$, an ordinal $a_0 < a$, and a term $u \in Tm(\mathbb{I}_N)$ with $\mathbb{S} \leq \operatorname{rk}(B(u)) < \beta$.

For every ordinal $\sigma \in \Psi_{\mathbb{S}}$ such that $\Theta(\mathbb{Q}_{\Pi}) \subset M_{\sigma}$ and $\mathfrak{p}_0(\sigma) \geq \gamma_0$, the following holds for $dom(\mathbb{R}_{\Pi}) = dom(\mathbb{Q}_{\Pi}) \cup \{\mathbb{S}\}$ and $\mathbb{R}_{\Pi}^{\sigma} = \mathbb{R}_{\Pi} \cup \{(\mathbb{S}, \sigma)\}$.

$$\frac{(\mathcal{H}_{\gamma},\Theta;\mathbf{R}_{\Pi})\vdash^{*a_{0}}_{\beta}\Gamma,B(u);\Pi^{\{\cdot\}}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{Q}_{\Pi})\vdash^{*a_{0}}_{\beta}\Gamma;\neg B(u)^{\{\sigma\}},\Pi^{\{\cdot\}}\}_{\sigma}}{(\mathcal{H}_{\gamma},\Theta;\mathbf{Q}_{\Pi})\vdash^{*a}_{\beta}\Gamma;\Pi^{\{\cdot\}}}$$

When $\mathbb{S} \notin dom(\mathbb{Q}_{\Pi})$, let $\mathbb{R} = \mathbb{Q} \cup \{(\mathbb{S}, \rho_{\mathbb{S}})\}$, and ordinals $\gamma_{\mathbb{S}}^{\mathbb{R}}$ and $\rho_{\mathbb{S}}$ are defined as follows. First let $\gamma_{\mathbb{T}}^{\mathbb{R}} = \gamma_{\mathbb{T}}^{\mathbb{Q}}$ for $\mathbb{T} \in dom(\mathbb{Q})$. If there is no $\mathbb{S} > \mathbb{T} \in dom(\mathbb{Q})$, then $\gamma_{\mathbb{S}}^{\mathbb{R}} = \gamma_0 + \mathbb{I}_N \cdot (\varphi_{\beta+1}(\beta) + 1) \cdot 2^{a_0}$. Assume there is a largest $\mathbb{S} > \mathbb{T} \in dom(\mathbb{Q})$. Then let $\gamma_{\mathbb{S}}^{\mathbb{R}} = \gamma_{\mathbb{T}}^{\mathbb{Q}} + \mathbb{I}_N \cdot (\varphi_{\beta+1}(\beta) + 1) \cdot 2^{a_0}$. In each case we obtain $\gamma_{\mathbb{S}}^{\mathbb{R}} \in \mathcal{H}_{\gamma}[\Theta]$ by $\{\gamma_0, \beta, \gamma_{\mathbb{T}}^{\mathbb{Q}}, a_0\} \subset \mathcal{H}_{\gamma}[\Theta]$. Suppose that there is a least $\mathbb{S} < \mathbb{U} \in dom(\mathbb{Q})$. Since \mathbb{Q} is assumed to have gaps $(\varphi_{\beta+1}(\beta)+1) \cdot 2^a$, we obtain $\gamma_0 + \mathbb{I}_N \cdot (\varphi_{\beta+1}(\beta)+1) \cdot 2^a \leq \gamma_{\mathbb{U}}^{\mathbb{Q}}$ and $\gamma_{\mathbb{T}}^{\mathbb{Q}} + \mathbb{I}_N \cdot (\varphi_{\beta+1}(\beta) + 1) \cdot 2^a \leq \gamma_{\mathbb{U}}^{\mathbb{Q}}$. We see from $a_0 < a$ that \mathbb{R} has gaps $(\varphi_{\beta+1}(\beta) + 1) \cdot 2^{a_0}$.

Let $\alpha_{\mathbb{S}} = \Lambda(2a) > \Lambda(2a_0)$ and $\delta_{\mathbb{S}} = \gamma_{\mathbb{S}}^{\mathbb{R}} \# a \# \beta \# b$ for $b = \max(\{0\} \cup E_{\mathbb{S}}(\Theta))$ with the set $E_{\mathbb{S}}(\alpha)$ in Definition 4.10. We obtain $\alpha_{\mathbb{S}} < \mathbb{I}_N \leq \gamma \leq \gamma_0 \leq \gamma_{\mathbb{S}}^{\mathbb{R}}$ and $\{\alpha_{\mathbb{S}}, \delta_{\mathbb{S}}\} \subset \mathcal{H}_0[\{a, \beta, \gamma_{\mathbb{S}}^{\mathbb{R}}\} \cup E_{\mathbb{S}}(\Theta)] \subset \mathcal{H}_{\gamma}[\Theta]$. Also $\delta_{\mathbb{S}} < \gamma_{\mathbb{S}}^{\mathbb{R}} + \mathbb{I}_N$ by $\max\{a, \beta, \mathbb{S}\} < \mathbb{I}_N$. Moreover $\{a, \beta\} \subset \mathcal{H}_0(SC(\delta_{\mathbb{S}}))$. Hence (11) is enjoyed for $\rho_{\mathbb{S}} = \psi_{\mathbb{S}}^{g_{\mathbb{S}}}(\delta_{\mathbb{S}})$, cf. Proposition 6.6.2.

Next we show $\Theta \cup \mathbb{Q}_{\Pi}(\mathbb{S}) \subset M_{\rho_{\mathbb{S}}}$. We have $\mathbb{Q}_{\Pi}(\mathbb{S}) = \emptyset$. We obtain $b = \max(\{0\} \cup E_{\mathbb{S}}(\Theta)) \in \mathcal{H}_{\delta_{\mathbb{S}}}(\rho_{\mathbb{S}}) \cap \mathbb{S} = \rho_{\mathbb{S}}$ by (7), and hence $E_{\mathbb{S}}(\Theta) \subset \rho_{\mathbb{S}}$. On the other hand we have $\Theta \subset \mathcal{H}_{\gamma_0}(\psi_{\mathbb{I}_N}(\gamma_0))$ by the assumption. Also $\gamma_0 \leq \gamma_{\mathbb{S}}^{\mathbb{R}} \leq \delta_{\mathbb{S}} = p_0(\rho_{\mathbb{S}})$. Proposition 4.13 yields $\Theta \subset \mathcal{H}_{p_0(\rho_{\mathbb{S}})}(\rho_{\mathbb{S}}) = M_{\rho_{\mathbb{S}}}$.

Let *h* be a special finite function such that $\operatorname{supp}(h) = \{\beta\}$ and $h(\beta) = \Lambda(2a_0 + 1)$. Then $h_{\beta} = (g_{\mathbb{S}})_{\beta} = \emptyset$ and $h^{\beta} <^{\beta}_{\Lambda} (g_{\mathbb{S}})'(\beta)$ by $h(\beta) = \Lambda(2a_0 + 1) < \Lambda(2a) \le \alpha_{\mathbb{S}} = (g_{\mathbb{S}})'(\beta)$. Let $\sigma \in H^{\mathbb{R}}_{\rho_{\mathbb{S}}}(h, \Theta, \emptyset)$. We have $\Theta \subset M_{\sigma}$ and $\sigma \in \mathcal{H}_{\gamma^{\mathbb{S}}_{\mathbb{S}}+\mathbb{I}_{N}}[\Theta(\mathbb{R}^{\circ} \upharpoonright \mathbb{S})]$ by Definition 4.38.

For example let $\sigma = \psi_{\rho_{\mathbb{S}}}^{h}(\delta_{\mathbb{S}} + b + 1)$. We obtain, cf. (12), $SC(h) \cup \{p_{0}(\sigma)\} \cup \Theta \cup \{p_{0}(\rho_{\mathbb{S}})\} \cup SC(m(\rho_{\mathbb{S}})) = SC(\{a_{0}, a, \beta\}) \cup \Theta \cup \{\delta_{\mathbb{S}}, \alpha_{\mathbb{S}}\} \subset \mathcal{H}_{\gamma}[\Theta] \subset \mathcal{H}_{\delta_{\mathbb{S}}}(\sigma) = M_{\sigma}$ and $p_{0}(\sigma) = p_{0}(\rho_{\mathbb{S}})$. We see $\sigma \in \mathcal{H}_{0}[\{\rho_{\mathbb{S}}, \beta, a_{0}, \delta_{\mathbb{S}}\} \cup \Theta] \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathbb{R}} + \mathbb{I}_{N}}[\Theta]$ from Proposition 4.15.8. Therefore $\sigma \in H_{\rho_{\mathbb{S}}}^{\mathbb{R}}(h, \Theta, \emptyset)$.

Since Q is assumed to have gaps $(\varphi_{\beta+1}(\beta)+1) \cdot 2^a$, we may assume that R as well as \mathbb{R}^{σ} has gaps $(\varphi_{\beta+1}(\beta)+1) \cdot 2^{a_0}$.

We obtain by III for $\rho_{\mathbb{S}} > \sigma \in M_{\rho_{\mathbb{S}}}$ and $\operatorname{rk}(B(u)) < \beta$ for (r1), $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{R}) \vdash_{\beta}^{2a_0} \widehat{\Gamma}, B(u)^{(\rho_{\mathbb{S}})}, \Pi^{(\cdot)}$, and $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{R}^{\sigma}) \vdash_{\beta}^{2a_0} \widehat{\Gamma}, \Pi^{(\cdot)}, \neg B(u)^{(\sigma)}$.

Let $D \equiv \bigwedge (B(u))$ with $D \simeq \bigwedge (D_n)_{n<1}$ and $D_0 \equiv B(u)$. We obtain $\operatorname{rk}(D) = \operatorname{rk}(B(u)) + 1 < \beta$ and $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{R}) \vdash_{\beta}^{2a_0} \widehat{\Gamma}, D_0^{(\rho_{\mathfrak{I}})}, \Pi^{(\cdot)}$ and $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{R}^{\sigma}) \vdash_{\beta}^{2a_0+1} \widehat{\Gamma}, \Pi^{(\cdot)}, \neg D^{(\sigma)}$ by a (\bigvee) . An $(i - \operatorname{rfl}_{\mathbb{S}}(\rho_{\mathbb{S}}, h, \emptyset))$ yields $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{Q}) \vdash_{\beta}^{2a} \widehat{\Gamma}, \Pi^{(\cdot)}$.

$$\frac{(\mathcal{H}_{\gamma_{0}},\Theta,\mathtt{R})\vdash^{2a_{0}}_{\beta}\widehat{\Gamma},D^{(\rho_{\mathbb{S}})}_{0},\Pi^{(\cdot)}}{(\mathcal{H}_{\gamma_{0}},\Theta,\mathtt{R}^{\sigma})\vdash^{2a_{0}+1}_{\beta}\widehat{\Gamma},\Pi^{(\cdot)},\neg D^{(\sigma)}}{(\mathcal{H}_{\gamma_{0}},\Theta,\mathtt{Q})\vdash^{2a}_{\beta}\widehat{\Gamma},\Pi^{(\cdot)}} \quad (i-\mathrm{rfl}_{\mathbb{S}}(\rho_{\mathbb{S}},h,\emptyset))$$

Case 2. When the last inference is a (*cut*): There exist $a_0 < a$ and C such that $\operatorname{rk}(C) < \beta$, $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*a_0} \Gamma, \neg C; \Pi^{\{\cdot\}}$ and $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*a_0} \Gamma, C; \Pi^{\{\cdot\}}$. IH followed by a (*cut*) with an uncapped cut formula $C^{(u)}$ yields the lemma. **Case 3.** Third the last inference introduces a \bigvee -formula A.

Case 3.1. First let $A \in \Gamma_{\mathbb{S}}$ be introduced by a (\bigvee) , and $A \simeq \bigvee (A_{\iota})_{\iota \in J}$. Then $A^{(\rho_{\mathbb{S}})} \in \Gamma^{(\rho_{\mathbb{S}})}$. There are an $\iota \in J$ and an ordinal $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{\{\cdot\}}$. We obtain $\mathsf{k}(\iota) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})] \subset M_{\partial\mathbb{Q}}$ by (22) and (32) provided that $\mathsf{k}(\iota) \subset \mathsf{k}(A_{\iota})$. Hence $\iota \in [\partial\mathbb{Q}]J \subset [\rho_{\mathbb{S}}]J$. Iff yields $(\mathcal{H}_{\gamma_{0}}, \Theta, \mathbb{Q}) \vdash_{\beta}^{2a(\iota)} \widehat{\Gamma}, (A_{\iota})^{(\rho_{\mathbb{S}})}, \Pi^{(\cdot)}$. $(\mathcal{H}_{\gamma_{0}}, \Theta, \mathbb{Q}) \vdash_{\beta}^{2a} \widehat{\Gamma}, \Pi^{(\cdot)}$ follows from a (\bigvee) .

Case 3.2. Second $A^{\{\sigma\}} \in \Pi_{\sigma}^{\{\sigma\}}$ is introduced by a $(\bigvee)^{\{\cdot\}}$ with $A \simeq \bigvee (A_{\iota})_{\iota \in J}$. Then $A^{(\sigma)} \in \Pi^{(\cdot)}$. There are an $\iota \in [\sigma]J$ and an ordinal $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*a(\iota)} \Gamma; A_{\iota}^{\{\sigma\}}, \Pi^{\{\cdot\}}$. IH yields $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{Q}) \vdash_{\beta}^{2a(\iota)} \widehat{\Gamma}, (A_{\iota})^{(\sigma)}, \Pi^{(\cdot)}$. We obtain $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{Q}) \vdash_{\beta}^{2a} \widehat{\Gamma}, \Pi^{(\cdot)}$ with $A^{(\sigma)} \in \Pi^{(\cdot)}$ by a (\bigvee) .

Case 3.3. Third the case when $A \in \Gamma_u$ is introduced by a (\bigvee) is seen from IH. **Case 4**. Fourth the last inference introduces a \bigwedge -formula A.

Case 4.1. First let $A \in \Gamma_{\mathbb{S}}$ be introduced by a (Λ) , and $A \simeq \Lambda (A_{\iota})_{\iota \in J}$. For every $\iota \in J$, $(\mathcal{H}_{\gamma}, \Theta_{\iota}; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*a(\iota)} \Gamma, A_{\iota}; \Pi^{\{\cdot\}}$ holds for an $a(\iota) < a$ and $\Theta_{\iota} = \Theta \cup \mathcal{B}(\mathsf{k}(\iota))$. Let $\iota \in [\partial \mathbb{Q}]J$. We obtain $\Theta_{\iota} \subset M_{\partial \mathbb{Q}} \subset M_{\rho_{\mathbb{S}}}$ for every $\mathbb{S} \in dom(\mathbb{Q})$. On the other hand we have $\operatorname{rk}(A) < \beta < \psi_{\mathbb{I}_{N}}(\gamma_{0})$. Hence $\Theta_{\iota} \subset \mathcal{H}_{\gamma_{0}}(\psi_{\mathbb{I}_{N}}(\gamma_{0}))$. IH yields $(\mathcal{H}_{\gamma_{0}}, \Theta_{\iota}, \mathbb{Q}) \vdash_{\beta}^{2a(\iota)} \widehat{\Gamma}, (A_{\iota})^{(\rho_{\mathbb{S}})}, \Pi^{(\cdot)}$. $(\mathcal{H}_{\gamma_{0}}, \Theta, \mathbb{Q}) \vdash_{\beta}^{2a} \widehat{\Gamma}, \Pi^{(\cdot)}$ follows by a (Λ) .

Case 4.2. Second $A^{\{\sigma\}} \in \Pi^{\{\cdot\}}$ is introduced by a $(\bigwedge)^{\{\cdot\}}$ with $(\mathbb{S}, \sigma) \in \mathbb{Q}_{\Pi}$. Let $A \simeq \bigwedge (A_{\iota})_{\iota \in J}$. For each $\iota \in [\sigma]J$ there is an ordinal $a(\iota) < a$ such that $(\mathcal{H}_{\gamma}, \Theta_{\iota}; \mathbb{Q}_{\Pi}) \vdash_{\beta}^{*a(\iota)} \Gamma; A_{\iota}^{\{\sigma\}}, \Pi^{\{\cdot\}}.$

For each $\iota \in [\sigma]J \cap [\partial \mathbb{Q}]J$, IH yields $(\mathcal{H}_{\gamma_0}, \Theta_\iota, \mathbb{Q}) \vdash_{\beta}^{2a(k,\iota)} \widehat{\Gamma}, (A_\iota)^{(\sigma)}, \Pi^{(\cdot)}$. $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{Q}) \vdash_{\beta}^{2a} \widehat{\Gamma}, \Pi^{(\cdot)}$ follows from a (Λ) with $A^{(\sigma)} \in \Pi^{(\cdot)}$.

Case 4.3. Third the case when $A \in \Gamma_{u}$ is introduced by a (\bigwedge) is seen from IH. The lemma follows from IH when the last inference is a ($\Sigma(\Omega)$ -rfl).

Definition 5.3 For a finite family $\mathbf{Q} = ((\mathbf{Q})_0, \gamma^{\mathbf{Q}})$ for γ_0 with thresholds, let $\kappa_i \in L^{\mathbf{Q}}_{\rho_i}(\Theta, \emptyset)$ with a $(\mathbb{T}_i, \rho_i) \in \mathbf{Q}$ for each *i*.

 $\mathbf{Q}^{[\kappa/\rho]} = ((\mathbf{Q}^{[\kappa/\rho]})_0, \gamma^{\mathbf{Q}}) \text{ denotes a finite family for } \gamma_0 \text{ with thresholds defined as follows. } dom(\mathbf{Q}^{[\kappa/\rho]}) = dom(\mathbf{Q}), \text{ and } \mathbf{Q}^{[\kappa/\rho]}(\mathbb{T}) = \{\kappa_i : \mathbb{T}_i = \mathbb{T}\} \cup \{\mu \in \mathbf{Q}(\mathbb{T}) : \mu \notin \{\rho_i : \mathbb{T}_i = \mathbb{T}\}\}.$

Lemma 5.4 (Recapping) Let \mathbb{Q} be a finite family for γ_0 with thresholds, b and d ordinals, and $\mathbb{T} \leq b$ a stable ordinal such that $b \in \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$. Let $\Xi = \bigcup \{\Xi_j^{(\tau_j)}\}_j$ be a set of formulas, $\Gamma = \bigcup \{\Gamma_i^{(\rho_i)}\}_i$ a set of formulas such that $\operatorname{rk}(\bigvee \Gamma_i) < b < s(\rho_i)$ for each i, and $\Pi = \bigcup \{\Pi_k^{(\lambda_k)}\}_k$ a set of formulas such that $\operatorname{rk}(\Pi_k) < d$ for each k.

Suppose $\{\rho_i\}_i \cup \{\lambda_k\}_k \subset \bigcup \partial Q$, $\max\{a, b, d\} < \Lambda$, d > b and

$$(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash^{a}_{d, d, \mathbb{T}^{\dagger}, \beta, \gamma_{0}} \Xi, \Pi, \Gamma$$
(33)

For each *i*, let $\kappa_i \in H^{\mathbb{Q}}_{\rho_i}(h^b(g_i; 2b + \omega a), \Theta, \emptyset) \subset L^{\mathbb{Q}}_{\rho_i}(\Theta, \emptyset)$ with $g_i = m(\rho_i)$, and $\sigma_k \in L^{\mathbb{Q}}_{\lambda_k}(\Theta, \emptyset)$ for each *k*. Let $\Gamma_1 = \bigcup \{\Gamma_i^{(\kappa_i)}\}_i$ and $\Pi_1 = \bigcup \{\Pi_k^{(\sigma_k)}\}_k$. \mathbb{Q}_1 denotes a finite family obtained from \mathbb{Q} by replacing ρ_i by κ_i , and λ_k by σ_k , cf. Definition 5.3. Then

$$(\mathcal{H}_{\gamma},\Theta,\mathsf{Q}_{1})\vdash^{2b+\omega a}_{d,b,\mathbb{T}^{\dagger},\beta,\gamma_{0}}\Xi,\Pi_{1},\Gamma_{1}$$
(34)

holds.

Proof. By induction on a. The third, fourth and fifth subscripts \mathbb{T}^{\dagger} , β and γ_0 are fixed, and omitted in the proof. We write $\vdash_{c,d}^a$ for $\vdash_{c,d,\mathbb{T}^{\dagger},\beta,\gamma_0}^a$. A special finite function $h^b(g;a)$ is defined from ordinals a, b and a function g in Definition 4.19. Note that $[\kappa_i] J \subset [\rho_i] J$ holds by $\kappa_i < \rho_i$.

Let $\kappa = \kappa_i \in L^{\mathfrak{q}}_{\rho}(\Theta, \emptyset)$ with $g = m(\rho)$, $\rho = \rho_i \in \partial \mathfrak{q}(\mathbb{S})$ and $\mathbb{T}^{\dagger} > \mathbb{S} \in dom(\mathfrak{q})$. By Definitions 4.22 and 4.38 we obtain $\Theta \cup \{\mathfrak{p}_0(\rho)\} \cup SC(m(\rho)) \cup \mathfrak{q}^{\circ}(\mathbb{S}) \subset M_{\kappa}$, $\kappa \in \mathcal{H}_{\gamma^{\mathfrak{q}}_{\mathbb{S}} + \mathbb{I}_N}[\Theta(\mathfrak{q}^{\circ} \upharpoonright \mathbb{S})]$ and $\gamma^{\mathfrak{q}}_{\mathbb{S}} \leq \mathfrak{p}_0(\kappa)$. Then $\kappa \in \partial \mathfrak{q}_1(\mathbb{S})$ and $\Theta \subset M_{\partial \mathfrak{q}_1}$. On the other hand we have $\{a, b, d\} \subset \mathcal{H}_{\gamma}[\Theta(\mathfrak{q}^{\circ})]$ by the assumption, where $\mathfrak{q}^{\circ} = \mathfrak{q}_1^{\circ}$. Moreover we have $SC(m(\kappa)) \cup \{\mathfrak{p}_0(\kappa)\} \subset M_{\kappa}$ by Proposition 3.38. Hence (27) and (28) are enjoyed in $(\mathcal{H}_{\gamma}, \Theta, \mathfrak{q}_1) \vdash_{d, b, \mathbb{T}^{\dagger}, \beta, \gamma_0}^{2b+\omega a} \Xi, \Pi_1, \Gamma_1$. We have $\mathfrak{q}(\mathbb{S}) \cup \{\kappa\} \subset \mathcal{H}_{\gamma^{\mathfrak{q}}_{\mathbb{S}} + \mathbb{I}_N}[\Theta(\mathfrak{q}^{\circ} \upharpoonright \mathbb{S})]$ by (29) and $\kappa \in L^{\mathfrak{q}}_{\rho}(\Theta, \emptyset)$. This

We have $\mathbb{Q}(\mathbb{S}) \cup \{\kappa\} \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{q} + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})]$ by (29) and $\kappa \in L^{\mathsf{Q}}_{\rho}(\Theta, \emptyset)$. This together with $\mathbb{Q}^{\circ} = \mathbb{Q}_{1}^{\circ}$ yields $\mathbb{Q}_{1}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{q} + \mathbb{I}_{N}}[\Theta(\mathbb{Q}_{1}^{\circ} \upharpoonright \mathbb{S})]$. Hence (29) is enjoyed for \mathbb{Q}_{1} .

By Lemma 4.37, (29) and $\Theta \subset M_{\kappa}$ we obtain $\Theta(\mathbb{Q}^{\circ}) \subset M_{\kappa}$ for $\kappa \in \partial \mathbb{Q}_{1}(\mathbb{S})$. From $\{a, b\} \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ and $\Theta \cup SC(m(\rho)) \subset M_{\kappa}$ we see $SC(h^{b}(g; 2b + \omega a)) \subset M_{\kappa}$ by Lemma 3.43.1 and $\gamma \leq \gamma_{\mathbb{S}}^{\mathbb{Q}} \leq \mathbb{p}_{0}(\kappa)$. Also $\mathbb{p}_{0}(\rho) \in M_{\kappa}$ by $\kappa \in L^{\mathbb{Q}}_{\rho}(\Theta, \emptyset)$, cf. (12).

Case 1. First consider the case when the last inference is an $(i-\mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$ for an $\mathbb{S} \leq \mathbb{T}$: We have $\{\mathbb{S}, \mathbb{T}\} \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ by (30) and (28). We have $\Theta \subset M_{\rho}$ by (31). Let $\Gamma_{\rho} = \Gamma_i^{(\rho_i)}$ if $\rho = \rho_i$, and $\Gamma_{\rho} = \emptyset$ else.

Let $g = m(\rho)$ and $s \in \operatorname{supp}(g)$. D is a finite conjunction with $D \simeq \bigwedge(D_n)_{n < m}$ and $\operatorname{rk}(D) < \min\{s, d\}$ by (r1) with $s \leq s(\rho)$, and $a_0 < a$ is an ordinal such that for $\mathbb{R} = \mathbb{Q} \cup \{(\mathbb{S}, \rho)\}$ and each n < m

$$(\mathcal{H}_{\gamma}, \Theta, \mathbf{R}) \vdash^{a_0}_{d.d} \Xi, \Pi, \Gamma, D_n^{(\rho)}$$
(35)

where $\rho \in \partial \mathbb{R}(\mathbb{S})$.

On the other side for each $\sigma \in H^{\mathtt{R}}_{\rho}(f,\Theta,\Theta_1)$ we have

$$(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}^{\sigma}) \vdash^{a_0}_{d,d} \neg D^{(\sigma)}, \Xi, \Pi, \Pi$$

f is a special finite function such that $f_s = g_s$, $f^s <^s g'(s)$ and $SC(f) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$. We obtain by IH

$$(\mathcal{H}_{\gamma}, \Theta, \mathsf{R}_{1}^{\sigma}) \vdash_{d, b}^{2b + \omega a_{0}} \neg D^{(\sigma)}, \Xi, \Pi_{1}, \Gamma_{1}$$
(36)

Let $c = \operatorname{rk}(D) < d$. Then $c \in \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ by (28). **Case 1.1**. c < b: Then $\operatorname{rk}(D_n) + 1 < \operatorname{rk}(D) + 1 \leq c + 1 \leq b$ and $\operatorname{rk}(\bigvee(\Gamma_{\rho} \cup \{D_n\})) < b$. If $b \geq s(\rho)$, then let $\kappa = \rho$. If $b < s(\rho)$, then let $\Theta^+ = \Theta_1 \cup SC(m(\rho)) \cup \{p_0(\rho)\}$ and $\kappa \in H^{\mathbb{R}}_{\rho}(h^b(g; 2b + \omega a), \Theta, \emptyset)$ for $g = m(\rho)$.

IH with (35) yields for n < m

$$(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}_1) \vdash_{d, b}^{2b + \omega a_0} \Xi, \Pi_1, \Gamma_1, D_n^{(\kappa)}$$
(37)

Case 1.1.1. $b \ge s(\rho)$: Then $\rho \ne \rho_i$ for every *i*, and $\Gamma_{\rho} = \emptyset$. By (36) and (37) an $(i - \operatorname{rfl}_{\mathbb{S}}(\kappa, f, \Theta_1))$ yields (34) with $\kappa = \rho$ and $\operatorname{rk}(D) < \min\{s, b\}$.

Case 1.1.2. $b < s(\rho)$: We claim for the special finite function $h = h^b(g; 2b + \omega a) \le m(\kappa)$ and $s_1 = \min\{b, s\}$ that if $b < s(\rho)$

$$f_{s_1} = h_{s_1} \& f^{s_1} <^{s_1} h'(s_1) \tag{38}$$

If $s_1 = s \leq b$, then $h_s = g_s = f_s$ and $g'(s) = g(s) \leq h'(s)$. Proposition 3.6 yields the claim. If $s_1 = b < s$, then Proposition 4.20.1 yields the claim.

Let $\sigma \in H^{\mathbb{R}_1}_{\kappa}(f,\Theta,\Theta^+)$. Then $\Theta \cup \Theta^+ = \Theta \cup \Theta_1 \cup SC(m(\rho)) \cup \{\mathfrak{p}_0(\rho)\} \subset M_{\sigma}$. Therefore $\sigma \in H^{\mathbb{R}}_{\rho}(f,\Theta,\Theta_1)$.

By (38), (37) and (36), an $(i - \operatorname{rfl}_{\mathbb{S}}(\kappa, f, \Theta^+))$ yields (34), where $\operatorname{rk}(D) < s_1 \leq b, c < b$ and $s_1 \in \operatorname{supp}(m(\kappa))$.

Case 1.2. $b \leq c$: Let $\sigma \in L := H_{\kappa}^{\mathbb{R}_1}(h, \Theta, \Theta^+)$ for $\Theta^+ = \Theta_1 \cup SC(m(\rho)) \cup \{p_0(\rho)\} \subset M_{\sigma}$ and $h = (h^c(g; 2b + \omega a_0)) * f^{c+1}$. We obtain $L \subset L_{\rho}^{\mathbb{R}}(\Theta, \emptyset) \cap H_{\rho}^{\mathbb{R}}(f, \Theta, \Theta_1)$ and $SC(h) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$.

IH with (35) for $\sigma \in L \subset L^{\mathbb{R}}_{\rho}(\Theta, \emptyset)$ and $\operatorname{rk}(\{D_{n}^{(\rho)}\} \cup \Gamma_{\rho}) < c < d$ yields $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}_{2}) \vdash_{d,b}^{2b+\omega a_{0}} \Xi, \Pi_{1}, \Gamma_{\rho}^{(\sigma)}, D_{n}^{(\sigma)}, (\Gamma \setminus \Gamma_{\rho})_{1}$ for each n < m, where $\Xi, \Pi, \Gamma, D_{n}^{(\rho)} = \Xi, \Pi \cup \{D_{n}^{(\rho)}\} \cup \Gamma_{\rho}, (\Gamma \setminus \Gamma_{\rho}), \text{ and each } A^{(\rho)} \in \Gamma_{\rho} \text{ is replaced by } A^{(\sigma)} \text{ in } \mathbb{R}_{2}, \text{ while}$ $B^{(\rho_{i})} \in (\Gamma \setminus \Gamma_{\rho})$ by $B^{(\kappa_{i})}$ in $(\Gamma \setminus \Gamma_{\rho})_{1}$. A (Λ) with Lemma 4.41 yields

$$(\mathcal{H}_{\gamma},\Theta,(\mathbb{R}_{1})^{\sigma}) \vdash^{2b+\omega a_{0}+1}_{d,b} \Xi, \Pi_{1}, \Gamma_{\rho}^{(\sigma)}, D^{(\sigma)}, (\Gamma \setminus \Gamma_{\rho})_{1}$$
(39)

where $(\mathbf{R}_1)^{\sigma} = \mathbf{R}_1 \cup \{(\mathbb{S}, \sigma)\} = \mathbf{R}_2 \cup \{(\mathbb{S}, \kappa)\}.$

On the other side, IH with $\sigma \in L \subset H^{\mathbb{R}}_{\rho}(f, \Theta, \Theta_1)$ yields (36).

A (cut) with rk(D) < d, (39) and (36) yields

$$(\mathcal{H}_{\gamma}, \Theta, (\mathtt{R}_{1})^{\sigma}) \vdash^{a_{1}}_{d,b} \Xi, \Pi_{1}, \Gamma_{1}, \Gamma_{\rho}^{(\sigma)}$$

for $2b \le a_1 = 2b + \omega a_0 + 2 < 2b + \omega a$. Several (V)'s yield for a $p < \omega$

$$\forall \sigma \in L\left[(\mathcal{H}_{\gamma}, \Theta, (\mathbf{R}_{1})^{\sigma}) \vdash_{d, b}^{a_{1}+p} \Xi, \Pi_{1}, \Gamma_{1}, \bigvee \Gamma_{\rho}^{(\sigma)} \right]$$
(40)

where $\bigvee \Gamma_{\rho} \equiv (A_0 \lor \cdots \lor A_{n-1})$ with n = 0 when $\Gamma_{\rho} = \emptyset$. On the other, Tautology 4.40 yields $(\mathcal{H}_{\gamma}, \Theta, \mathbf{R}_1) \vdash_{0,b}^{2b} \Gamma_1, \neg \theta^{(\kappa)}$ for each $\theta^{(\rho)} \in$ Γ_{ρ} . We obtain

$$(\mathcal{H}_{\gamma}, \Theta, \mathbf{R}_1) \vdash_{0, b}^{2b+p} \Gamma_1, \neg \bigvee \Gamma_{\rho}^{(\kappa)}$$

$$\tag{41}$$

Let $k = h^b(g; 2b + \omega a)$. Then $h_b = g_b = k_b$ and h < b k'(b) for $h = (h^c(g; 2b + \omega a))$. (ωa_0)) * f^{c+1} by Proposition 4.20.2.

By (41), (40) with $\max\{2b, a_1\} + p < 2b + \omega a$, $\operatorname{rk}(\bigvee \Gamma_{\rho}) < b$, (34) follows from an $(i-\mathrm{rfl}_{\mathbb{S}}(\kappa, h, \Theta^+))$ with the resolvent class $L = H_{\kappa}^{\mathbf{R}_1}(h, \Theta, \Theta^+)$.

Case 2. Second consider the case when the last inference introduces a formula $B^{(\rho)} \in \Gamma$: For example let $B \simeq \bigwedge (B_{\iota})_{\iota \in J}$. For each $\iota \in [\kappa] J \subset [\rho] J$, we obtain $\operatorname{rk}(\bigvee(\Gamma \cup \{B_{\iota}\})) = \operatorname{rk}(\bigvee \Gamma)$. IH followed by a (\bigwedge) yields (34).

Case 3. Third consider the case when the last inference is a (cut) with a cut formula $C^{(\rho)}$: We have $\operatorname{rk}(C) < d$, and IH followed by a (*cut*) with the cut formula $C^{(\kappa)}$ yields (34).

Other cases are seen from IH.

 $\mathsf{k}(\iota) \subset \rho \subset M_{\rho}$. The claim is shown.

5.2Eliminations of inferences (rfl)

In this subsection, inferences $(i-\mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$ are removed from operator controlled derivations of sequents of formulas in $\Sigma(\Omega) \cup \Pi(\Omega)$.

Definition 5.5 We define the *S*-rank $\operatorname{srk}(A^{(\rho)})$ of a capped formula $A^{(\rho)}$ as follows. Let $\operatorname{srk}(\rho) = \mathbb{S} \in SSt$ for $\rho \in \Psi_{\mathbb{S}}$, and $\operatorname{srk}(\mathfrak{u}) = 0$. $\operatorname{srk}(A^{(\rho)}) = \operatorname{srk}(\rho)$. $\operatorname{srk}(\Gamma) = \max\{\operatorname{srk}(A^{(\rho)}) : A^{(\rho)} \in \Gamma\}.$

Proposition 5.6 Let $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\mathbb{S},\mathbb{S},\mathbb{S}^{\dagger},\beta,\gamma_{0}}^{a} \Xi, \Gamma^{(\cdot)}$ with a finite family \mathbb{Q} for γ_{0} with thresholds, where $\Gamma^{(\cdot)} = \bigcup \{\Gamma_{\sigma}^{(\sigma)} : (\mathbb{S}, \sigma) \in \mathbb{Q}\}$ for $\Gamma = \bigcup \{\Gamma_{\sigma} : (\mathbb{S}, \sigma) \in \mathbb{Q}\}$. Assume that $\max\{\operatorname{srk}(\Xi), \operatorname{rk}(\Xi \cup \Gamma^{(\cdot)})\} < \mathbb{S}$. Let $\gamma_{1} = \gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}_{N}$ if $\mathbb{S} \in dom(\mathbb{Q})$, and $\gamma_{1} = \gamma$ else. Then $(\mathcal{H}_{\gamma_{1}}, \Theta, \mathbb{R}) \vdash_{\mathbb{S},\mathbb{S},\mathbb{S},\beta,\gamma_{0}}^{2a} \Xi, \Gamma^{(u)}$ holds for $\mathbb{R} = \mathbb{Q} \upharpoonright \mathbb{S}$ and $\Gamma^{(u)} = (\mathcal{Q}^{(u)} = \mathbb{C} \in \mathbb{P})$ $\Gamma^{(\mathbf{u})} = \{ C^{(\mathbf{u})} : C \in \Gamma \}.$

Proof. By induction on a. The fourth and fifth subscripts β , γ_0 are omitted in the proof. If $\mathbb{S} \in dom(\mathbb{Q})$, then we have $\mathbb{Q}^{\circ}(\mathbb{S}) \subset \mathcal{H}_{\gamma_1}[\Theta(\mathbb{R}^{\circ})]$ by (29), where

In the proof. If $\mathcal{S} \in \operatorname{dom}(\mathbb{Q})$, then we have $\mathbb{Q}(\mathcal{S}) \subseteq \operatorname{hr}_{\gamma_1}(\mathbb{Q}, \gamma_1 \circ \mathcal{S}) (-\varepsilon)$, where $\mathbb{R}^\circ = \mathbb{Q}^\circ \upharpoonright \mathbb{S}$. Hence (28) is enjoyed in $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{R}) \vdash_{\mathbb{S}, \mathbb{S}, \mathbb{S}, \beta, \gamma_0}^{20} \Xi, \Gamma^{(u)}$. **Case 1.** First consider the case when the last inference is a (Λ) with its major formula $C^{(\sigma)} \in \Xi \cup \Gamma^{(\cdot)}$ with $C \simeq \Lambda(C_{\iota})_{\iota \in J}$: We have $(\mathcal{H}_{\gamma}, \Theta_{\iota}, \mathbb{Q}) \vdash_{\mathbb{S}, \mathbb{S}, \mathbb{S}^{\dagger}}^{a(\iota)}$ $\Xi, \Gamma^{(\cdot)}, C_{\iota}^{(\sigma)} \text{ for each } \iota \in [\partial \mathbb{Q}]J \cap [\sigma]J. \text{ IH yields } (\mathcal{H}_{\gamma_1}, \Theta_{\iota}, \mathbb{R}) \vdash_{\mathbb{S}, \mathbb{S}, \mathbb{S}}^{2a(\iota)} \Xi, \Gamma^{(u)}, C_{\iota}^{(u)}.$ Let $\sigma_0 = \sigma$ if $\operatorname{srk}(\sigma) < \mathbb{S}$, and $\sigma_0 = \mathfrak{u}$ else. We claim that $\iota \in [\partial \mathfrak{Q}] J \cap [\sigma] J$ iff $\iota \in [\partial \mathbb{R}] J \cap [\sigma_0] J$ for each $\iota \in J$. We may assume that $\mathsf{k}(\iota) \subset \mathsf{k}(C_\iota)$. By the

assumption and Proposition 4.5.6 we have $\operatorname{rk}(C_{\iota}) < \operatorname{rk}(C) < \mathbb{S}$ for each $\iota \in J$. Let $\rho \in \partial \mathbb{Q}(\mathbb{S})$ and $\iota \in [\partial \mathbb{R}]J \cap [\sigma_0]J$. First let $C^{(\sigma)} \in \Gamma^{(\cdot)}$. We show $\iota \in$ $[\sigma]J\cap[\rho]J$. We obtain $\mathsf{k}(C)\subset M_{\sigma}\cap\mathbb{S}=\sigma\leq\rho$, and hence $\mathsf{k}(\iota)\subset\sigma\subset M_{\sigma}\subset M_{\rho}$. Next let $C^{(\sigma)} \in \Xi$. We show $\iota \in [\rho]J$. We obtain $\mathsf{k}(C) \subset M_{\rho} \cap \mathbb{S} = \rho$, and hence A (\bigwedge) yields $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{R}) \vdash^{2a}_{\mathbb{S},\mathbb{S},\mathbb{S}} \Xi, \Gamma^{(\mathfrak{u})}$ with $C^{(\mathfrak{u})} \in \Gamma^{(\mathfrak{u})}$.

Case 2. Second consider the case when the last inference is an $(i-\mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$: We have a finite conjunction $D \equiv \bigwedge (D_n)_{n < m}$ and an ordinal $a_0 < a$ such that $\mathrm{rk}(D) < \mathrm{srk}(\rho) = \mathrm{srk}(\sigma) = \mathbb{S}$ by (r1), and

$$\frac{\{(\mathcal{H}_{\gamma},\Theta,\mathbf{Q}^{\rho})\vdash^{a_{0}}_{\mathbb{S},\mathbb{S},\mathbb{S}^{\dagger}}\Xi,\Gamma^{(\cdot)},D_{n}^{(\rho)}\}_{n< m}}{(\mathcal{H}_{\gamma},\Theta,\mathbf{Q})\vdash^{a_{0}}_{\mathbb{S},\mathbb{S},\mathbb{S}^{\dagger}}\Xi,\Gamma^{(\cdot)},\neg D^{(\sigma)}\}_{\sigma}}$$

We have $X = \Theta \cup \Theta_1 \cup \{\mathfrak{p}_0(\rho)\} \cup SC(m(\rho)) \cup \mathbb{Q}^{\circ}(\mathbb{S}) \subset M_{\rho}$ for $\rho \in \partial \mathbb{Q}^{\rho}(\mathbb{S})$. Pick a $\sigma \in H^{\mathbb{Q}^{\rho}}_{\rho}(f, \Theta, \Theta_1)$. For example $\sigma = \psi^f_{\rho}(\alpha + \eta)$ for $\rho = \psi^g_{\kappa}(\alpha)$ and $\eta = \max(\{1\} \cup E_{\mathbb{S}}(X))$. IH yields

$$\frac{\{(\mathcal{H}_{\gamma_{1}},\Theta,\mathbb{R})\vdash_{\mathbb{S},\mathbb{S},\mathbb{S}}^{2a_{0}}\Xi,\Gamma^{(\mathbf{u})},D_{n}^{(\mathbf{u})}\}_{n< m}}{(\mathcal{H}_{\gamma_{1}},\Theta,\mathbb{R})\vdash_{\mathbb{S},\mathbb{S},\mathbb{S}}^{2a_{0}+1}\Xi,\Gamma^{(\mathbf{u})},D^{(\mathbf{u})}}(\Lambda)} (\mathcal{H}_{\gamma_{1}},\Theta,\mathbb{R})\vdash_{\mathbb{S},\mathbb{S},\mathbb{S}}^{2a_{0}}\Xi,\Gamma^{(\mathbf{u})},\neg D^{(\mathbf{u})}}(cut)$$

where $\mathbf{Q}^{\rho} \upharpoonright \mathbf{S} = \mathbf{Q}^{\rho\sigma} \upharpoonright \mathbf{S} = \mathbf{Q} \upharpoonright \mathbf{S} = \mathbf{R}$.

Case 3. Third the last inference is a (cut) with a cut formula $C^{(\sigma)}$ with $\operatorname{srk}(\sigma) = \mathbb{S}$: Then $\operatorname{rk}(C) < \mathbb{S} = \operatorname{srk}(\sigma)$ for the cut formula $C^{(\sigma)}$. It followed by a (cut) with the cut formula $C^{(u)}$ yields the proposition.

Other case are seen from IH.

Lemma 5.7 (Elimination of one stable ordinal) Suppose $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{\mathbb{S}^{\dagger}, \mathbb{S}^{\dagger}, \beta, \gamma_{0}}^{a} \Xi$ with a finite family $\mathbb{Q} = ((\mathbb{Q})_{0}, \gamma^{\mathbb{Q}})$ for γ_{0} , where $\mathbb{S} \in St$, and $\max\{\operatorname{rk}(\Xi), \operatorname{srk}(\Xi)\} < \mathbb{S}$.

Let $\gamma_1 = \gamma_{\mathbb{S}}^{\mathsf{Q}} + \mathbb{I}_N$ if $\mathbb{S} \in dom(\mathsf{Q})$, and $\gamma_1 = \gamma$ else. Then $(\mathcal{H}_{\gamma_1}, \Theta, \mathsf{R}) \vdash_{\mathbb{S}, \mathbb{S}, \mathbb{S}, \beta, \gamma_0}^{\tilde{a}} \Xi$ holds for $\tilde{a} = \varphi_{\mathbb{S}^{\dagger}}(\mathbb{S} + \omega a)$ and $\mathsf{R} = \mathsf{Q} \upharpoonright \mathbb{S}$.

Proof. We have $\mathcal{B}(\{\mathbb{S}^{\dagger}, a\}) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ by (28) and Propositions 4.15.6 and 4.15.9 with $\mathcal{B}(\Theta(\mathbb{Q}^{\circ})) \subset \Theta(\mathbb{Q}^{\circ})$. We see $E(\mathbb{S}) \subset \{\mathbb{S}\} \cup E(\mathbb{S}^{\dagger})$ and $\mathcal{B}_{0}(\mathbb{S}) \subset \{\mathbb{S}\} \cup \mathcal{B}_{0}(\mathbb{S}^{\dagger})$ with $\mathbb{S} \in \operatorname{trail}(\mathbb{S}^{\dagger})$. Hence $\mathcal{B}(\mathbb{S}) \subset \mathcal{B}(\mathbb{S}^{\dagger})$, and $\mathcal{B}(\{\mathbb{S}, \tilde{a}\}) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$. On the other hand we have $\mathbb{Q}^{\circ}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{1}}[\Theta(\mathbb{R}^{\circ})]$ by (29) when $\mathbb{S} \in \operatorname{dom}(\mathbb{Q})$, where $\mathbb{R}^{\circ} = \mathbb{Q}^{\circ} \upharpoonright \mathbb{S}$. Therefore $\{\mathbb{S}, \tilde{a}\} \subset \mathcal{H}_{\gamma_{1}}[\Theta(\mathbb{R}^{\circ})]$.

the other hand we have $\mathbf{Q}_{\mathbf{Q}}(\mathbf{S}) \subset \mathcal{V}_{\gamma_1}[\Theta(\mathbf{R}^\circ)]$. $\mathbf{R}^\circ = \mathbf{Q}^\circ \upharpoonright \mathbb{S}$. Therefore $\{\mathbb{S}, \tilde{a}\} \subset \mathcal{H}_{\gamma_1}[\Theta(\mathbf{R}^\circ)]$. $(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q}) \vdash_{\mathbb{S}^{\dagger}, \mathbb{S}, \mathbb{S}^{\dagger}, \beta, \gamma_0}^{\mathbb{S} + \omega a} \Xi$ follows from Recapping 5.4 for $\mathbb{S} = 2\mathbb{S}$. Cutelimination 4.44 yields $(\mathcal{H}_{\gamma}, \Theta, \mathbf{Q}) \vdash_{\mathbb{S}, \mathbb{S}, \mathbb{S}^{\dagger}, \beta, \gamma_0}^{\tilde{a}} \Xi$. We obtain $(\mathcal{H}_{\gamma_1}, \Theta, \mathbf{R}) \vdash_{\mathbb{S}, \mathbb{S}, \mathbb{S}, \beta, \gamma_0}^{\tilde{a}} \Xi$ by Proposition 5.6 with $2\tilde{a} = \tilde{a}$.

Definition 5.8 Let Q be a finite family for γ_0 with thresholds $\gamma_{\mathbb{S}}^{Q}$, and γ an ordinal. Let

$$\mathbf{s}(\gamma, \mathbf{Q}) := \min\{\mathbb{S} \in SSt : \gamma \ge \gamma_{\mathbb{S}}^{\mathbf{Q}} + \mathbb{I}_N\}\$$

if there exists an $\mathbb{S} \in SSt$ such that $\gamma \geq \gamma_{\mathbb{S}}^{\mathsf{q}} + \mathbb{I}_N$. Otherwise $\mathbf{s}(\gamma, \mathbf{q}) := \beta$ for the fixed ordinal β .

We say that a non-zero ordinal γ is a *multiple* of \mathbb{I}_N if $\gamma = \mathbb{I}_N \cdot \alpha$ for an $\alpha \neq 0$. For a multiple γ of \mathbb{I}_N we obtain for $\mathbf{s} = \mathbf{s}(\gamma, \mathbf{Q})$

$$\forall \mathbb{S} \in dom(\mathbb{Q})(\mathbb{S} < \mathbf{s} \Rightarrow \gamma \le \gamma_{\mathbb{S}}^{\mathbb{Q}}) \& \forall \mathbb{T} \in dom(\mathbb{Q})(\mathbf{s} \le \mathbb{T} \Rightarrow \gamma_{\mathbb{T}}^{\mathbb{Q}} + \mathbb{I}_N \le \gamma)$$
(42)

Definition 5.9 Let $Q = ((Q)_0, \gamma^Q)$ be a finite family for γ_0 with thresholds function $\gamma^{\mathbf{Q}}_{\cdot}$, \mathbb{W} a successor stable ordinal, and γ an ordinal. Let $\mathbb{W} < e$ and $\mathbf{s} = \mathbf{s}(\gamma, \mathbf{Q}). \ \delta^{\mathbf{Q}}_{\mathbb{W}}(\gamma) \text{ denotes an ordinal defined as follows. If } [\mathbb{W}, \mathbf{s}) \cap dom(\mathbf{Q}) = \emptyset,$ then $\delta^{\mathbf{Q}}_{\mathbb{W}}(\gamma) = \gamma$. Otherwise $\delta^{\mathbf{Q}}_{\mathbb{W}}(\gamma) = \gamma^{\mathbf{Q}}_{\mathbb{U}} = \gamma^{\mathbf{Q}}_{\mathbb{W}}$ for the least $\mathbb{U} \in [\mathbb{W}, \mathbf{s}) \cap dom(\mathbf{Q}).$

Proposition 5.10 Let $Q = ((Q)_0, \gamma^{Q})$ be a finite family for γ_0 with thresholds function $\gamma^{\mathbf{Q}}_{\cdot}$, and $\mathbb{W} < \mathbb{S} < e$ successor stable ordinals. Then $\gamma \leq \delta^{\mathbf{Q}}_{\mathbb{S}}(\gamma) \leq \delta^{\mathbf{Q}}_{\mathbb{W}}(\gamma)$ for a multiple γ of \mathbb{I}_N .

Proof. Let $\mathbf{s} = \mathbf{s}(\gamma, \mathbf{Q})$. If $[\mathbb{W}, \mathbf{s}) \cap dom(\mathbf{Q}) = \emptyset$, then $\delta_{\mathbb{W}}^{\mathbf{Q}}(\gamma) = \delta_{\mathbb{S}}^{\mathbf{Q}}(\gamma) = \gamma$. Otherwise $\delta_{\mathbb{W}}^{\mathbf{Q}}(\gamma) = \gamma_{\mathbb{U}}^{\mathbf{Q}} = \gamma_{\mathbb{W}}^{\mathbf{Q}}$ for the least $\mathbb{U} \in [\mathbb{W}, \mathbf{s}) \cap dom(\mathbf{Q})$. By (42) we obtain $\gamma_{\mathbb{U}}^{\mathbf{Q}} \geq \gamma$. If $\mathbb{S} \leq \mathbb{U}$, then $\delta_{\mathbb{S}}^{\mathbf{Q}}(\gamma) = \gamma_{\mathbb{U}}^{\mathbf{Q}}$. Assume $\mathbb{U} < \mathbb{S}$. If $[\mathbb{S}, \mathbf{s}) \cap dom(\mathbf{Q}) = \emptyset$, then $\delta_{\mathbb{S}}^{\mathbf{Q}}(\gamma) = \gamma \leq \gamma_{\mathbb{U}}^{\mathbf{Q}}$. Otherwise let $\delta_{\mathbb{S}}^{\mathbf{Q}}(\gamma) = \gamma_{\mathbb{T}}^{\mathbf{Q}}$ for the least $\mathbb{T} \in [\mathbb{S}, \mathbf{s}) \cap dom(\mathbf{Q})$. Then $\mathbb{U} < \mathbb{T}$, and $\gamma \leq \gamma_{\mathbb{T}}^{\mathbf{Q}} < \gamma_{\mathbb{U}}^{\mathbf{Q}}$ by Definition 4.36.4a.

Lemma 5.11 (Elimination of stable ordinals)

Let $\mathbf{Q} = ((\mathbf{Q})_0, \gamma^{\mathbf{Q}})$ be a finite family for γ_0 , and $f(e, a) = \varphi_{e+1}(a)$. Suppose $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{e,e,e,\beta,\gamma_0}^{a} \Xi \text{ for a multiple } \gamma \text{ of } \mathbb{I}_N, \text{ and } \max\{\operatorname{rk}(\Xi), \operatorname{srk}(\Xi)\} < \mathbb{W} < e,$ where e is a stable ordinal, $a, e < \Lambda < \mathbb{I}_N, \mathbb{W}$ is a successor stable ordinal such that $\mathbb{W} \in \mathcal{H}_{\delta^{\mathbf{Q}}_{\mathbb{W}}(\gamma) + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{W})].$

Assume that \mathbb{Q} has gaps f(e, a) + 1. Then $(\mathcal{H}_{\gamma_{\mathbb{W}}}, \Theta, \mathbb{Q}_{\mathbb{W}}) \vdash_{\mathbb{W}, \mathbb{W}, \mathbb{W}, \beta, \gamma_{0}}^{f(e, a)} \Xi$ holds for $\gamma_{\mathbb{W}} = \delta_{\mathbb{W}}^{\mathbb{Q}}(\gamma) + \mathbb{I}_{N} \cdot (f(e, a)) < \gamma_{0} + (\mathbb{I}_{N})^{2}$ and $\mathbb{Q}_{\mathbb{W}} = \mathbb{Q} \upharpoonright \mathbb{W}$.

Proof. By main induction on e with subsidiary induction on a. In the proof let us omit the fourth and fifth subscripts β, γ_0 .

Let $\mathbb{W} \leq \mathbb{S} \in dom(\mathbb{Q})$. We have $\mathbb{Q}(\mathbb{S}) \subset \mathcal{H}_{\gamma_{\mathbb{S}}^{\mathbb{Q}} + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ} \upharpoonright \mathbb{S})]$ by (29). We see $\gamma^{\mathsf{q}}_{\mathbb{S}} \leq \delta^{\mathsf{q}}_{\mathbb{W}}(\gamma) \text{ from Definition 4.36.4a and (42). Hence } \mathsf{Q}(\mathbb{S}) \subset \mathcal{H}_{\delta^{\mathsf{q}}_{\mathbb{W}}(\gamma) + \mathbb{I}_{N}}[\Theta(\mathsf{Q}^{\circ}_{\mathbb{W}})],$ and $\mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})] \subset \mathcal{H}_{\delta^{\mathfrak{q}}_{w}(\gamma) + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ}_{\mathbb{W}})]$, where $\mathbb{Q}^{\circ}_{\mathbb{W}} = \mathbb{Q}^{\circ} \upharpoonright \mathbb{W}$.

By the assumption and (28), $\{\mathbb{W}, f(e, a), \gamma_{\mathbb{W}}\} \subset \mathcal{H}_{\delta^{\mathsf{q}}_{\mathbb{W}}(\gamma) + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ}_{\mathbb{W}})]$ follows,

and (28) is enjoyed in $(\mathcal{H}_{\gamma_{\mathbb{W}}}, \Theta, \mathbb{Q}_{\mathbb{W}}) \vdash_{\mathbb{W}, \mathbb{W}, \mathbb{W}, \mathcal{H}, \gamma_{0}}^{f(e,a)} \Xi$. We see $\gamma_{\mathbb{W}} \leq \gamma_{\mathbb{S}}^{\mathbb{Q}}$ for every $\mathbb{S} \in dom(\mathbb{Q}) \cap \mathbb{W}$ from the assumption that \mathbb{Q} has gaps f(e, a) + 1 as follows. If $\delta_{\mathbb{W}}^{\mathbb{Q}}(\gamma) = \gamma_{0} = \gamma$, then $\gamma_{\mathbb{W}} = \gamma_{0} + \mathbb{I}_{N} \cdot (f(e, a)) < \gamma_{0} + \mathbb{I}_{N} \cdot (f(e, a) + 1) \leq \gamma_{\mathbb{S}}^{\mathbb{Q}}$. Otherwise let $\delta_{\mathbb{W}}^{\mathbb{Q}}(\gamma) = \gamma_{\mathbb{U}}^{\mathbb{Q}}$ for $\mathbb{S} < \mathbb{W} \leq \mathbb{U} \in dom(\mathbb{Q})$. Then $\gamma_{\mathbb{W}} = \gamma_{\mathbb{U}}^{\mathbb{Q}} + \mathbb{I}_{N} \cdot (f(e, a)) < \gamma_{\mathbb{U}}^{\mathbb{Q}} + \mathbb{I}_{N} (f(e, a) + 1) \leq \gamma_{\mathbb{S}}^{\mathbb{Q}}$.

Case 1. Consider the case when the last inference is an $(i-\mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$ for a successor *i*-stable ordinal $\mathbb{S} < e$ such that $\mathbb{S} \in \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ by (30).

Let $\mathbb{R} = \mathbb{Q} \cup \{(\mathbb{S}, \rho)\}$. $a_0 < a$ is an ordinal, and $D \equiv \bigwedge (D_n)_{n < m}$ is a finite conjunction such that $(\mathcal{H}_{\gamma}, \Theta, \mathbb{R}) \vdash_{e,e,e}^{a_0} \Xi, D_n^{(\rho)}$ for each n < m, and $(\mathcal{H}_{\gamma},\Theta,\mathbb{R}^{\sigma}) \vdash_{e,e,e}^{a_{0}} \Xi, \neg D^{(\sigma)} \text{ for every } \sigma \in L = H^{\mathbb{R}}_{\rho}(f,\Theta,\Theta_{1}) \text{ and } \mathrm{rk}(D) < 0$ $\min\{s, e\}$. Since $(f(e, a_0) + 1) \cdot 2 < f(e, a)$, we may assume that the finite family **R** for γ_0 has gaps $f(e, a_0) + 1$. We have $\operatorname{srk}(D^{(\rho)}) = \operatorname{srk}(D^{(\sigma)}) = \mathbb{S} < \mathbb{S}^{\dagger} \le e \in St$.

Let $\mathbb{U}^{\dagger} = \max\{\mathbb{W}, \operatorname{rk}(D)^{\dagger}, \mathbb{S}^{\dagger}\}$. We obtain $\mathbb{U}^{\dagger} \leq e$. We claim that $\mathbb{U}^{\dagger} \in \mathcal{H}_{\delta^{\mathsf{q}}_{\mathbb{U}^{\dagger}}(\gamma) + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ}_{\mathbb{U}^{\dagger}})]$, where $\delta^{\mathsf{q}}_{\mathbb{U}^{\dagger}}(\gamma) = \delta^{\mathsf{R}^{\circ}}_{\mathbb{U}^{\dagger}}(\gamma) = \delta^{\mathsf{R}^{\circ}}_{\mathbb{U}^{\dagger}}(\gamma)$ by $\mathbb{U}^{\dagger} > \mathbb{S}$. We may assume that $\mathbb{U}^{\dagger} \neq \mathbb{W}$ by the assumption. First let $\mathbb{U}^{\dagger} = \mathbb{S}^{\dagger}$. We see $E(\mathbb{S}^{\dagger}) \subset$

 $\{\mathbb{S}^{\dagger}\} \cup E(\mathbb{S})$ with $E_{\mathbb{S}}(\mathbb{S}^{\dagger}) = \emptyset$. Moreover $\mathcal{B}_0(\mathbb{S}^{\dagger}) \subset \{\mathbb{S}^{\dagger}\} \cup \mathcal{B}_0(\mathbb{S})$ since trail $(\mathbb{S}^{\dagger}) \subset \{\mathbb{S}^{\dagger}\} \cup \mathcal{B}_0(\mathbb{S})$ trail(S) \cup {S[†]}. Hence $\mathcal{B}(S^{\dagger}) \subset$ {S[†]} \cup $\mathcal{B}(S)$. Therefore $S^{\dagger} \in \mathcal{H}_{\delta_{s^{\dagger}}^{\mathfrak{q}}(\gamma) + \mathbb{I}_{N}}[\Theta(\mathbb{Q}_{S^{\dagger}}^{\circ})]$ by $\mathbb{S} \in \mathcal{B}(\mathbb{S}) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$ and $\gamma \leq \delta_{\mathbb{S}^{\dagger}}^{\mathbb{Q}}(\gamma)$. Next let $\mathbb{U}^{\dagger} = \operatorname{rk}(D)^{\dagger} > \max\{\mathbb{W}, \mathbb{S}^{\dagger}\}$. Then $\delta_{\mathbb{U}^{\dagger}}^{\mathbb{Q}}(\gamma) = \gamma_{\mathbb{V}}^{\mathbb{Q}}$ for $\mathbb{V} = \min\{\mathbb{V} \in dom(\mathbb{Q}) : \operatorname{rk}(D) < \mathbb{V} < \mathfrak{s}(\gamma, \mathbb{Q})\}$ if such a \mathbb{V} exists. Otherwise $\delta_{\mathbb{U}^{\dagger}}^{\mathbf{q}}(\gamma) = \gamma$. By (28) we obtain $\mathsf{k}(D) \subset \mathcal{H}_{\gamma}[\Theta(\mathbb{Q}^{\circ})]$, and $\mathsf{k}(D) \subset \mathcal{H}_{\delta_{\mathbb{U}^{\dagger}}^{\mathbf{q}}(\gamma) + \mathbb{I}_{N}}[\Theta(\mathbb{Q}_{\mathbb{U}^{\dagger}}^{\circ})]$.

Hence $\operatorname{rk}(D)^{\dagger} \in \mathcal{H}_{\delta^{\mathfrak{q}}_{r,\mathfrak{q}}(\gamma)+\mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ}_{\mathbb{U}^{\dagger}})]$ follows from Proposition 4.5.3. Thus the claim is shown.

Let $a_1 = f(e, a_0)$ and $\gamma_{\mathbb{U}^{\dagger}} = \delta^{\mathbb{Q}}_{\mathbb{U}^{\dagger}}(\gamma) + \mathbb{I}_N \cdot (f(e, a_0))$. For each n < m, SIH yields $(\mathcal{H}_{\gamma_{\mathbb{U}^{\dagger}}},\Theta,\mathbb{Q}_{\mathbb{U}^{\dagger}})\vdash_{\mathbb{U}^{\dagger},\mathbb{U}^{\dagger},\mathbb{U}^{\dagger}}^{a_{1}}\Xi, D_{n}^{(\rho)}$, and $(\mathcal{H}_{\gamma_{\mathbb{U}^{\dagger}}},\Theta,\mathbb{Q}_{\mathbb{U}^{\dagger}})\vdash_{\mathbb{U}^{\dagger},\mathbb{U}^{\dagger},\mathbb{U}^{\dagger}}^{a_{1}}\Xi, \neg D^{(\sigma)}$ for each $\sigma \in L$. We obtain by an $(i-\mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1)), (\mathcal{H}_{\gamma_{\mathbb{U}^{\dagger}}}, \Theta, \mathbf{Q}_{\mathbb{U}^{\dagger}}) \vdash_{\mathbb{U}^{\dagger}, \mathbb{U}^{\dagger}, \mathbb{U}^{\dagger}}^{a_1+1} \Xi$. If $\mathbb{U}^{\dagger} = \mathbb{W}$, then $\mathbb{S} < \mathbb{W}$. We are done. Assume $\mathbb{W} < \mathbb{U}^{\dagger}$. Then $\mathbb{W} \le \mathbb{U} \in St$.

Let $a_2 = \varphi_{\mathbb{U}^{\dagger}}(\mathbb{U} + \omega(a_1 + 1)) < f(e, a)$. Lemma 5.7 yields $(\mathcal{H}_{\gamma_1}, \Theta, \mathbb{Q}_{\mathbb{U}}) \vdash_{\mathbb{U}, \mathbb{U}, \mathbb{U}}^{a_2}$ Ξ , where $\gamma_1 = \gamma_{\mathbb{U}}^{\mathsf{Q}} + \mathbb{I}_N$ if $\mathbb{U} \in dom(\mathsf{Q})$, and $\gamma_1 = \gamma_{\mathbb{U}^{\dagger}}$ else. In each case γ_1 is a multiple of \mathbb{I}_N .

Claim 5.12 $\gamma_2 = \delta_{\mathbb{W}}^{\mathbb{Q}_U}(\gamma_1) + \mathbb{I}_N \cdot f(\mathbb{U}, a_2) \leq \delta_{\mathbb{W}}^{\mathbb{Q}}(\gamma) + \mathbb{I}_N \cdot f(e, a) = \gamma_{\mathbb{W}}.$

Proof of Claim 5.12. Let $\mathbf{s} = \mathbf{s}(\gamma, \mathbf{Q}), \ \delta = \delta_{\mathbb{W}}^{\mathbf{Q}}(\gamma), \ \mathbf{s}_1 = \mathbf{s}(\gamma_1, \mathbf{Q}_{\mathbb{U}}) \ \text{and} \ \delta_1 = \mathbf{s}(\gamma_1, \mathbf{Q}_{\mathbb{U}})$ $\delta^{\mathsf{Q}_{\mathbb{W}}}_{\mathbb{W}}(\gamma_1).$

Case 1. $\mathbb{U} \in dom(\mathbb{Q})$: Then $\gamma_1 = \gamma_{\mathbb{U}}^{\mathbb{Q}} + \mathbb{I}_N$ and $\mathbf{s}_1 \leq \mathbb{U}$. **Case 1.1.** $\mathbf{s} \leq \mathbb{U}$: Then $\gamma_1 \leq \gamma$. First let $[\mathbb{W}, \mathbf{s}) \cap dom(\mathbb{Q}) = \emptyset$. In this case we show that $\delta_1 \leq \gamma = \delta$, which yields the claim by $f(\mathbb{U}, a_2) < f(e, a)$. If
$$\begin{split} & [\mathbb{W},\mathbf{s}_{1}) \cap dom(\mathbb{Q}_{\mathbb{U}}) = \emptyset, \text{ then } \delta_{1} = \gamma_{1} \leq \gamma. \text{ Otherwise let } \mathbb{V} \in [\mathbb{W},\mathbf{s}_{1}) \cap dom(\mathbb{Q}_{\mathbb{U}}) \\ & \text{ be the least one. Then } \mathbf{s} \leq \mathbb{V}, \text{ and } \delta_{1} = \gamma_{\mathbb{V}}^{\mathbb{Q}} < \gamma_{\mathbb{V}}^{\mathbb{Q}} + \mathbb{I}_{N} \leq \gamma. \\ & \text{ Second let } \delta = \gamma_{\mathbb{V}}^{\mathbb{Q}} \text{ for the least } \mathbb{V} \in [\mathbb{W},\mathbf{s}) \cap dom(\mathbb{Q}). \text{ From } \gamma_{1} \leq \gamma \text{ we see} \\ & \mathbf{s}_{1} \geq \mathbf{s}. \text{ Hence } \mathbb{V} \in [\mathbb{W},\mathbf{s}_{1}) \cap dom(\mathbb{Q}_{\mathbb{U}}) \text{ and } \delta_{1} = \gamma_{\mathbb{V}}^{\mathbb{Q}}. \text{ The claim follows from } \end{split}$$

 $f(\mathbb{U}, a_2) < f(e, a).$

Case 1.2. $\mathbb{U} < \mathbf{s}$: Then $\mathbb{U} \in [\mathbb{W}, \mathbf{s}) \cap dom(\mathbb{Q})$ and $\delta = \gamma_{\mathbb{V}}^{\mathbb{Q}}$ with $\mathbb{V} \leq \mathbb{U}$. If $\mathbb{V} < \mathbf{s}_1$, then $\delta_1 = \gamma_{\mathbb{V}}^{\mathsf{Q}} = \delta$. The claim follows from $f(\mathbb{U}, a_2) < f(e, a)$. Let $\mathbf{s}_1 \leq \mathbb{V} \leq \mathbb{U}$. Then $\delta_1 = \gamma_1 = \gamma_{\mathbb{U}}^{\mathsf{Q}} + \mathbb{I}_N$ and $\gamma_{\mathbb{U}}^{\mathsf{Q}} \leq \gamma_{\mathbb{V}}^{\mathsf{Q}}$. $1 + f(\mathbb{U}, a_2) < f(e, a)$ yields the claim. Case 2. $\mathbb{U} \notin dom(\mathbb{Q})$: Then $\gamma_1 = \gamma_{\mathbb{U}^{\dagger}} = \delta_{\mathbb{U}^{\dagger}}^{\mathsf{Q}}(\gamma) + \mathbb{I}_N \cdot f(e, a_0)$.

Case 2.1. $[\mathbb{W}, \mathbf{s}) \cap dom(\mathbb{Q}) = \emptyset$: Then $\delta = \gamma = \delta^{\mathbb{Q}}_{\mathbb{U}^{\dagger}}(\gamma)$ by $\mathbb{W} \leq \mathbb{U}^{\dagger}$, and $\gamma_1 = \gamma + \mathbb{I}_N \cdot f(e, a_0).$ We have either $\delta_1 = \gamma_1$ or $\delta_1 = \gamma_{\mathbb{V}}^{\mathsf{Q}}$ for a $\mathsf{s} \leq \mathbb{V} \in \mathbb{V}$ $dom(\mathbb{Q})$. In each case we obtain $\delta_1 \leq \gamma + \mathbb{I}_N \cdot f(e, a_0)$. The claim follows from $f(e, a_0) + f(\mathbb{U}, a_2) < f(e, a).$

Case 2.2. Otherwise: Let $\delta = \gamma_{\mathbb{V}}^{\mathbb{Q}}$ for the least $\mathbb{V} \in [\mathbb{W}, \mathbf{s}) \cap dom(\mathbb{Q})$. If $\mathbb{V} < \mathbf{s}_1$, then $\delta_1 = \gamma_{\mathbb{V}}^{\mathbf{Q}} = \delta$. The claim follows from $f(e, a_0) < f(e, a)$. Let $\mathbf{s}_1 \leq \mathbb{V} < \mathbf{s}$. Then $\delta_1 = \gamma_1$. We show $\delta_{\mathbb{U}^{\dagger}}^{\mathbf{Q}}(\gamma) \leq \delta + \mathbb{I}_N$, which yields the claim by $f(e, a_0) + f(\mathbb{U}, a_2) < f(e, a) = 1 + f(e, a)$. If $\mathbb{U}^{\dagger} \leq \mathbb{V}$, then $\delta_{\mathbb{U}^{\dagger}}^{\mathbb{Q}}(\gamma) = \gamma_{\mathbb{V}}^{\mathbb{Q}} = \delta$. If $\delta_{\mathbb{U}^{\dagger}}^{\mathbb{Q}}(\gamma) = \gamma_{\mathbb{X}}^{\mathbb{Q}}$ for an $\mathbb{V} < \mathbb{U}^{\dagger} \leq \mathbb{X} < \mathbf{s}$, then $\gamma_{\mathbb{X}}^{\mathbb{Q}} < \gamma_{\mathbb{V}}^{\mathbb{Q}}$. Otherwise $\delta_{\mathbb{U}^{\dagger}}^{\mathbb{Q}}(\gamma) = \gamma < \delta_{\mathbb{V}}^{\mathbb{Q}}$. $\gamma_{\mathbb{V}}^{\mathsf{Q}} + \mathbb{I}_N = \delta + \mathbb{I}_N$ by $\mathbb{V} < \mathbf{s}$. \square

We have $a_3 = f(\mathbb{U}, a_2) = \varphi_{\mathbb{U}+1}(a_2) < f(e, a)$, and hence \mathbb{Q} has gaps $a_3 + 1 < f(e, a)$. By MIH with $\mathbb{U} < e$ we obtain $(\mathcal{H}_{\gamma_2}, \Theta, \mathbb{Q}_{\mathbb{W}}) \vdash_{\mathbb{W}, \mathbb{W}, \mathbb{W}}^{a_3} \Xi$ for $\gamma_2 = \delta_{\mathbb{W}}^{\mathbb{Q}_{\mathbb{U}}}(\gamma_1) + \mathbb{I}_N \cdot f(\mathbb{U}, a_2)$. On the other hand we have $\gamma_2 \leq \gamma_{\mathbb{W}}$ by Claim 5.12 and $a_3 < f(e, a)$. Therefore $(\mathcal{H}_{\gamma_{\mathbb{W}}}, \Theta, \mathbb{Q}_{\mathbb{W}}) \vdash_{\mathbb{W}, \mathbb{W}, \mathbb{W}}^{f(e, a)} \Xi$.

Case 2. Next consider the case when the last inference is a (cut) of a cut formula $C^{(\sigma)}$ with $\max\{\operatorname{rk}(C), \operatorname{srk}(\sigma)\} < e$. We have an ordinal $a_0 < a$ such that $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{e,e,e}^{a_0} \neg C^{(\sigma)}, \Xi$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{e,e,e}^{a_0} C^{(\sigma)}, \Xi$.

We may assume that $\operatorname{rk}(C) \geq \operatorname{srk}(\sigma)$ by Proposition 5.6. Let $\mathbb{U}^{\dagger} = \max\{\mathbb{W}, \operatorname{rk}(C)^{\dagger}\}$. We obtain $\mathbb{U}^{\dagger} \leq e$. We see $\mathbb{U}^{\dagger} \in \mathcal{H}_{\delta^{\mathsf{q}}_{\mathbb{U}^{\dagger}}(\gamma) + \mathbb{I}_{N}}[\Theta(\mathbb{Q}^{\circ}_{\mathbb{U}^{\dagger}})]$ as in **Case 1**. Let $\gamma_{\mathbb{U}^{\dagger}} = \delta^{\mathsf{q}}_{\mathbb{U}^{\dagger}}(\gamma) + \mathbb{I}_{N} \cdot a_{1}$ for $a_{1} = f(e, a_{0}) = \varphi_{e+1}(a_{0})$. SIH yields $(\mathcal{H}_{\gamma_{\mathbb{U}^{\dagger}}}, \Theta, \mathbb{Q}_{\mathbb{U}^{\dagger}}) \vdash_{\mathbb{U}^{\dagger}, \mathbb{U}^{\dagger}, \mathbb{U}^{\dagger}}^{a_{1}} = \neg C^{(\sigma)}, \Xi$ and $(\mathcal{H}_{\gamma_{\mathbb{U}^{\dagger}}}, \Theta, \mathbb{Q}_{\mathbb{U}^{\dagger}}) \vdash_{\mathbb{U}^{\dagger}, \mathbb{U}^{\dagger}, \mathbb{U}^{\dagger}}^{a_{1}} C^{(\sigma)}, \Xi$. A (*cut*) yields $(\mathcal{H}_{\gamma_{\mathbb{U}^{\dagger}}}, \Theta, \mathbb{Q}_{\mathbb{U}^{\dagger}}) \vdash_{\mathbb{U}^{\dagger}, \mathbb{U}^{\dagger}, \mathbb{U}^{\dagger}}^{a_{1}+1} = \Sigma$. If $\mathbb{U}^{\dagger} = \mathbb{W}$, then we are done. Assume $\mathbb{W} < \mathbb{U}^{\dagger}$. Then $\mathbb{W} \leq \mathbb{U} \in St$. Let $a_{2} = \varphi_{\mathbb{U}^{\dagger}}(\mathbb{U} + \omega(a_{1} + 1)) < f(e, a)$. Lemma 5.7 yields $(\mathcal{H}_{\gamma_{1}}, \Theta, \mathbb{Q}_{\mathbb{U}}) \vdash_{\mathbb{U}, \mathbb{U}, \mathbb{U}}^{a_{2}} = \varphi_{\mathbb{U}^{\dagger}}(\mathbb{U} + \omega(a_{1} + 1)) < f(e, a)$. Lemma 5.7 yields $(\mathcal{H}_{\gamma_{1}}, \Theta, \mathbb{Q}_{\mathbb{U}}) \vdash_{\mathbb{U}, \mathbb{U}, \mathbb{U}}^{a_{2}} = \varphi_{\mathbb{U}^{\dagger}}(\mathbb{U} + \mathbb{I}_{N}$ if $\mathbb{U} \in dom(\mathbb{Q})$, and $\gamma_{1} = \gamma_{\mathbb{U}^{\dagger}}$ else. In each case γ_{1} is a multiple of \mathbb{I}_{N} . We have $a_{3} = f(\mathbb{U}, a_{2}) = \varphi_{\mathbb{U}+1}(a_{2}) < f(e, a)$, and hence \mathbb{Q} has gaps $a_{3} + 1 < f(e, a)$.

By MIH with $\mathbb{U} < e$ we obtain $(\mathcal{H}_{\gamma_2}, \Theta, \mathbb{Q}) \vdash_{\mathbb{W}, \mathbb{W}, \mathbb{W}}^{a_3} \Xi$ for $\gamma_2 = \delta_{\mathbb{W}}^{\mathbb{Q}_U}(\gamma_1) + \mathbb{I}_N \cdot f(\mathbb{U}, a_2) \leq \gamma_{\mathbb{W}}$ by Claim 5.12.

Other cases $(\bigvee), (\bigwedge)$ and $(\Sigma - rfl)$ on Ω are seen from SIH.

Let us prove Theorem 1.1. Let $S_{\mathbb{I}_N} \vdash \theta^{L_\Omega}$ for a Σ -sentence θ . By Embedding 4.27 pick an m > 0 so that $(\mathcal{H}_{\mathbb{I}_N}, \emptyset; \emptyset) \vdash_{\mathbb{I}_N + m}^{*\mathbb{I}_N \cdot 2 + m} \theta^{L_\Omega}; \emptyset$. Cut-elimination 4.32 yields $(\mathcal{H}_{\mathbb{I}_N}, \emptyset; \emptyset) \vdash_{\mathbb{I}_N}^{*a} \theta^{L_\Omega}; \emptyset$ for $a = \omega_m(\mathbb{I}_N \cdot 2 + m) < \omega_{m+1}(\mathbb{I}_N + 1)$. Then Collapsing 4.34 yields $(\mathcal{H}_{\hat{a}+1}, \emptyset; \emptyset) \vdash_{\beta}^{\beta} \theta^{L_\Omega}; \emptyset$ for $\beta = \psi_{\mathbb{I}_N}(\hat{a}) \in LSt_N$ with $\hat{a} = \mathbb{I}_N + \omega^a = \omega_{m+1}(\mathbb{I}_N \cdot 2 + m) > \beta$. Now let $\gamma_0 = \hat{a} + \mathbb{I}_N$. Capping 5.1 then yields $(\mathcal{H}_{\gamma_0}, \emptyset, \emptyset) \vdash_{\beta,\beta,\beta,\beta,\gamma_0}^{\beta} \theta^{L_\Omega}$ where $2\beta = \beta, \theta^{L_\Omega} \equiv (\theta^{L_\Omega})^{(u)}$, and \emptyset is a finite family for γ_0 with thresholds and gaps $\varphi_{\beta+1}(\beta) + 1$. For the empty family \emptyset this means that each finite family \mathbb{Q} with thresholds $\gamma_{\mathbb{S}}^{\mathbb{Q}}$ have gaps $\varphi_{\beta+1}(\beta) + 1$ in a sequent $(\mathcal{H}_{\gamma_0}, \Theta, \mathbb{Q}) \vdash_{\beta,\beta,\beta,\beta,\gamma_0}^{a} \Gamma$ occurring in the derivation of $(\mathcal{H}_{\gamma_0}, \emptyset, \emptyset) \vdash_{\beta,\beta,\beta,\beta,\gamma_0}^{\beta} \theta^{L_\Omega}$. Let $\beta < \Lambda = \Gamma(\beta) < \mathbb{I}_N$ be the next strongly critical number as the base

Let $\beta < \Lambda = \Gamma(\beta) < \mathbb{I}_N$ be the next strongly critical number as the base of the $\tilde{\theta}$ -function. In what follows each finite function is an $f : \Lambda \to \Gamma(\Lambda)$. Let $\alpha = \varphi_{\beta+1}(\beta)$ and $\mathbb{S}_0 = \Omega^{\dagger}$ be the least stable ordinal with $\mathcal{B}(\mathbb{S}_0) = \{\mathbb{S}_0\} \subset \mathcal{H}_0[\emptyset]$. By Lemma 5.11 for the multiple γ_0 of \mathbb{I}_N we obtain $(\mathcal{H}_{\gamma_{\mathbb{S}_0}}, \emptyset, \emptyset) \vdash_{\mathbb{S}_0, \mathbb{S}_0, \beta, \gamma_0}^{\alpha} \theta^{L_\Omega}$ for $\gamma_{\mathbb{S}_0} = \delta_{\mathbb{S}_0}^{\emptyset} + \mathbb{I}_N \cdot f(\beta, \beta) = \gamma_0 + \mathbb{I}_N \cdot \alpha < \gamma_0 + (\mathbb{I}_N)^2$. Cut-elimination 4.44 yields $(\mathcal{H}_{\gamma_{\mathbb{S}_0}}, \emptyset, \emptyset) \vdash_{\Omega, \mathbb{S}_0, \mathbb{S}_0, \beta, \gamma_0}^{\alpha} \theta^{L_\Omega}$ for $\alpha_1 = \varphi_{\mathbb{S}_0}(\alpha)$. In a witnessed derivation of this fact, there occurs no inference $(i - \mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$

In a witnessed derivation of this fact, there occurs no inference $(i-\mathrm{rfl}_{\mathbb{S}}(\rho, f, \Theta_1))$ since there is no successor stable ordinal $\mathbb{S} < \mathbb{S}_0$, cf. Definition 4.39. Hence $(\mathcal{H}_{\gamma_{\mathbb{S}_0}}, \emptyset; \emptyset) \vdash_{\Omega, \gamma_1}^{*\alpha_1} \theta^{L_\Omega}; \emptyset$ for $\gamma_1 = \gamma_{\mathbb{S}_0} + \alpha_1 + 1$. $(\mathcal{H}_{\gamma}, \emptyset; \emptyset) \vdash_{\delta, \gamma_1}^{*\delta} \theta^{L_\delta}; \emptyset$ follows from Collapsing 4.35, where $\delta = \psi_{\Omega}(\gamma_{\mathbb{S}_0} + \alpha_1)$ with the epsilon number α_1 . Cut-elimination 4.32 yields $(\mathcal{H}_{\gamma}, \emptyset; \emptyset) \vdash_{0, \gamma_1}^{*\varphi_{\delta}(\delta)} \theta^{L_{\delta}}; \emptyset$. We see that $\theta^{L_{\delta}}$ is true by induction up to $\varphi_{\delta}(\delta)$, where $\delta < \psi_{\Omega}(\omega_{m+2}(\mathbb{I}_N + 1)) < \psi_{\Omega}(\varepsilon_{\mathbb{I}_N+1})$.

6 Some ordinals in well-foundedness proof

In this section we introduce some ordinals needed in our well-foundedness proof.

In [4] the following Lemmas 6.2 and 6.3 are shown. Lemma 6.2 is used in showing the finiteness of the sequence $\rho_0 \succ \rho_1 \succ \rho_2 \succ \cdots$, cf. Definition 3.28 and Lemma 6.15. Lemma 6.3 is needed in showing Corollary 7.38.

Definition 6.1 Let $\Lambda \leq \mathbb{I}_N$ be a strongly critical number.

- 1. For $\xi < \varphi_{\Lambda}(0)$, $a_{\Lambda}(\xi)$ denotes an ordinal defined recursively by $a_{\Lambda}(0) = 0$, and $a_{\Lambda}(\xi) = \sum_{i \leq m} \tilde{\theta}_{b_i}(\omega \cdot a_{\Lambda}(\xi_i); \Lambda) \cdot a_i$ when $\xi =_{NF} \sum_{i \leq m} \tilde{\theta}_{b_i}(\xi_i; \Lambda) \cdot a_i$ in (6).
- 2. For irreducible functions $f : \Lambda \to \varphi_{\Lambda}(0)$ with base Λ let us associate ordinals $o_{\Lambda}(f) < \varphi_{\Lambda}(0)$ as follows. $o_{\Lambda}(\emptyset) = 0$ for the empty function $f = \emptyset$. Let $\{0\} \cup \operatorname{supp}(f) = \{0 = c_0 < c_1 < \cdots < c_n\}, f(c_i) = \xi_i < \varphi_{\Lambda}(0)$ for i > 0, and $\xi_0 = 0$. Define ordinals $\zeta_i = o_{\Lambda}(f; c_i)$ by $\zeta_n = \omega \cdot a_{\Lambda}(\xi_n)$, and $\zeta_i = \omega \cdot a_{\Lambda}(\xi_i) + \tilde{\theta}_{c_{i+1}-c_i}(\zeta_{i+1} + 1; \Lambda)$. Finally let $o_{\Lambda}(f) = \zeta_0 = o_{\Lambda}(f; c_0)$.
- 3. For $d \notin \{0\} \cup \operatorname{supp}(f)$, let $o_{\Lambda}(f;d) = 0$ if $f^d = \emptyset$. Otherwise $o_{\Lambda}(f;d) = \tilde{\theta}_{c-d}(o_{\Lambda}(f;c)+1;\Lambda)$ for $c = \min(\operatorname{supp}(f^d))$.

Lemma 6.2 Let $f : \Lambda \to \varphi_{\Lambda}(0)$ be an irreducible finite function with base Λ defined from an irreducible function $g : \Lambda \to \varphi_{\Lambda}(0)$ and ordinals c, d as follows. $f_c = g_c, c < d \in \operatorname{supp}(g)$ with $(c, d) \cap \operatorname{supp}(g) = (c, d) \cap \operatorname{supp}(f) = \emptyset$, $f(c) < g(c) + \tilde{\theta}_{d-c}(g(d); \Lambda) \cdot \omega$, and $f <_{\Lambda}^{d} g(d)$, cf. Definition 3.31.6. Then $o_{\Lambda}(f) < o_{\Lambda}(g)$ holds.

Lemma 6.3 For irreducible finite functions $f, g : \Lambda \to \varphi_{\Lambda}(0)$ with base Λ , assume $f <_{lx}^{0} g$. Then $o_{\Lambda}(f) < o_{\Lambda}(g)$ holds.

6.1 A preview of well-foundedness proof

To prove the well-foundedness of a computable notation system, we utilize the distinguished class introduced by W. Buchholz[7]. Also cf. [11] for a wellfoundedness in terms of a maximal distinguished class.

Let OT be a computable notation system of ordinals with an ordinal term Ω_1 . Ω_1 denotes the least recursively regular ordinal ω_1^{CK} . Assume that we are working in a theory in which the well-founded part W(OT) of OT exists as a set. A parameter-free Π_1^{1-} +CA suffices to show the existence. Then the well-foundedness of such a notation system OT is provable. When the next recursively regular ordinal Ω_2 is in OT, we further assume that a well-founded part $W(\mathcal{C}^{\Omega_1}(W_0))$ of a set $\mathcal{C}^{\Omega_1}(W_0)$ exists, where $W_0 = W(OT) \cap \Omega_1$, and $\alpha \in \mathcal{C}^{\Omega_1}(W_0)$ iff each component $<\Omega_1$ of α is in W_0 . Likewise when OT contains α -many terms denoting increasing sequence of recursively regular ordinals, we need to iterate the process of defining the well-founded parts α -times.

Let us consider a notation system OT for recursively inaccessible universes. There are α -many ordinal terms denoting recursively regular ordinals in OT with the order type α of OT. The whole process then should be internalized. We need to specify a feature of sets arising in the process. Then *distinguished sets* emerge. D[P] denotes the fact that P is a distinguished class and defined by

$$D[P] :\Leftrightarrow \forall \alpha \left(\alpha \le P \to W(C^{\alpha}(P)) \cap \alpha^+ = P \cap \alpha^+ \right)$$

where $\alpha \leq P \Leftrightarrow \exists \beta \in P(\alpha \leq \beta)$ and α^+ denotes the next recursively regular ordinal above α if such an ordinal exists.

 $W_0 = W(OT) \cap \Omega_1$ is the smallest distinguished set, and $W_1 = W(\mathcal{C}^{\Omega_1}(W_0)) \cap \Omega_2$ is the next one. Given two distinguished sets, it turns out that one is an initial segment of the other, and the union $\mathcal{W}_0 = \bigcup \{P \subset OT : D[P]\}$ of all distinguished sets is distinguished, the maximal distinguished class. The maximal distinguished class \mathcal{W}_0 is Σ_2^{1-} -definable, and a proper class without assuming Σ_2^{1-} -CA.

Assuming the maximal distinguished class W_0 exists as a set, the well-foundedness of OT for a single stable ordinal is provable in [4]. Consider now a notation system OT for several stable ordinals $\mathbb{S}_0, \mathbb{S}_1, \ldots$ We then need several maximal distinguished sets W_0, W_1, \ldots to prove the well-foundedness. W_0 is the maximal distinguished set in an absolute sense as for the well-founded part $W_0 = W(OT) \cap \Omega_1$.

A moment reflection on the emergence of distinguished sets shows that \mathcal{W}_1 could be a maximal distinguished set relative to \mathcal{W}_0 and \mathbb{S}_0 . Specifically cf. (46), a set P is said to be a 0-distinguished set for γ and X, denoted by $D^{\gamma}[P;X]$, iff P is well-founded and

$$P \cap \gamma^{-\dagger} = X \cap \gamma^{-\dagger} \& \forall \alpha \ge \gamma^{-\dagger} \left(\alpha \le P \to W(C^{\alpha}(P)) \cap \alpha^{+} = P \cap \alpha^{+} \right)$$

where $\gamma^{-\dagger} = \max\{\mathbb{S} \in St \cup \{0\} : \mathbb{S} \le \gamma\}$. Then let, cf. (47)

$$W_1^{\gamma}(X) := \bigcup \{ P \subset OT : D^{\gamma}[P; X] \}.$$

Observe that $W_1^{\gamma}(X)$ is a Σ_2^1 -definable class, and hence a set assuming Σ_2^1 -CA. We see in Lemma 7.8.2 that $W_1^{\gamma}(X)$ is the maximal 0-distinguished class for γ and X provided that $X \cap \gamma^{-\dagger}$ is well-founded.

Assume that there are α -many stable ordinals with the order type α of a notation system OT of ordinals. Then we have to introduce distinguished sets in the next level. In the higher level the recursive regularity is replaced by the stability, and the Π_1^1 -sets $W(\mathcal{C}^{\alpha}(P))$ by Σ_2^1 -sets $\mathcal{W}_1^{\gamma}(X)$.

A set X is a 1-distinguished set, denoted by $D_1[X]$ iff X is well-founded and

$$\forall \gamma \left(\gamma \leq X \to \mathcal{W}_1^{\gamma}(X) \cap \gamma^{\dagger} = X \cap \gamma^{\dagger} \right).$$

where $\alpha^{\dagger} = \min\{\mathbb{S} \in St : \alpha < \mathbb{S}\}$ if such a stable ordinal \mathbb{S} exists. We see that $\mathcal{W}_0 = W_1^0(\emptyset)$ is the smallest 1-distinguished set, and $\mathcal{W}_1 = W_1^{\mathbb{S}_0}(\mathcal{W}_0)$ is the next 1-distinguished set, and so forth. In Lemma 7.10 it is shown that if $D_1[X]$ and $\gamma \in X$, then X is a 0-distinguished set for γ and X, i.e., $D^{\gamma}[X;X]$, and $\gamma \in W(\mathcal{C}^{\gamma}(X)) \cap \gamma^+ = X \cap \gamma^+$, where $\gamma \in W_1^{\gamma}(X) \cap \gamma^{\dagger} = X \cap \gamma^{\dagger}$. This crucial

lemma allows us to prove facts by going down to the lowest level, i.e., to the well-foundedness.

 $\mathcal{W} := \bigcup \{X \subset OT : D_1[X]\}$ is then the 1-maximal distinguished class, which is a Σ_3^{1-} -definable class. Although \mathcal{W} is a proper class in a set theory with Π_1 -Collection or equivalently in Σ_3^1 -DC + BI, the theories proves that if $\mathbb{S} \in \mathcal{W}$ for $\mathbb{S} \in St \cup \{0\}$, then $\mathbb{S}^{\dagger} \in \mathcal{W}$, cf. Lemma 7.20. In showing that a limit of stable ordinals is in \mathcal{W} , we invoke Σ_3^1 -DC in Lemma 7.22: if $\alpha \in \mathcal{G}^{\mathcal{W}}$, then there exists a 1-distinguished set Z such that Z is closed under $\mathbb{S} \mapsto \mathbb{S}^{\dagger}$ and $\alpha \in \mathcal{G}^Z$ for a Π_0^1 -set \mathcal{G}^Z in Definition 7.14 of subsection 7.2.

By iterating this 'jump' operators, we arrive at a Σ_{N+1} -formula $D_N[X]$ denoting the fact that X is an N-distinguished set for positive integers N, cf. Definition 7.4. The maximal N-distinguished class $\bigcup \{X \subset OT : D_N[X]\}$ is Σ_{N+2}^{1-} -definable proper class in Π_N -Collection or in Σ_{N+2}^{1-} -DC + BI.

Up to this, everything seems to go well. But as long as we have an infinite increasing sequence $\{\mathbb{S}_n\}_n = \{\mathbb{S}_0 < \mathbb{S}_1 < \cdots\}$ of successor stable ordinals, a technical difficulty is hidden as follows. Above a successor stable ordinal \mathbb{S}_0 , there are increasing sequence $\mathbb{S}_1 = \mathbb{S}_0^{\dagger} < \mathbb{S}_2 = \mathbb{S}_1^{\dagger} < \cdots$ of successor stable ordinals. Let $\rho_n \prec \mathbb{S}_n$. Let us define ordinals $\kappa_{n,i}$ and $\sigma_{n,i}$ for $i \leq n$ recursively by $\kappa_{n,n} = \mathbb{S}_n$, $\kappa_{n,i} = \kappa_{n,i+1}[\rho_i/\mathbb{S}_i]$, $\sigma_{n,n} = \rho_n$ and $\sigma_i = \sigma_{n,i+1}[\rho_i/\mathbb{S}_i]$. Let $\kappa_n = \kappa_{n,0}$ and $\sigma_n = \sigma_{n,0}$. Then we see that $\sigma_0 < \sigma_1 < \sigma_2 < \cdots < \kappa_2 < \kappa_1 < \kappa_0$. This might yield an infinite decreasing chain $\{\kappa_n\}_n$ of collapsed ordinals.

For simplicity let $\rho_i = \psi_{\mathbb{S}_i}^{f_i}(\alpha_i)$. Then $M_{\rho_i} = \mathcal{H}_{\alpha_i}(\rho_i)$. In order to collapse $\kappa_{n,i+1}$ by ρ_i , $\rho_j \in M_{\rho_i}$ has to be enjoyed for j > i. Since $\rho_j > \rho_i$, this means that $\alpha_j < \alpha_i$. Namely there must exist an infinite decreasing chain $\alpha_0 > \alpha_1 > \alpha_2 > \cdots$ in advance to have another chain $\kappa_0 > \kappa_1 > \kappa_2 > \cdots$. Here α_i is the ordinal $\mathfrak{p}_0(\rho_i)$ in Definition 3.30.2. Let $\eta \in L(\mathbb{S})$ be an ordinal in the layer $L(\mathbb{S})$ of a successor stable ordinal \mathbb{S} , cf. Definition 3.34. A pair $(\mathfrak{g}_1(\eta), \mathfrak{g}_2(\eta))$ of ordinals is associated with such an ordinal η in Definitions 6.7 and 6.14, and we show in Lemma 6.15 that $(\mathfrak{g}_1(\gamma), \mathfrak{g}_2(\gamma)) <_{lx} (\mathfrak{g}_1(\eta), \mathfrak{g}_2(\eta))$ when $\gamma \in R(\eta)$ for the set $R(\eta)$ in Definition 6.12. It turns out that this suffices to prove the well-foundedness in Lemma 7.32.

6.2 Props

In this subsection an ordinal $\mathfrak{p}_{\mathbb{S}}(\alpha)$ and a pair $\mathfrak{g}(\alpha) = (\mathfrak{g}_1(\alpha), \mathfrak{g}_2(\alpha))$ are introduced for ordinal terms α . These are needed to show that there is no infinite sequence $\{\rho_n, \kappa_n\}_n$ such that $\rho_0 \prec \mathbb{S}_0$, $\kappa_n \in \{\mathbb{I}_N[\rho_n]\} \cup \{\rho_n^{\dagger \vec{i}_n}, \mathbb{S}_n^{\dagger \vec{i}_n}[\rho_n/\mathbb{S}_n]\}$ and either $\rho_{n+1} \prec \mathbb{S}_n^{\dagger \vec{i}_n}[\rho_n/\mathbb{S}_n] = \kappa_n$ or $\rho_{n+1} \prec \tau^{\dagger \vec{i}_n}$ for $\tau \prec \mathbb{I}_N[\rho_n] = \kappa_n$, cf. Proposition 6.10, Lemmas 6.15 and 7.32.

Recall that $\alpha \in SSt^M$ iff either α is a successor stable ordinal in SSt or $\alpha = \beta[\rho/\mathbb{S}]$ for a $\beta \in SSt^M$ and a successor stable ordinal \mathbb{S} , cf. Definition 3.31.8.

Definition 6.4 For $\rho \in \Psi_{\mathbb{S}}$ with $\mathbb{S} \in SSt^M$, let $N(\rho) = \{\mathbb{I}_N[\rho]\} \cup \{\rho^{\dagger \vec{i}}, \mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}] : \vec{i} \neq \emptyset\} \cap OT(\mathbb{I}_N)$ if $\mathbb{S} \notin SSt$. Otherwise $N(\rho) = \{\mathbb{I}_N[\rho]\} \cup \{\mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}] : \vec{i} \neq \emptyset\}$

 $\emptyset \} \cap OT(\mathbb{I}_N).$

Note that $\rho^{\dagger \vec{i}} \in SSt$ when $\mathbb{S} \in SSt$, and $N(\rho) \cap \Psi = \emptyset$. Recall that, cf. Definition 3.34, $L(\mathbb{S})$ denotes the layer of \mathbb{S} , and $\alpha \in L(\mathbb{S})$ iff $\alpha \prec^R \mathbb{S}$ iff there are ordinals $\{\rho_i, \kappa_i\}_i$ such that $\kappa_0 = \mathbb{S}$, $\rho_i \prec \kappa_i$, $\kappa_{i+1} \in N(\rho_i)$, and $\alpha \in \{\rho_0\} \cup \{\rho_i, \kappa_i\}_{i>0}$.

Definition 6.5 Let $\mathbb{S} \in SSt_i$ and $\mathbb{T} \in St \cup \{\Omega\}$ be the least such that $\mathbb{S} = \mathbb{T}^{\dagger i}$. For $a \in OT(\mathbb{I}_N)$, the prop $\mathbf{p}_{\mathbb{S}}(a)$ of a denotes an ordinal term defined recursively as follows.

- 1. $p_{\mathbb{S}}(\mathbb{I}_N) = p_{\mathbb{S}}(a) = 0$ if $a \leq \mathbb{T}$ In what follows assume $\mathbb{I}_N \neq a > \mathbb{T}$.
- 2. $p_{\mathbb{S}}(a) = \max_{i \le m} p_{\mathbb{S}}(a_i)$ if $a = a_0 + \dots + a_m$. $p_{\mathbb{S}}(a) = \max\{p_{\mathbb{S}}(b), p_{\mathbb{S}}(c)\}$ if $a = \varphi bc$.
- 3. $\mathbf{p}_{\mathbb{S}}(a) = \mathbf{p}_{\mathbb{S}}(\kappa)$ if $a \in N(\kappa)$ for a $\kappa \in L(\mathbb{U}) \cap \Psi$ with a $\mathbb{U} > \mathbb{T}$.
- 4. $\mathbf{p}_{\mathbb{S}}(\mathbb{U}^{\dagger k}) = \mathbf{p}_{\mathbb{S}}(\mathbb{U})$ for $\mathbb{T} \leq \mathbb{U} \in St$.
- 5. $\mathbf{p}_{\mathbb{S}}(\psi_{\mathbb{I}_N}(a)) = \mathbf{p}_{\mathbb{S}}(a).$
- 6. For $p_{\mathbb{S}}(SC(f)) = \max\{p_{\mathbb{S}}(b) : b \in SC(f)\}$, let

$$\mathbf{p}_{\mathbb{S}}(\psi_{\kappa}^{f}(a)) = \begin{cases} \max\{\mathbf{p}_{\mathbb{S}}(\kappa), \mathbf{p}_{\mathbb{S}}(a), \mathbf{p}_{\mathbb{S}}(SC(f))\} & \text{if } \kappa > \mathbb{S} \\ \max\{a, \mathbf{p}_{\mathbb{S}}(a)\} & \text{if } \kappa = \mathbb{S} \\ \mathbf{p}_{\mathbb{S}}(\kappa) & \text{if } \kappa < \mathbb{S} \end{cases}$$

Proposition 6.6 Let $\mathbb{S} \in SSt$ and $\alpha = \psi^f_{\mathbb{S}}(a), \ \beta = \psi^g_{\mathbb{S}}(b)$ with $\{\alpha, \beta\} \subset OT(\mathbb{I}_N),$

- 1. Let $c \in \mathcal{H}_b(\beta)$ with $\mathbf{p}_{\mathbb{S}}(c) \neq 0$. Then there exists a subterm $\gamma \in \mathcal{H}_b(\beta)$ of c such that $\gamma \prec \mathbb{S}$ and $\mathbf{p}_{\mathbb{S}}(\gamma) = \mathbf{p}_{\mathbb{S}}(c)$.
- 2. $p_{\mathbb{S}}(SC(f)) \leq p_{\mathbb{S}}(\alpha) = \max\{a, p_{\mathbb{S}}(a)\}\ holds.$
- 3. $\mathbf{p}_{\mathbb{S}}(\beta) \leq \mathbf{p}_{\mathbb{S}}(\alpha)$ if $\beta < \alpha$.
- 4. Let $\delta < \alpha < \beta$ with $\delta \prec \beta$. Then $\mathbf{p}_{\mathbb{S}}(\beta) \leq \mathbf{p}_{\mathbb{S}}(\alpha)$.
- 5. Let $\{\gamma, \delta\} \subset OT(\mathbb{I}_N)$. Then $p_{\mathbb{S}}(\gamma) \leq p_{\mathbb{S}}(\delta)$ if $\gamma < \delta$.

Proof. 6.6.1. By induction on ℓc .

6.6.2. By (11) in Definition 3.31.5 we obtain $SC(f) \subset \mathcal{H}_a(SC(a))$. By induction on ℓb , we see $b \in \mathcal{H}_a(SC(a)) \Rightarrow \mathfrak{p}_{\mathbb{S}}(b) \leq \max\{a, \mathfrak{p}_{\mathbb{S}}(a)\}$.

We show Propositions 6.6.3 and 6.6.4 simultaneously by induction on $\ell\beta + \ell\alpha$. 6.6.3. If a = b, then $p_{\mathbb{S}}(\beta) = p_{\mathbb{S}}(\alpha)$. Let b < a. We can assume $a < c = p_{\mathbb{S}}(b)$. By Proposition 6.6.1 pick a shortest subterm $\gamma \in \mathcal{H}_b(\beta) \cap \mathbb{S} \subset \beta$ of b such that $\gamma \prec \mathbb{S}$ and $\mathfrak{p}_{\mathbb{S}}(\gamma) = \mathfrak{p}_{\mathbb{S}}(b) = c$ for $b \in \mathcal{H}_b(\beta)$. Then $\gamma \preceq \delta = \psi^h_{\mathbb{S}}(c)$ for some h and $\gamma < \beta$. If $\delta \leq \alpha$, then IH yields $c = \mathfrak{p}_{\mathbb{S}}(\delta) \leq \mathfrak{p}_{\mathbb{S}}(\alpha)$. Assume $\gamma < \alpha < \delta$ with $\gamma \prec \delta$. IH for Proposition 6.6.4 then yields $c \leq \mathfrak{p}_{\mathbb{S}}(\alpha)$.

Next let a < b. Pick a subterm η of a term in $\{a\} \cup SC(f)$ such that $\beta \leq \eta \in \mathcal{H}_a(\alpha)$ and $\eta \prec \mathbb{S}$. Let $\eta \preceq \psi^h_{\mathbb{S}}(d) = \sigma$ for some h and d. Then we obtain $\beta \leq \sigma$, and IH yields $p_{\mathbb{S}}(\beta) \leq p_{\mathbb{S}}(\sigma) = p_{\mathbb{S}}(\eta)$. On the other hand we have $p_{\mathbb{S}}(\eta) \leq \max\{a, p_{\mathbb{S}}(a)\}$ by Proposition 6.6.2. Hence $p_{\mathbb{S}}(\beta) \leq p_{\mathbb{S}}(\alpha)$.

6.6.4. Pick a subterm η of a term in $\{a\} \cup SC(f)$ such that $\delta \leq \eta \in \mathcal{H}_a(\alpha)$, $\eta \prec \mathbb{S}$ and $p_{\mathbb{S}}(\eta) \leq \max\{a, p_{\mathbb{S}}(a)\}$ by Proposition 6.6.2. Let $\eta \preceq \psi_{\mathbb{S}}^h(d) = \sigma$ for some h and d. Then we obtain $\delta \leq \sigma$. If $\beta \leq \sigma$, then IH for Proposition 6.6.3 yields $p_{\mathbb{S}}(\beta) \leq p_{\mathbb{S}}(\sigma) = p_{\mathbb{S}}(\eta) \leq p_{\mathbb{S}}(\alpha)$. Otherwise we obtain $\delta \leq \sigma < \beta$ with $\delta \prec \beta$. IH yields $p_{\mathbb{S}}(\beta) \leq p_{\mathbb{S}}(\sigma) \leq p_{\mathbb{S}}(\alpha)$.

6.6.5. This is seen by induction on $\ell\gamma + \ell\delta$ using Definition 3.35, and Propositions 6.6.3 and 6.6.4.

The set Cr of strongly critical numbers in $OT(\mathbb{I}_N)$ is divided to $Cr = LSt_N \cup SSt \cup \bigcup \{L(\mathbb{S}) : \mathbb{S} \in SSt\} \cup (Cr \cap (\Omega+1))$, where $LSt_N = \{\psi_{\mathbb{I}_N}(a) : a \in OT(\mathbb{I}_N)\}$, cf. Definition 3.34.

Definition 6.7 Let $\mathbb{S} \in SSt$ and $\alpha \in L(\mathbb{S})$. Let us define ordinals $g_0(\alpha), g_0^*(\alpha)$ and $g_2(\alpha)$ as follows.

- 1. $\mathbf{g}_0(\alpha) = \mathbf{g}_2(\alpha) = 0$ for $\alpha \notin \Psi$.
- 2. If $\rho \prec \mathbb{S}$, then let $\mathbf{g}_0(\rho) = \mathbf{g}_0^*(\rho) = \mathbf{g}_0(\psi_{\mathbb{I}_N[\rho]}(b)) = \mathbf{g}_0^*(\psi_{\mathbb{I}_N[\rho]}(b)) = \mathbf{p}_{\mathbb{S}}(\rho)$ for every b. Also $\mathbf{g}_2(\rho) = o_{\mathbb{I}_N}(m(\rho)) + 1$ for $m(\rho) : \mathbb{I}_N \to \varphi_{\mathbb{I}_N}(0)$ with base \mathbb{I}_N , and $\mathbf{g}_2(\psi_{\mathbb{I}_N[\rho]}(b)) = 0$.
- 3. Let $\rho \prec \mathbb{S}$ and $\alpha \prec^R \tau \in N(\rho)$, where $\alpha \neq \psi_{\mathbb{I}_N[\rho]}(b)$ for any b if $\tau = \mathbb{I}_N[\rho]$. Let $\mathbf{g}_0^*(\alpha) = \mathbf{g}_0(\rho) = \mathbf{p}_{\mathbb{S}}(\rho)$. Let $\beta \in M_\rho$ be such that $\alpha = \beta[\rho/\mathbb{S}]$. If $\alpha \in \Psi$, let $\mathbf{g}_i(\alpha) = \mathbf{g}_i(\beta)$ for i = 0, 2.

Proposition 6.8 Let $b = p_0(\alpha)$ for $\alpha \in L(\mathbb{S}) \cap \Psi$ with $\mathbb{S} \in SSt$. Then $SC(g_2(\alpha)) \subset \psi_{\mathbb{I}_N}(b)$. Moreover $p_0(\alpha) \leq g_0^*(\alpha)$.

Proof. By induction on $\ell \alpha$. Cf. Definition 3.30.2 for $p_0(\alpha)$.

Case 1. First let $\alpha \leq \psi_{\mathbb{S}}^g(b)$ with an $\mathbb{S} \in SSt$ and $f = m(\alpha)$. By Proposition 3.32.2 let $\mathbb{T} \in LSt \cup \{\Omega\}$ be such that $\mathbb{S} = \mathbb{T}^{\dagger \vec{i}}$ for a sequence \vec{i} . We obtain $SC(\mathbf{g}_2(\alpha)) \subset SC(f)$ for $\mathbf{g}_2(\alpha) = o_{\mathbb{I}_N}(f) + 1$. By (12) in Definition 3.31 we obtain $SC(f) \subset M_\alpha \cap \mathbb{I}_N = \mathcal{H}_b(\alpha) \cap \mathbb{I}_N$. On the other hand we have $\mathbf{p}_0(\alpha) = b \leq \mathbf{p}_{\mathbb{S}}(\alpha) = \mathbf{g}_0^*(\alpha)$.

We claim that $\alpha < \psi_{\mathbb{I}_N}(b)$. $SC(g_2(\alpha)) \subset \mathcal{H}_b(\psi_{\mathbb{I}_N}(b)) \cap \mathbb{I}_N \subset \psi_{\mathbb{I}_N}(b)$ follows from the claim. For the claim it suffices to show $\mathbb{S} < \psi_{\mathbb{I}_N}(b)$. Let $\{(\mathbb{T}_m, \mathbb{S}_m, \vec{i}_m)\}_{m \leq n}$ be the sequence such that $\mathbb{T}_0 \in LSt_N \cup \{\Omega\}, \mathbb{S}_m = \mathbb{T}_m^{\dagger \vec{i}_m}$ and $\mathbb{T}_{m+1} \prec \mathbb{S}_m (m < n)$, and $\mathbb{S} = \mathbb{S}_n$, cf. the trail to \mathbb{S} in Proposition 4.12. If $\mathbb{T}_0 = \Omega$, then $\mathbb{S} \leq \mathbb{S}_0 < \psi_{\mathbb{I}_N}(b) \in LSt_N$. Let $\mathbb{T}_0 = \psi_{\mathbb{I}_N}(c)$. Proposition 3.32.3 yields c < b, and $\mathbb{T}_0 = \psi_{\mathbb{I}_N}(c) < \psi_{\mathbb{I}_N}(b) \in LSt_N$. Hence $\mathbb{S} \leq \mathbb{S}_0 < \psi_{\mathbb{I}_N}(b) \in LSt_N$.

Case 2. Next let $LSt_i \ni \rho \prec \mathbb{S} \in SSt$, $\alpha \prec^R \tau \in N(\rho)$ and $\alpha = \beta[\rho/\mathbb{S}]$ for a $\beta \in M_{\rho}$. Then $b = \mathbf{p}_0(\alpha) = \mathbf{p}_0(\beta)$, and IH yields $SC(\mathbf{g}_2(\alpha)) = SC(\mathbf{g}_2(\beta)) \subset \psi_{\mathbb{I}_N}(b)$ for $\mathbf{g}_2(\alpha) = \mathbf{g}_2(\beta)$, and $\mathbf{p}_0(\beta) \leq \mathbf{g}_0^*(\beta)$.

On the other hand we have $\mathbf{g}_0^*(\alpha) = \mathbf{g}_0(\rho) = \mathbf{p}_{\mathbb{S}}(\rho) \ge \mathbf{p}_0(\rho) = c$ with $M_{\rho} = \mathcal{H}_c(\rho)$. Thus it suffices to show $\mathbf{g}_0^*(\delta) \le \mathbf{p}_0(\rho)$ for $\rho < \delta \in \mathcal{H}_c(\rho)$ by induction on $\ell\delta$. If $\delta \preceq \psi_{\mathbb{T}}^f(d)$ with a $\mathbb{S} < \mathbb{T} \in SSt$, then $\mathbf{g}_0^*(\delta) = \mathbf{g}_0(\delta) = \mathbf{p}_{\mathbb{T}}(\delta) = \max\{d, \mathbf{p}_{\mathbb{T}}(d)\}$. We obtain d < c and $d \in \mathcal{H}_c(\rho)$. If yields $\mathbf{p}_{\mathbb{T}}(d) < c$.

Next let $\delta = \gamma[\tau/\mathbb{T}]$ with a $\gamma \in M_{\tau}$. Then $\mathbf{g}_0^*(\delta) = \mathbf{g}_0^*(\tau)$ and $\tau \in M_{\rho}$. IH yields $\mathbf{g}_0^*(\tau) \leq \mathbf{p}_0(\rho)$.

Proposition 6.9 Let $\tau \in L(\mathbb{S}) \cup \{\mathbb{S}\}$ and $\mathbb{S} \in SSt$. For $\rho, \eta \prec \tau$, if $\rho < \eta$, then $g_0(\rho) \leq g_0(\eta)$.

Proof. By induction on $\ell \rho$.

Case 1. $\tau = \mathbb{S}$: Let $\eta \leq \alpha = \psi^f_{\mathbb{S}}(a)$ and $\rho \leq \beta = \psi^g_{\mathbb{S}}(b)$. Then $g_0(\eta) = p_{\mathbb{S}}(\eta) = p_{\mathbb{S}}(\alpha)$ and $g_0(\rho) = p_{\mathbb{S}}(\rho) = p_{\mathbb{S}}(\beta)$. If $\beta \leq \alpha$, then Proposition 6.6.3 yields $p_{\mathbb{S}}(\beta) \leq p_{\mathbb{S}}(\alpha)$. Suppose $\rho < \alpha < \beta$ with $\rho \prec \beta$. We obtain $p_{\mathbb{S}}(\beta) \leq p_{\mathbb{S}}(\alpha)$ by Proposition 6.6.4.

Case 2. $\tau \neq \mathbb{S}$: Let $\kappa \prec \mathbb{S}$ be such that either $\tau \preceq^R \mathbb{S}^{\dagger \tilde{i}}[\kappa/\mathbb{S}]$ or $\tau \prec^R \mathbb{I}_N[\kappa]$. Then $\mathbf{g}_0(\rho) = \mathbf{g}_0(\rho_1)$ and $\mathbf{g}_0(\eta) = \mathbf{g}_0(\eta_1)$ for $\rho_1 = \rho[\kappa/\mathbb{S}]^{-1}$ and $\eta_1 = \eta[\kappa/\mathbb{S}]^{-1}$, cf. Definition 3.44 for uncollapsing. We obtain $\rho_1 < \eta_1$, $\rho_1 \prec \tau_1$ and $\eta_1 \prec \tau_1$ for $\tau_1 = \tau[\kappa/\mathbb{S}]^{-1}$. IH with $\ell \rho_1 < \ell \rho$ yields $\mathbf{g}_0(\rho_1) \leq \mathbf{g}_0(\eta_1)$.

Proposition 6.10 Let $\mathbb{S} \in SSt$, $\rho \prec \tau \in (L(\mathbb{S}) \cup \{\mathbb{S}\}) \cap SSt^M$, and $\alpha \prec \sigma \in SSt^M$, where $\sigma \preceq^R \kappa \in N(\rho)$. Then $g_0(\alpha) < g_0(\rho)$.

Proof. We may assume that either $\sigma = \kappa = \mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]$ or $\kappa = \mathbb{I}_N[\rho] \& \sigma = (\psi_{\mathbb{I}_N[\rho]}(\gamma))^{\dagger \vec{i}}$ for a γ and an \vec{i} . By induction on $\ell \alpha$ we show $\mathbf{g}_0(\alpha) < \mathbf{g}_0(\rho)$. **Case 1.** $\rho \prec \mathbb{S}$: Let $\rho \preceq \beta = \psi_{\mathbb{S}}^g(b)$. Then $\mathbf{g}_0(\rho) = \mathbf{p}_{\mathbb{S}}(\psi_{\mathbb{S}}^g(b))$. From $b \in \mathcal{H}_b(\psi_{\mathbb{S}}^g(b))$ we see $\mathbf{p}_{\mathbb{T}}(b) < \mathbf{p}_{\mathbb{T}}(\psi_{\mathbb{T}}(b)) = b \leq \mathbf{p}_{\mathbb{S}}(\psi_{\mathbb{S}}^g(b)) = \mathbf{g}_0(\rho)$ for any $\mathbb{S} < \mathbb{T} \in SSt$.

Case 1.1. $\sigma = \mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]$: Let $\alpha \preceq \psi_{\sigma}^{h_1}(c_1) = \left(\psi_{\mathbb{S}^{\dagger \vec{i}}}^h(c)\right)[\rho/\mathbb{S}]$, where $h_1 = h[\rho/\mathbb{S}] \neq \emptyset, c_1 = c[\rho/\mathbb{S}]$ and $\sigma = \mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}] = (\mathbb{S}^{\dagger \vec{i}})[\rho/\mathbb{S}]$. Then $g_0(\alpha) = p_{\mathbb{S}^{\dagger \vec{i}}}(\psi_{\mathbb{S}^{\dagger \vec{i}}}^h(c))$. We have $\rho < \psi_{\mathbb{S}^{\dagger \vec{i}}}^h(c) \in M_{\rho} = \mathcal{H}_b(\rho)$, and hence c < b. We obtain $p_{\mathbb{S}^{\dagger \vec{i}}}(c) \leq p_{\mathbb{S}^{\dagger \vec{i}}}(b)$ by Proposition 6.6.5.

Case 1.2. $\sigma = (\psi_{\mathbb{I}_{N}[\rho]}(\gamma_{1}))^{\dagger \tilde{i}}$ for a γ_{1} : Let $\alpha \leq \psi_{\sigma}^{h_{1}}(c_{1}) = (\psi_{\mathbb{T}^{\dagger}\tilde{i}}^{h}(c))[\rho/\mathbb{S}]$, where $h_{1} = h[\rho/\mathbb{S}] \neq \emptyset$, $c_{1} = c[\rho/\mathbb{S}]$ and $\sigma = \mathbb{T}[\rho/\mathbb{S}]$ with $\mathbb{T} = \psi_{\mathbb{I}_{N}}(\gamma)$ and $\gamma_{1} = \gamma[\rho/\mathbb{S}]$. Then $\mathbf{g}_{0}(\alpha) = \mathbf{p}_{\mathbb{T}^{\dagger}\tilde{i}}(\psi_{\mathbb{T}^{\dagger}\tilde{i}}^{h}(c))$. We have $\psi_{\mathbb{T}^{\dagger}\tilde{i}}^{h}(c) \in M_{\rho}$. As in **Case 1.1** we see c < b and $\mathbf{p}_{\mathbb{T}^{\dagger}\tilde{i}}(c) \leq \mathbf{p}_{\mathbb{T}^{\dagger}\tilde{i}}(b)$ from $\mathbb{S} < \mathbb{T}^{\dagger}\tilde{i}$, i.e., from $\mathbb{S} < \mathbb{T} = \psi_{\mathbb{I}_{N}}(\gamma) \in LSt_{N}$. **Case 2**. $\rho \prec \tau \neq \mathbb{S}$: Let $\lambda \prec \mathbb{S}$ be such that either $\alpha \prec^{R} \mathbb{S}^{\dagger}\tilde{j}[\lambda/\mathbb{S}]$ or

 $\alpha \prec^R \mathbb{I}_N[\lambda]$. Then $g_0(\alpha) = g_0(\alpha_1)$ with $\alpha = \alpha_1[\lambda/\mathbb{S}]$ and $g_0(\rho) = g_0(\rho_1)$

with $\rho = \rho_1[\lambda/\mathbb{S}]$. We have $\rho_1 \prec \tau[\lambda/\mathbb{S}]^{-1}$ and $\alpha_1 \prec \sigma[\lambda/\mathbb{S}]^{-1}$ with $\sigma = \mathbb{S}^{\dagger i}[\rho/\mathbb{S}]$ or $\sigma = (\psi_{\mathbb{I}_N[\rho]}(\gamma))^{\dagger i}$ for a γ . If $\tau[\lambda/\mathbb{S}]^{-1} \in SSt$, then we obtain $g_0(\alpha_1) < g_0(\rho_1)$ by **Case 1**. Otherwise IH with $\ell \alpha_1 < \ell \alpha$ yields the proposition. \Box

Proposition 6.11 Let $\{\alpha, \beta\} \subset L(\mathbb{S})$ with an $\mathbb{S} \in SSt$. If $\alpha < \beta$, then $g_0^*(\alpha) \leq g_0^*(\beta)$.

Proof. Let $\rho, \eta \prec \mathbb{S}$ be such that either $\alpha = \rho$ or $\alpha \preceq^R \kappa \in N(\rho)$, and either $\beta = \eta$ or $\beta \preceq^R \sigma \in N(\eta)$. Then $\rho \leq \eta$ by $\alpha < \beta$. Proposition 6.9 yields $\mathbf{g}_0^*(\alpha) = \mathbf{g}_0(\rho) \leq \mathbf{g}_0(\eta) = \mathbf{g}_0^*(\beta)$.

Definition 6.12 A set $R(\eta) \subset \Psi$ is defined.

- 1. Let $\eta \prec \mathbb{I}_N$. $\gamma \in R(\eta)$ holds iff there exists an $SSt \ni \mathbb{S} < \eta$ such that $\gamma \in L(\mathbb{S}) \cap \Psi$.
- 2. Let $\eta \in L(\mathbb{S})$ with an $\mathbb{S} \in SSt$. $\gamma \in R(\eta) \cap L(\mathbb{S})$ holds iff $\gamma \in \Psi$, $\gamma < \eta$ and one of the following holds:
 - (a) $\gamma \prec \eta$.
 - (b) There exist $\tau \in L(\mathbb{S})$ and \vec{j}, \vec{i} such that $\eta \leq \tau^{\dagger \vec{j}}$ and one of the following holds:
 - i. $\gamma \prec^R \tau^{\dagger \vec{i}}$ and $\vec{i} <_{lx} \vec{j}$. ii. $\gamma \prec^R \tau^{\dagger \vec{i}}, \eta = \tau^{\dagger \vec{j}}$ and $\vec{i} = \vec{j}$. iii. $\gamma \prec^R \mathbb{I}_N[\tau]$. iv. $\gamma \prec^R \mathbb{S}^{\dagger \vec{i}}[\tau/\mathbb{S}]$.
 - (c) There exist $\tau \in L(\mathbb{S})$ and \vec{i} such that $\eta \leq \mathbb{I}_N[\tau]$, and and one of the following holds:

i. $\gamma \prec^{R} \mathbb{I}_{N}[\tau]$ and $\eta = \mathbb{I}_{N}[\tau]$. ii. $\gamma \prec^{R} \mathbb{S}^{\dagger \vec{i}}[\tau/\mathbb{S}]$.

- (d) There exist $\tau \in L(\mathbb{S})$ and \vec{j}, \vec{i} such that $\eta \leq \mathbb{S}^{\dagger \vec{j}}[\tau/\mathbb{S}]$, and and one of the following holds:
 - i. $\gamma \prec^R \mathbb{S}^{\dagger \vec{i}}[\tau/\mathbb{S}]$ and $\vec{i} <_{lx} \vec{j}$.
 - ii. $\gamma \prec^R \mathbb{S}^{\dagger \vec{i}}[\tau/\mathbb{S}], \eta = \mathbb{S}^{\dagger \vec{j}}[\tau/\mathbb{S}] \text{ and } \vec{i} = \vec{j}.$
- (e) There exist $\tau \in L(\mathbb{S})$, ρ and \vec{i} such that $\eta, \rho \prec \mathbb{I}_N[\tau]$, $\rho < \eta$ and $\gamma \prec^R \rho^{\dagger \vec{i}}$.
- (f) There exist $\tau \in (L(\mathbb{S}) \cup \{\mathbb{S}\}) \cap SSt^M$, ρ and κ such that $\eta, \rho \prec \tau$, $\rho < \eta, \gamma \prec^R \kappa \in N(\rho)$.

Proposition 6.13 Let $\eta, \gamma \in L(\mathbb{S})$ for an $\mathbb{S} = \mathbb{T}^{\dagger k} \in SSt$ with $\mathbb{T} \in {\Omega} \cup (LSt \cap \Psi)$. Assume $\eta > \gamma \notin R(\eta)$, and let τ be maximal such that $\gamma \prec \tau \leq \eta$. Then $\eta > \tau \in \Psi$. **Proof.** This is seen by an inspection to Definition 3.35.

Definition 6.14 Let $\mathbb{S} \in SSt$ and $\alpha \in L(\mathbb{S})$.

Let $\vec{i} = (i_0 \ge i_1 \ge \cdots \ge i_m)$ be a weakly descending chain of positive integers with $i_0 \le N$. Then let $o(\vec{i}) := \omega^{i_0-1} + \omega^{i_1-1} + \cdots + \omega^{i_m-1} < \omega^N$. Let us define ordinals $g'_1(\alpha)$ and $g_1(\alpha)$ as follows. Let $\lambda = \omega^{N+1}$.

- 1. Let $\rho \prec \mathbb{S}$. Then $\mathbf{g}_1(\rho) = \lambda^{\mathbf{g}_0(\rho)}$ and $\mathbf{g}_1(\rho) = \lambda^{\mathbf{g}_0(\rho)+1}$.
- 2. Let $\rho \in L(\mathbb{S})$ be such that $\rho \prec \mathbb{T} \in SSt^M \cap (L(\mathbb{S}) \cup \{\mathbb{S}\}), \ \alpha \prec \kappa \in N(\rho) \cup \{(\psi_{\mathbb{I}_N[\rho]}(a))^{\dagger \vec{i}} : \vec{i} \neq \emptyset\}$, where $\alpha \neq \psi_{\mathbb{I}_N[\rho]}(b)$ for any b if $\kappa = \mathbb{I}_N[\rho]$. Let $\mathbf{g}_1(\alpha) = \mathbf{g}'_1(\alpha) + \lambda^{\mathbf{g}_0(\rho)}$.
 - (a) $\mathbf{g}'_1(\mathbb{T}^{\dagger \vec{i}}[\rho/\mathbb{T}]) = \mathbf{g}'_1(\rho) + \lambda^{\mathbf{g}_0(\rho)} \cdot (o(\vec{i}) + 1).$
 - (b) $\alpha \prec \mathbb{T}^{\dagger i}[\rho/\mathbb{T}]$: $\mathbf{g}_1'(\alpha) = \mathbf{g}_1'(\rho) + \lambda^{\mathbf{g}_0(\rho)} \cdot o(\vec{i})$.
 - (c) $g'_1(\mathbb{I}_N[\rho]) = g'_1(\rho) + \lambda^{g_0(\rho)} \cdot (\omega^N + 1).$
 - (d) $\alpha \prec \mathbb{I}_N[\rho]$: $\mathbf{g}'_1(\alpha) = \mathbf{g}'_1(\rho) + \lambda^{\mathbf{g}_0(\rho)} \cdot \omega^N$.
 - (e) $\mathbf{g}'_1((\psi_{\mathbb{I}_N[\rho]}(a))^{\dagger \vec{i}}) = \mathbf{g}'_1(\rho) + \lambda^{\mathbf{g}_0(\rho)} \cdot (\omega^N + o(\vec{i}) + 1).$
 - (f) $\alpha \prec (\psi_{\mathbb{I}_N[\rho]}(a))^{\dagger \vec{i}} : \mathbf{g}'_1(\alpha) = \mathbf{g}'_1(\rho) + \lambda^{\mathbf{g}_0(\rho)} \cdot (\omega^N + o(\vec{i})).$
 - (g) $\mathbf{g}'_1(\rho^{\dagger \vec{i}}) = \mathbf{g}'_1(\rho) + \lambda^{\mathbf{g}_0(\rho)} \cdot (\omega^N + \omega^N + o(\vec{i}) + 1).$
 - (h) $\alpha \prec \rho^{\dagger \vec{i}}$: $\mathbf{g}_1'(\alpha) = \mathbf{g}_1'(\rho) + \lambda^{\mathbf{g}_0(\rho)} \cdot (\omega^N + \omega^N + o(\vec{i})).$

Let $\mathbf{g}(\alpha) = (\mathbf{g}_1(\alpha), \mathbf{g}_2(\alpha)).$

Lemma 6.15 Let $\eta \in L(\mathbb{S})$ with $\mathbb{S} \in SSt$. Then $g_0^*(\gamma) \leq g_0^*(\eta)$, $g(\gamma) <_{lx} g(\eta)$ and $SC(g_2(\gamma)) \subset \psi_{\mathbb{I}_N}(b)$ for $\gamma \in R(\eta)$ and $b = g_0^*(\eta)$.

Proof.

Case 1. $\gamma \prec \eta$: We have $g_0^*(\gamma) = g_0^*(\eta)$. If $\eta \in \Psi$, then $g_1(\eta) = g_1(\gamma)$ and $g_2(\gamma) < g_2(\eta)$ by Lemma 6.2. Otherwise $g_1(\gamma) < g_1(\eta)$. In what follows assume $\gamma \not\prec \eta$. We claim that $g_1(\gamma) < g_1(\eta)$.

Case 2. $\eta \leq \tau_1, \gamma \prec^R \tau_2$ with $\{\tau_2 \leq \tau_1\} \subset N(\tau)$ for a $\tau \in L(\mathbb{S})$, cf. Definitions 6.12.2b, 6.12.2(b)iii, 6.12.2(b)iv, 6.12.2c, 6.12.2d: We have $\mathbf{g}_1(\eta) = \mathbf{g}'_1(\tau) + \lambda^{\mathbf{g}_0(\tau)} \cdot (\alpha+1)$ for an $\alpha < \omega^{N+1}$. If $\gamma \prec \tau_2$, then $\mathbf{g}_1(\gamma) = \mathbf{g}'_1(\tau) + \lambda^{\mathbf{g}_0(\tau)} \cdot (\beta+1)$ with $\beta < \alpha$. Otherwise let $\sigma \prec \tau_2$ be such that $\gamma \prec \sigma_1 \in SSt^M, \sigma_1 \preceq^R \kappa_1 \in N(\sigma)$. We obtain $\mathbf{g}_0(\sigma) < \mathbf{g}_0(\tau)$ by Proposition 6.10, and $\mathbf{g}_1(\gamma) = \mathbf{g}'_1(\tau) + \lambda^{\mathbf{g}_0(\tau)} \cdot \beta + \delta$ with $\delta < \lambda^{\mathbf{g}_0(\sigma)+1} \leq \lambda^{\mathbf{g}_0(\tau)}$.

Case 3. $\rho, \eta \prec \tau_1 \in N(\tau), \ \rho < \eta \text{ and } \gamma \prec^R \kappa \in N(\rho), \text{ cf. Definitions 6.12.2e}$ and 6.12.2f: We have $\mathbf{g}'_1(\rho) = \mathbf{g}'_1(\tau) + \lambda^{\mathbf{g}_0(\tau)} \cdot \alpha$ for an $\alpha < \omega^{N+1}, \ \mathbf{g}_1(\eta) = \mathbf{g}'_1(\rho) + \lambda^{\mathbf{g}_0(\tau)}, \text{ and } \mathbf{g}_1(\gamma) = \mathbf{g}'_1(\rho) + \delta$ for $\delta < \lambda^{\mathbf{g}_0(\tau)}$ by Proposition 6.10.

Case 4. $\rho, \eta \prec \mathbb{S}, \rho < \eta$ and $\gamma \prec^R \kappa \in N(\rho)$, cf. Definition 6.12.2f: We have $\mathbf{g}_1(\eta) = \lambda^{\mathbf{g}_0(\eta)+1}$, and $\mathbf{g}'_1(\rho) = \lambda^{\mathbf{g}_0(\rho)}$, where $\mathbf{g}_0(\rho) \leq \mathbf{g}_0(\eta)$ by Proposition 6.9. On the other hand we have $\mathbf{g}_1(\gamma) = \mathbf{g}'_1(\rho) + \delta$ with $\delta < \lambda^{\mathbf{g}_0(\rho)+1}$.

Thus $\mathbf{g}(\gamma) <_{lx} \mathbf{g}(\eta)$ is shown. In each case $c = \mathbf{p}_0(\gamma) \leq \mathbf{g}_0^*(\gamma) \leq \mathbf{g}_0^*(\eta) = b$ holds by Proposition 6.8. We obtain $\psi_{\mathbb{I}_N}(c) \leq \psi_{\mathbb{I}_N}(b)$ by $c \in \mathcal{H}_c(\psi_{\mathbb{I}_N}(c))$ and $b \in \mathcal{H}_b(\psi_{\mathbb{I}_N}(b))$. On the other hand we have $SC(\mathbf{g}_2(\gamma)) \subset \psi_{\mathbb{I}_N}(c)$ by Proposition 6.8. Hence $SC(\mathbf{g}_2(\gamma)) \subset \psi_{\mathbb{I}_N}(b)$.

Proposition 6.16 Let $\{\alpha_1, \beta\} \subset L(\mathbb{S})$ for an $\mathbb{S} \in SSt$, $\alpha_1 = \psi_{\kappa}^f(a) \leq \psi_{\sigma}^h(c) = \beta$ and $\beta \in \mathcal{H}_a(\alpha_1)$. Then c < a and $g_0^*(\beta) \leq g_0^*(\alpha_1)$.

Proof. By induction on $\ell\beta$. We have $c \in K_{\alpha_1}(\beta) < a$, and $\{\sigma, c\} \subset \mathcal{H}_a(\alpha_1)$. We show $\mathbf{g}_0^*(\beta) \leq \mathbf{g}_0^*(\alpha_1)$. First let $\beta \prec \mathbb{S}$. We show $\mathbf{g}_0^*(\beta) = \mathbf{p}_{\mathbb{S}}(\beta) \leq \mathbf{g}_0^*(\alpha_1)$. We can assume $\sigma = \mathbb{S}$ by IH. Let $\gamma = \psi_{\mathbb{S}}^g(b)$ be a proper subterm of β . If $\gamma \in K_{\alpha_1}(\beta)$, then b < a. If $\gamma < \alpha_1$, then $\mathbf{g}_0^*(\gamma) \leq \mathbf{g}_0^*(\alpha_1)$ by Proposition 6.11.

Second let $\rho \prec \mathbb{S}$ and $\beta \prec^R \kappa \in N(\rho)$. Then $\mathbf{g}_0^*(\beta) = \mathbf{p}_{\mathbb{S}}(\rho)$. If $\alpha_1 \leq \rho$, then $\rho \in \mathcal{H}_a(\alpha_1)$ and $\mathbf{p}_{\mathbb{S}}(\rho) \leq \mathbf{g}_0^*(\alpha_1)$ by the first case. Let $\rho < \alpha_1 < \beta$. Then we obtain $\mathbf{g}_0^*(\alpha) = \mathbf{p}_{\mathbb{S}}(\rho) = \mathbf{g}_0^*(\beta)$.

6.3 Coefficients

In this subsection we introduce coefficient sets $\mathcal{E}(\alpha), G_{\delta}(\alpha), F_X(\alpha), k_X(\alpha)$ of $\alpha \in OT(\mathbb{I}_N)$ for $X \subset OT(\mathbb{I}_N)$, each of which is a finite set of subterms of α . These are utilized in our well-foundedness proof. Roughly $\mathcal{E}(\alpha)$ is the set of subterms of the form $\psi_{\pi}^f(\alpha)$, and $F_X(\alpha)$ $[k_X(\alpha)]$ the set of subterms in X [subterms not in X], resp.

Let us write for $\alpha < \mathbb{I}_N$, $\alpha^{\dagger 0} = \min\{\sigma \in Reg : \sigma > \alpha\}$ for the next regular ordinal α^+ above α . Let $\alpha^{\dagger i} := \infty$ if $\alpha \ge \mathbb{I}_N$. For $0 \le i \le N$, let $\alpha^{-i} := \max\{\sigma \in St_i \cup \{0\} : \sigma \le \alpha\}$ when $\alpha < \mathbb{I}_N$, and $\alpha^{-i} := \mathbb{I}_N$ if $\alpha \ge \mathbb{I}_N$.

Although α^{-1} looks alike the Mostowski uncollapsing $\alpha[\rho/\mathbb{S}]^{-1}$ in Definition 3.44, no confusion likely occurs.

Since $St_{i+1} \subset St_i$, we obtain $\alpha^{\dagger i} \leq \alpha^{\dagger (i+1)}$ and $\beta^{\dagger 0} < \sigma$ if $\beta < \sigma \in St \cap \mathbb{I}_N$ since each $\sigma \in St$ is a limit of regular ordinals.

Note that $R(\eta) \subset L(\mathbb{S})$ if $\eta \in L(\mathbb{S})$, and $\gamma^{-N} = \eta^{-N}$ for every $\gamma, \eta \in L(\mathbb{S})$.

Definition 6.17 For terms $\alpha, \delta \in OT(\mathbb{I}_N)$ and $X \subset OT(\mathbb{I}_N)$, finite sets $\mathcal{E}(\alpha)$, $G_{\delta}(\alpha), F_X(\alpha), k_X(\alpha)$ of terms are defined recursively as follows.

- 1. $\mathcal{E}(\alpha) = \emptyset$ for $\alpha \in \{0, \Omega, \mathbb{I}_N\}$. $\mathcal{E}(\alpha_m + \dots + \alpha_0) = \bigcup_{i \le m} \mathcal{E}(\alpha_i)$. $\mathcal{E}(\varphi \beta \gamma) = \mathcal{E}(\beta) \cup \mathcal{E}(\gamma)$. $\mathcal{E}(\mathbb{I}_N[\rho]) = \mathcal{E}(\rho^{\dagger \vec{i}}) = \mathcal{E}(\mathbb{S}^{\dagger \vec{i}}[\rho/\mathbb{S}]) = \mathcal{E}(\rho)$. $\mathcal{E}(\psi_{\pi}^f(a)) = \{\psi_{\pi}^f(a)\}$. $\mathcal{E}(\psi_{\mathbb{I}_N}(a)) = \{\psi_{\mathbb{I}_N}(a)\}$.
- 2. $\mathcal{A}(\alpha) = \bigcup \{ \mathcal{A}(\beta) : \beta \in \mathcal{E}(\alpha) \}$ for $\mathcal{A} \in \{ G_{\delta}, F_X, k_X \}.$
- 3. $G_{\delta}(\psi_{\mathbb{I}_N}(a)) = G_{\delta}(a)$. $F_X(\psi_{\mathbb{I}_N}(a)) = F_X(a)$ if $\psi_{\mathbb{I}_N}(a) \notin X$, and $F_X(\psi_{\mathbb{I}_N}(a)) = \{\psi_{\mathbb{I}_N}(a)\}$ if $\psi_{\mathbb{I}_N}(a) \in X$. $k_X(\psi_{\mathbb{I}_N}(a)) = \{\psi_{\mathbb{I}_N}(a)\} \cup k_X(a)$ if $\psi_{\mathbb{I}_N}(a) \notin X$, and $k_X(\psi_{\mathbb{I}_N}(a)) = \emptyset$ if $\psi_{\mathbb{I}_N}(a) \in X$.

$$G_{\delta}(\psi_{\pi}^{f}(a)) = \begin{cases} G_{\delta}(\{\pi, a\} \cup SC(f)) & \delta < \pi \\ \{\psi_{\pi}^{f}(a)\} & \pi \le \delta \end{cases}$$

$$F_X(\psi^f_\pi(a)) = \begin{cases} F_X(\{\pi, a\} \cup SC(f)) & \psi^f_\pi(a) \notin X\\ \{\psi^f_\pi(a)\} & \psi^f_\pi(a) \in X \end{cases}$$
$$k_X(\psi^f_\pi(a)) = \begin{cases} \{\psi^f_\pi(a)\} \cup k_X(\{\pi, a\} \cup SC(f)) & \psi^f_\pi(a) \notin X\\ \emptyset & \psi^f_\pi(a) \in X \end{cases}$$

4. For $\alpha \in N(\rho)$

$$G_{\delta}(\alpha) = \begin{cases} \{\alpha\} & \alpha < \delta \\ G_{\delta}(\rho) & \delta \le \alpha \end{cases}$$

$$F_X(\alpha) = F_X(\rho)$$
 and $k_X(\alpha) = k_X(\rho)$.

For $\mathcal{A} \in \{K_{\delta}, G_{\delta}, F_X, k_X\}$ and sets $Y \subset OT(\mathbb{I}_N), \mathcal{A}(Y) := \bigcup \{\mathcal{A}(\alpha) : \alpha \in Y\}.$

Definition 6.18 $S(\eta)$ denotes the set of immediate subterms of η . For example $S(\varphi\beta\gamma) = \{\beta,\gamma\}$. $S(\eta) := \emptyset$ when $\eta \in \{0,\Omega,\mathbb{I}_N\}$, $S(\alpha) = \{\rho\}$ for $\alpha \in N(\rho)$, $S(\eta) = \{\eta\}$ when $\eta \in \Psi$.

Proposition 6.19 For $\{\alpha, \delta, a, b, \rho\} \subset OT(\mathbb{I}_N)$,

- 1. $G_{\delta}(\alpha) \leq \alpha$.
- 2. $\alpha \in \mathcal{H}_a(b) \Rightarrow G_\delta(\alpha) \subset \mathcal{H}_a(b).$

Proof. These are shown simultaneously by induction on $\ell \alpha$. It is easy to see that

$$G_{\delta}(\alpha) \ni \beta \Rightarrow \beta < \delta \& \ell \beta \le \ell \alpha \tag{43}$$

6.19.1. Consider the case $\alpha = \psi_{\pi}^{f}(a)$ with $\delta < \pi$. Then $G_{\delta}(\alpha) = G_{\delta}(SC(f) \cup \{\pi, a\})$. On the other hand we have $SC(f) \cup \{\pi, a\} \subset \mathcal{H}_{a}(\alpha)$. Proposition 6.19.2 with (43) yields $G_{\delta}(SC(f) \cup \{\pi, a\}) \subset \mathcal{H}_{a}(\alpha) \cap \pi \subset \alpha$. Hence $G_{\delta}(\alpha) < \alpha$.

Next let $\alpha \in N(\rho)$ with $\delta \leq \alpha$. Then $G_{\delta}(\alpha) = G_{\delta}(\rho)$. By III we have $G_{\delta}(\rho) \leq \rho < \alpha$. Hence $G_{\delta}(\alpha) < \alpha$.

6.19.2. Since $G_{\delta}(\alpha) \leq \alpha$ by Proposition 6.19.1, we can assume $\alpha \geq b$.

Consider the case $\alpha = \psi_{\pi}^{f}(a)$ with $\delta < \pi$. Then $SC(f) \cup \{\pi, a\} \subset \mathcal{H}_{a}(b)$ and $G_{\delta}(\alpha) = G_{\delta}(SC(f) \cup \{\pi, a\})$. III yields the lemma.

Next let $\alpha \in N(\rho)$ with $\delta \leq \alpha$. Then $G_{\delta}(\alpha) = G_{\delta}(\rho)$ and $\rho < \alpha$. $b \leq \alpha \in \mathcal{H}_{a}(b)$ yields $\rho \in \mathcal{H}_{a}(b)$. IH yields the lemma. \Box

Proposition 6.20 If $\beta \notin \mathcal{H}_a(Y)$ and $K_X(\beta) < a$, then there exists a $\gamma \in F_X(\beta)$ such that $\mathcal{H}_a(Y) \not\supseteq \gamma \in X$.

Proof. By induction on $\ell\beta$. Assume $\beta \notin \mathcal{H}_a(\alpha)$ and $K_X(\beta) < a$. By IH we can assume that $\beta = \psi_\kappa^f(b)$. If $\beta \in X$, then $\beta \in F_X(\beta)$, and $\gamma = \beta$ is a desired one. Assume $\beta \notin X$. Then we obtain $K_X(\beta) = \{b\} \cup K_X(\{b,\kappa\} \cup SC(f)) < a$. In particular b < a, and hence $\{b,\kappa\} \cup SC(f) \notin \mathcal{H}_a(Y)$. By IH there exists a $\gamma \in F_X(\{b,\kappa\} \cup SC(f)) = F_X(\beta)$ such that $\mathcal{H}_a(Y) \not\ni \gamma \in X$. \Box

7 Well-foundedness proof with the maximal distinguished sets

In this section working in the second order arithmetic Σ_{N+2}^1 -DC + BI, we show the well-foundedness of the notation system $OT(\mathbb{I}_N)$ up to each $\alpha < \Omega$. The proof is based on distinguished classes, which was first introduced by Buchholz[7]. Each ordinal term $\alpha \in OT(\mathbb{I}_N)$ is identified with its code $\lceil \alpha \rceil \in \mathbb{N}$, cf. Lemma 3.36.

7.1 Distinguished sets

In this subsection we establish elementary facts on distinguished classes.

 X, Y, Z, \ldots range over subsets of $OT(\mathbb{I}_N)$, while $\mathcal{X}, \mathcal{Y}, \ldots$ range over classes, which are definable by second-order formulas in the language of arithmetic. Following [10], we define sets $C^{\alpha}(X) \subset OT(\mathbb{I}_N)$ for $\alpha \in OT(\mathbb{I}_N)$ and $X \subset OT(\mathbb{I}_N)$ as follows.

Definition 7.1 For $\alpha, \beta \in OT(\mathbb{I}_N)$ and $X \subset OT(\mathbb{I}_N)$, let us define a set $C^{\alpha}(X)$ recursively as follows.

- 1. $\{0, \Omega, \mathbb{I}_N\} \cup (X \cap \alpha) \subset C^{\alpha}(X).$
- 2. Let $(\alpha_1 + \cdots + \alpha_n) \in OT(\mathbb{I}_N)$ with $\{\alpha_1, \ldots, \alpha_n\} \subset C^{\alpha}(X)$. Then $(\alpha_1 + \cdots + \alpha_n) \in C^{\alpha}(X)$.
- 3. Let $\varphi \beta \gamma \in OT(\mathbb{I}_N)$ with $\{\beta, \gamma\} \subset C^{\alpha}(X)$. Then $\varphi \beta \gamma \in C^{\alpha}(X)$.
- 4. Let $\psi_{\mathbb{I}_N}(\beta) \in OT(\mathbb{I}_N)$ with $\beta \in C^{\alpha}(X)$. Then $\psi_{\mathbb{I}_N}(\beta) \in C^{\alpha}(X)$ if $\mathbb{I}_N > \alpha$.
- 5. Let $\psi^f_{\sigma}(\beta) \in OT(\mathbb{I}_N)$ with $\{\sigma, \beta\} \cup SC(f) \subset C^{\alpha}(X)$. Then $\psi^f_{\sigma}(\beta) \in C^{\alpha}(X)$ if $\sigma > \alpha$.
- 6. Let $\beta \in N(\rho)$ with $\rho \in C^{\alpha}(X)$. Then $\beta \in C^{\alpha}(X)$ if $\beta \geq \alpha$.

Proposition 7.2 Assume $\forall \gamma \geq \alpha [\gamma \in P \Rightarrow \gamma \in C^{\gamma}(P)]$ for a set $P \subset OT(\mathbb{I}_N)$.

- 1. $\alpha \leq \beta \Rightarrow C^{\beta}(P) \subset C^{\alpha}(P).$
- 2. $\alpha \leq \beta < \alpha^{\dagger 0} \Rightarrow C^{\beta}(P) = C^{\alpha}(P).$

Proof. 7.2.1. We see by induction on $\ell \gamma \ (\gamma \in OT(\mathbb{I}_N))$ that

$$\forall \beta \ge \alpha [\gamma \in C^{\beta}(P) \Rightarrow \gamma \in C^{\alpha}(P) \cup (P \cap \beta)]$$
(44)

For example, if $\psi_{\pi}^{f}(\delta) \in C^{\beta}(P)$ with $\pi > \beta \ge \alpha$ and $\{\pi, \delta\} \cup SC(f) \subset C^{\alpha}(P) \cup (P \cap \beta)$, then $\pi \in C^{\alpha}(P)$, and for any $\gamma \in \{\delta\} \cup SC(f)$, either $\gamma \in C^{\alpha}(P)$ or $\gamma \in P \cap \beta$. If $\gamma < \alpha$, then $\gamma \in P \cap \alpha \subset C^{\alpha}(P)$. If $\alpha \le \gamma \in P \cap \beta$, then $\gamma \in C^{\gamma}(P)$ by the assumption, and by IH we have $\gamma \in C^{\alpha}(P) \cup (P \cap \gamma)$, i.e., $\gamma \in C^{\alpha}(P)$. Therefore $\{\pi, \delta\} \cup SC(f) \subset C^{\alpha}(P)$, and $\psi_{\pi}^{f}(\delta) \in C^{\alpha}(P)$.

Using (44) we see from the assumption that $\forall \beta \geq \alpha [\gamma \in C^{\beta}(P) \Rightarrow \gamma \in C^{\alpha}(P)].$

7.2.2. Assume $\alpha \leq \beta < \alpha^{\dagger 0}$. Then by Proposition 7.2.1 we have $C^{\beta}(P) \subset C^{\alpha}(P)$. $\gamma \in C^{\alpha}(P) \Rightarrow \gamma \in C^{\beta}(P)$ is seen by induction on $\ell \gamma$ using the facts $\beta^{-0} = \alpha^{-0}$ and $\beta^{\dagger 0} = \alpha^{\dagger 0}$.

Definition 7.3 1. $Prg[X, Y] : \Leftrightarrow \forall \alpha \in X(X \cap \alpha \subset Y \to \alpha \in Y).$

- 2. For a definable class \mathcal{X} , $\operatorname{TI}[\mathcal{X}]$ denotes the schema: $\operatorname{TI}[\mathcal{X}] :\Leftrightarrow \operatorname{Prg}[\mathcal{X}, \mathcal{Y}] \to \mathcal{X} \subset \mathcal{Y}$ holds for any definable classes \mathcal{Y} .
- 3. For $X \subset OT(\mathbb{I}_N)$, W(X) denotes the well-founded part of X.
- 4. $Wo[X] :\Leftrightarrow X \subset W(X)$.

Note that for $\alpha \in OT(\mathbb{I}_N)$, $W(X) \cap \alpha = W(X \cap \alpha)$.

Definition 7.4 For $P, X \subset OT(\mathbb{I}_N) \cap \mathbb{I}_N$ and $\alpha, \gamma \in OT(\mathbb{I}_N)$ with $\gamma < \mathbb{I}_N$, define $W_i^{\alpha}(P)$ $(0 \leq i \leq N)$ and $D_i^{\gamma}[P; X]$ $(0 \leq i \leq N)$ recursively on $i \leq N$ as follows.

$$W_0^{\alpha}(P) := W(C^{\alpha}(P)) \tag{45}$$

$$D_i^{\gamma}[P;X] \quad \Leftrightarrow \quad Wo[P] \& P \cap \gamma^{-(i+1)} = X \cap \gamma^{-(i+1)} \& \tag{46}$$

$$\forall \alpha < \mathbb{I}_N \left(\gamma^{-(i+1)} \le \alpha \le P \to W_i^{\alpha}(P) \cap \alpha^{\dagger i} = P \cap \alpha^{\dagger i} \right)$$
$$W_{i+1}^{\gamma}(X) := \bigcup \{ P \subset OT(\mathbb{I}_N) \cap \mathbb{I}_N : D_i^{\gamma}[P;X] \} (i < N)$$
(47)

where $\gamma^{-(N+1)} := 0$. Obviously $D_N^{\gamma}[X;Y] \Leftrightarrow D_N^{\delta}[X;Z]$ for every γ, δ, Y, Z . From $\mathcal{W}_N^{\gamma}(X)$ define

$$D_{N}[X] :\Leftrightarrow D_{N}[X;X]$$

$$\Leftrightarrow Wo[X] \& \forall \gamma (\gamma \leq X \to \mathcal{W}_{N}^{\gamma}(X) \cap \gamma^{\dagger N} = X \cap \gamma^{\dagger N})$$

$$\mathcal{W}_{N+1} := \bigcup \{ X \subset OT(\mathbb{I}_{N}) \cap \mathbb{I}_{N} : D_{N}[X] \}$$

A set P is said to be an *i*-distinguished set for γ and X if $D_i^{\gamma}[P; X]$, and a set X is an N-distinguished set if $D_N[X]$.

Observe that in $S_{\mathbb{I}_N}$, $W_0^{\alpha}(P)$ as well as $D_0^{\gamma}[P; X]$ are Δ_1 . Assuming that $D_i^{\gamma}[P; X]$ is Δ_{i+1} , $\mathcal{W}_{i+1}^{\gamma}(X)$ is Σ_{i+1} , and $D_{i+1}^{\gamma}[P; X]$ is Δ_{i+2} . Hence $D_N[X]$ is Δ_{N+1} , and $\mathcal{W} = \mathcal{W}_{N+1}$ is a Σ_{N+1}^{-} -class. In $S_{\mathbb{I}_N}$, each $\mathcal{W}_i^{\gamma}(X)$ is a set, i.e., $\forall \gamma \in OT(\mathbb{I}_N) \cap \mathbb{I}_N \forall X \subset OT(\mathbb{I}_N) \exists Y[Y = \mathcal{W}_i^{\gamma}(X)]$ for $0 \leq i \leq N$, and \mathcal{W}_{N+1} is a proper class.

Proposition 7.5 Let $D_0^{\gamma}[P;X]$ and $\gamma^{-1} \leq \alpha \in P$. Then $\forall \beta \geq \gamma^{-1}[\alpha \in C^{\beta}(P)]$.

Proof. Let $D_0^{\gamma}[P;X]$ and $\gamma^{-1} \leq \alpha \in P$. We obtain $\alpha \in P \cap \alpha^{\dagger 0} = W(C^{\alpha}(P)) \cap \alpha^{\dagger 0} \subset C^{\alpha}(P)$ by (45) and (46). Hence $\forall \delta \geq \gamma^{-1}(\delta \in P \Rightarrow \delta \in C^{\delta}(P))$, and $\alpha \in C^{\beta}(P)$ for any $\gamma^{-1} \leq \beta \leq \alpha$ by Proposition 7.2.1. Moreover for $\beta > \alpha$ we have $\alpha \in P \cap \beta \subset C^{\beta}(P)$.

Proposition 7.6 If $P \cap \alpha = Q \cap \alpha$, then $W_i^{\alpha}(P) = W_i^{\alpha}(Q)$.

Proof. For i > 0, this follows from (46) and $\alpha^{-i} \leq \alpha$. For i = 0, we obtain $C^{\alpha}(P) = C^{\alpha}(Q)$ by $P \cap \alpha = Q \cap \alpha$. Hence $W_0^{\alpha}(P) = W(C^{\alpha}(P)) = W(C^{\alpha}(Q)) = W_0^{\alpha}(Q)$ by (45).

Lemma 7.7 $\alpha \leq P \& \alpha \leq Q \Rightarrow P \cap \alpha^{\dagger i} = Q \cap \alpha^{\dagger i} \text{ if } D_i^{\gamma}[P;X] \text{ and } D_i^{\gamma}[Q;X].$

Proof. Suppose $\alpha \leq P, \alpha \leq Q, D_i^{\gamma}[P; X]$ and $D_i^{\gamma}[Q; X]$. We have $P \cap \gamma^{-(i+1)} = X \cap \gamma^{-(i+1)} = Q \cap \gamma^{-(i+1)}$. We may assume that $\gamma^{-(i+1)} \leq \alpha$ since $\alpha^{\dagger i} \leq \gamma^{-(i+1)}$ when $\alpha < \gamma^{-(i+1)}$.

By (46) we obtain $\mathcal{W}_{i}^{\alpha}(P) \cap \alpha^{\dagger i} = P \cap \alpha^{\dagger i}$ and $\mathcal{W}_{i}^{\alpha}(Q) \cap \alpha^{\dagger i} = Q \cap \alpha^{\dagger i}$. We obtain $Wo[P \cup Q]$ by Wo[P] and Wo[Q]. We show $\beta \in P \cap Q$ by induction on $\beta \in (P \cup Q) \cap \alpha^{\dagger i}$. Let $\beta \in (P \cup Q) \cap \alpha^{\dagger i}$ and $P \cap \beta = Q \cap \beta$. If $\beta < \gamma^{-(i+1)}$, then $\beta \in P \cap Q$ by $P \cap \gamma^{-(i+1)} = Q \cap \gamma^{-(i+1)}$. Let $\gamma^{-(i+1)} \leq \beta$.

If $\alpha \leq \beta$, then $P \cap \alpha = Q \cap \alpha$, and $\mathcal{W}_i^{\alpha}(P) \cap \alpha^{\dagger i} = \mathcal{W}_i^{\alpha}(Q) \cap \alpha^{\dagger i}$ by Proposition 7.6. Hence $\beta \in P \cap Q$.

Let $\gamma^{-(i+1)} \leq \beta < \alpha$. We obtain $\mathcal{W}_i^{\beta}(P) \cap \beta^{\dagger i} = \mathcal{W}_i^{\beta}(Q) \cap \beta^{\dagger i}$ by $P \cap \beta = Q \cap \beta$ and Proposition 7.6. By (46), $\beta \leq P$ and $\beta \leq Q$, we obtain $P \cap \beta^{\dagger i} = \mathcal{W}_i^{\beta}(P) \cap \beta^{\dagger i} = \mathcal{W}_i^{\beta}(Q) \cap \beta^{\dagger i} = Q \cap \beta^{\dagger i}$. Hence $\beta \in P \cap Q$.

Lemma 7.8 (Σ_{N+1}^1 -CA) For each $i \leq N$, $\forall \gamma < \mathbb{I}_N \forall X \exists Y(Y = W_i^{\gamma}(X))$. Let $\gamma < \mathbb{I}_N$.

- 1. For $i \leq N$, $W_i^{\gamma}(X)$ is a well order: $Wo[W_i^{\gamma}(X)]$.
- 2. For i < N, $W_{i+1}^{\gamma}(X)$ is the maximal *i*-distinguished set for γ and X if $X \cap \gamma^{-(i+1)}$ is a well order: $Wo[X \cap \gamma^{-(i+1)}] \Rightarrow D_i^{\gamma}[W_{i+1}^{\gamma}(X); X]$. In particular $W_{i+1}^{\gamma}(X) \cap \gamma^{-(i+1)} = X \cap \gamma^{-(i+1)}$ holds.

Proof. 7.8.1. Clearly $W_0^{\gamma}(X) = W(C^{\gamma}(X))$ is a well order. We show $Wo[W_{i+1}^{\gamma}(X)]$. Let $\{\beta < \alpha\} \subset W_{i+1}^{\gamma}(X)$. Pick a P and a Q such that $D_i^{\gamma}[P;X]$, $\alpha \in P$, $D_i^{\gamma}[Q;X]$ and $\beta \in Q$ by (47). Lemma 7.7 yields $\beta \in Q \cap \beta^{\dagger i} \subset P$. We obtain $Wo[W_{i+1}^{\gamma}(X) \cap \alpha]$ by Wo[P].

7.8.2. Assuming that $X \cap \gamma^{-(i+1)}$ is a well order, we see that $X \cap \gamma^{-(i+1)}$ is the minimal *i*-distinguished set for γ and X: $D_i^{\gamma}[X \cap \gamma^{-(i+1)}; X]$. We obtain $W_{i+1}^{\gamma}(X) \cap \gamma^{-(i+1)} = X \cap \gamma^{-(i+1)}$. Lemma 7.8.1 yields $Wo[W_{i+1}^{\gamma}(X)]$.

Let $\gamma^{-(i+1)} \leq \alpha \leq W_{i+1}^{\gamma}(X)$. We show $W_i^{\alpha}(W_{i+1}^{\gamma}(X)) \cap \alpha^{\dagger i} = W_{i+1}^{\gamma}(X) \cap \alpha^{\dagger i}$. Pick a P such that $D_i^{\gamma}[P;X]$ and $\alpha \leq P$. We obtain $W_i^{\alpha}(P) \cap \alpha^{\dagger i} = P \cap \alpha^{\dagger i} \subset W_{i+1}^{\gamma}(X) \cap \alpha^{\dagger i}$ by (46). Let $D_i^{\gamma}[Q;X]$ and $\beta \in Q \cap \alpha^{\dagger i}$. Lemma 7.7 yields $\beta \in Q \cap \beta^{\dagger i} = P \cap \beta^{\dagger i}$ for $\beta^{\dagger i} \leq \alpha^{\dagger i}$. Therefore we obtain $W_i^{\alpha}(P) \cap \alpha^{\dagger i} = P \cap \alpha^{\dagger i} = W_{i+1}^{\gamma}(X) \cap \alpha^{\dagger i}$, a fortiori $P \cap \alpha = \mathcal{W}_{i+1}^{\gamma}(X) \cap \alpha$. Hence $W_{i+1}^{\gamma}(X) \cap \alpha^{\dagger i} = P \cap \alpha^{\dagger i} = W_i^{\alpha}(P) \cap \alpha^{\dagger i} = W_i^{\alpha}(W_{i+1}^{\gamma}(X)) \cap \alpha^{\dagger i}$ by Proposition 7.6.

Lemma 7.9 1. Let X and Y be N-distinguished sets, and $\gamma < \mathbb{I}_N$. Then $\gamma \leq X \& \gamma \leq Y \Rightarrow X \cap \gamma^{\dagger N} = Y \cap \gamma^{\dagger N}$.

- 2. \mathcal{W}_{N+1} is the N-maximal distinguished class, i.e., $D_N[\mathcal{W}_{N+1}]$.
- 3. For a family $\{Y_j\}_{j \in J}$ of N-distinguished sets, the union $Y = \bigcup_{j \in J} Y_j$ is also an N-distinguished set.

Proof. 7.9.1 is seen as in Lemma 7.7. 7.9.2 and 7.9.3 follow from Lemma 7.9.1 as in Lemma 7.8. $\hfill \Box$

Lemma 7.10 Let $D_N[X]$ and $\gamma \in X \subset \mathbb{I}_N$. Then for each $0 \leq i \leq N$, $\gamma \in W_i^{\gamma}(X) \cap \gamma^{\dagger i} = X \cap \gamma^{\dagger i}$ and $D_i^{\gamma}[X;X]$ holds. In particular $\gamma \in C^{\gamma}(X)$.

Proof. By induction on N - i. We obtain $\gamma \in W_N^{\gamma}(X) \cap \gamma^{\dagger N} = X \cap \gamma^{\dagger N}$ by $D_N[X]$ and $\gamma \in X$. Lemma 7.8 with Wo[X] yields $D_{N-1}^{\gamma}[W_N^{\gamma}(X);X]$, and $D_{N-1}^{\gamma}[X;X]$ follows.

Assuming $D_{i+1}^{\gamma}[X;X]$, we obtain $W_{i+1}^{\gamma}(X) \cap \gamma^{\dagger(i+1)} = X \cap \gamma^{\dagger(i+1)}$ by $\gamma^{-(i+1)} \leq \gamma \in X$, and $D_{i}^{\gamma}[W_{i+1}^{\gamma}(X);X]$ by Lemma 7.8. Hence $D_{i}^{\gamma}[X;X]$ and $\gamma \in W_{i}^{\gamma}(X) \cap \gamma^{\dagger i} = X \cap \gamma^{\dagger i}$.

Proposition 7.11 Let $D_N[X]$, $\alpha \leq \gamma \in X$ and $\alpha \in C^{\gamma}(X)$. Then $\alpha \in X$.

Proof. Lemma 7.10 yields $\gamma \in W(C^{\gamma}(X)) \cap \gamma^{\dagger 0} = W_0^{\gamma}(X) \cap \gamma^{\dagger 0} = X \cap \gamma^{\dagger 0}$. $\gamma \geq \alpha \in C^{\gamma}(X)$ yields $\alpha \in W_0^{\gamma}(X) \cap \gamma^{\dagger 0} = X \cap \gamma^{\dagger 0}$.

Proposition 7.12 Let $D_N[X]$ and $\alpha, \beta < \mathbb{I}_N$.

- 1. Let $\{\alpha, \beta\} \subset X$ with $\alpha + \beta = \alpha \# \beta$ and $\alpha > 0$. Then $\gamma = \alpha + \beta \in X$.
- 2. If $\{\alpha, \beta\} \subset X$, then $\varphi \alpha \beta \in X$.

Proof. Proposition 7.12.2 is seen by main induction on $\alpha \in X$ with subsidiary induction on $\beta \in X$ using Proposition 7.12.1. We show Proposition 7.12.1. By Lemma 7.10 we obtain $\alpha \in X \cap \alpha^{\dagger 0} = W_0^{\alpha}(X) \cap \alpha^{\dagger 0}$. We see that $\alpha + \beta \in W_0^{\alpha}(X) = W(C^{\alpha}(X))$ by induction on $\beta \in X \cap (\alpha + 1) \subset C^{\alpha}(X)$.

Lemma 7.13 1. $C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \mathbb{I}_N = \mathcal{W}_{N+1} \cap \mathbb{I}_N = W(C^{\mathbb{I}_N}(\mathcal{W}_{N+1})) \cap \mathbb{I}_N.$

- 2. (BI) For each $n < \omega$, $\operatorname{TI}[C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N+1)]$, i.e., for each class \mathcal{X} , $\operatorname{Prg}[C^{\mathbb{I}_N}(\mathcal{W}_{N+1}), \mathcal{X}] \to C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N+1) \subset \mathcal{X}$.
- 3. For each $n < \omega$, $C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N + 1) \subset W(C^{\mathbb{I}_N}(\mathcal{W}_{N+1}))$. In particular $\{\mathbb{I}_N, \omega_n(\mathbb{I}_N + 1)\} \subset W(C^{\mathbb{I}_N}(\mathcal{W}_{N+1}))$.

Proof. 7.13.1. $\alpha \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \mathbb{I}_N \Rightarrow \alpha \in \mathcal{W}_{N+1}$ is seen by induction on $\ell \alpha$ using Proposition 7.12 and Lemma 7.9.2. Since \mathcal{W}_{N+1} is well-founded, we obtain $C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \mathbb{I}_N = W(C^{\mathbb{I}_N}(\mathcal{W}_{N+1})) \cap \mathbb{I}_N$.

7.13.2. We show $\operatorname{TI}[C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N+1)]$ by metainduction on $n < \omega$. Let $D_N[Y]$. We obtain Wo[Y], and $\operatorname{TI}[Y]$ follows from (BI). We have $C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \mathbb{I}_N = \mathcal{W}_{N+1} \cap \mathbb{I}_N$, and $\mathcal{W}_{N+1} \cap \gamma^{\dagger N} = Y \cap \gamma^{\dagger N}$ for $\gamma \in Y \cap \mathbb{I}_N$ by Lemma 7.9.1. We obtain $\operatorname{TI}[\mathcal{W}_{N+1} \cap \mathbb{I}_N]$, from which $\operatorname{TI}[C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap (\mathbb{I}_N+1)]$ follows.

Assuming $\operatorname{TI}[C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N+1)]$, $\operatorname{TI}[C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_{n+1}(\mathbb{I}_N+1)]$ is seen from the fact that $\operatorname{Prg}[C^{\mathbb{I}_N}(\mathcal{W}_{N+1}), A] \to \operatorname{Prg}[C^{\mathbb{I}_N}(\mathcal{W}_{N+1}), \mathbf{j}[A]]$, where for a given formula A, $\mathbf{j}[A](\alpha)$ denotes the formula

$$\forall \beta \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \left[\forall \gamma \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \beta A(\gamma) \to \forall \gamma \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap (\beta + \omega^{\alpha}) A(\gamma) \right].$$

7.2 Sets \mathcal{G}^X

In this subsection we establish a key fact, Lemma 7.25 on distinguished sets.

Definition 7.14
$$\mathcal{G}^X := \{ \alpha \in OT(\mathbb{I}_N) \cap \mathbb{I}_N : \alpha \in C^{\alpha}(X) \& C^{\alpha}(X) \cap \alpha \subset X \}.$$

Proposition 7.15 Let $D_N[X]$ and $\alpha \in X$. Then $\alpha \in \mathcal{G}^X$.

Proof. By Lemma 7.10 we obtain $\alpha \in W_0^{\alpha}(X) = W(C^{\alpha}(X))$. Hence $\alpha \in C^{\alpha}(X)$. On the other side Proposition 7.11 yields $C^{\alpha}(X) \cap \alpha \subset X$. \Box

Lemma 7.16 $(\Sigma_{N+1}^1 - CA)$

Suppose $D_N[Y]$ and $\alpha \in \mathcal{G}^Y$. Let $P_N = W_N^{\alpha}(Y) \cap \alpha^{\dagger N}$. Assume that the following condition (48) is fulfilled. Then $\alpha \in P_N$ and $D_N[P_N]$. In particular $\alpha \in \mathcal{W}_{N+1}$ holds.

Moreover if there exists a set Z and an ordinal γ such that $Y = W_N^{\gamma}(Z)$ and $\alpha^{-N} = \gamma^{-N}$, then $\alpha \in Y$ holds.

$$\forall \beta \ge \alpha^{-1} \left(Y \cap \alpha^{\dagger 1} < \beta \,\&\, \beta^{\dagger 0} < \alpha^{\dagger 0} \to W_0^\beta(Y) \cap \beta^{\dagger 0} \subset Y \right) \tag{48}$$

Proof. If $Y = W_N^{\gamma}(Z)$ with $\alpha^{-N} = \gamma^{-N}$, then $Y \cap \alpha^{-N} = Z \cap \alpha^{-N}$ and $W_N^{\gamma}(Z) = W_N^{\alpha}(Y)$. Hence if $\alpha \in W_N^{\alpha}(Y)$, then $\alpha \in Y$.

Lemma 7.8.2 yields

$$\forall i < N \left[W_{i+1}^{\beta}(Y) \cap \beta^{\dagger(i+1)} = Y \cap \beta^{\dagger(i+1)} \right]$$
(49)

Let $P_i = W_i^{\alpha}(Y) \cap \alpha^{\dagger i}$ for $0 \leq i \leq N$. By $C^{\alpha}(Y) \cap \alpha \subset Y$ and Wo[Y] we obtain for $P_0 = W(C^{\alpha}(Y)) \cap \alpha^{\dagger 0}$

$$P_0 \cap \alpha = Y \cap \alpha = C^{\alpha}(Y) \cap \alpha \tag{50}$$

Hence $\alpha \in P_0$. On the other hand we have $D_{i-1}^{\alpha}[W_i^{\alpha}(Y);Y]$ for i > 0. This together with (50) yields for $0 \le i \le N$

$$P_i \cap \alpha^{-i} = Y \cap \alpha^{-i} \tag{51}$$

Claim 7.17 $\alpha^{\dagger 0} = \gamma^{\dagger 0} \& \gamma \in P_0 \Rightarrow \gamma \in C^{\gamma}(P_0).$

Proof of Claim 7.17. Let $\alpha^{\dagger 0} = \gamma^{\dagger 0}$ and $\gamma \in P_0 = W(C^{\alpha}(Y)) \cap \alpha^{\dagger 0}$. We obtain $\gamma \in C^{\alpha}(Y) = C^{\gamma}(Y)$ by Propositions 7.15 and 7.2. Hence $Y \cap \gamma \subset C^{\gamma}(Y) \cap \gamma = C^{\alpha}(Y) \cap \gamma$. $\gamma \in W(C^{\alpha}(Y))$ yields $Y \cap \gamma \subset P_0$. Therefore we obtain $\gamma \in C^{\gamma}(Y) \subset C^{\gamma}(P_0)$. \Box of Claim 7.17.

Claim 7.18 $D_i^{\alpha}[P_i; Y]$ and $\alpha \in P_{i+1}$ for each $0 \leq i < N$.

Proof of Claim 7.18. Obviously $Wo[P_i]$. (51) yields $P_i \cap \alpha^{-(i+1)} = Y \cap \alpha^{-(i+1)}$. Let $\alpha^{-(i+1)} \leq \beta \leq P_i$. We show $W_i^{\beta}(P_i) \cap \beta^{\dagger i} = P_i \cap \beta^{\dagger i}$. **Case 1**. $\beta^{\dagger i} = \alpha^{\dagger i}$: First let i = 0. We obtain $C^{\beta}(P_0) = C^{\alpha}(P_0)$ by Proposition

Case 1. $\beta^{i*} = \alpha^{i*}$: First let i = 0. We obtain $C^{\rho}(P_0) = C^{\alpha}(P_0)$ by Proposition 7.2 and Claim 7.17. Hence the assertion follows from (50).

Next let i > 0. (51) with $\beta^{-i} = \alpha^{-i}$ yields $W_i^{\beta}(P_i) = W_i^{\alpha}(P_i) = W_i^{\alpha}(Y)$. **Case 2**. $\beta^{\dagger i} < \alpha^{\dagger i}$: For i > 0, (49) yields $W_i^{\beta}(Y) \cap \beta^{\dagger i} = Y \cap \beta^{\dagger i}$. We obtain $W_i^{\beta}(P_i) \cap \beta^{\dagger i} = W_i^{\beta}(Y) \cap \beta^{\dagger i} = Y \cap \beta^{\dagger i} = P_i \cap \beta^{\dagger i}$ by (51).

Let i = 0. We have $\beta^{\dagger 0} \leq \alpha^{-0}$. First let $Y \cap \alpha^{\dagger 1} < \beta$. Then the assumption (48) with $\alpha^{-1} \leq \beta$ yields $W_0^{\beta}(Y) \cap \beta^{\dagger 0} \subset Y$. We obtain $W_0^{\beta}(P_0) \cap \beta^{\dagger 0} = W_0^{\beta}(Y) \cap \beta^{\dagger 0} \subset Y \cap \beta^{\dagger 0} = P_0 \cap \beta^{\dagger 0}$ by (50). It remains to show $Y \cap \beta^{\dagger 0} \subset W_0^{\beta}(Y)$. Let $\gamma \in Y \cap \beta^{\dagger 0}$. We obtain $\gamma \in W_0^{\gamma}(Y)$ by Lemma 7.10. On the other hand we have $\mathcal{C}^{\beta}(Y) \subset \mathcal{C}^{\gamma}(Y)$ by Propositions 7.15 and 7.2. Moreover (50) with Propositions 7.15 and 7.2 yields $\gamma \in \mathcal{C}^{\alpha}(Y) \subset \mathcal{C}^{\beta}(Y)$. Hence $\gamma \in W_0^{\beta}(Y)$.

Next let $\beta \leq Y \cap \alpha^{\dagger 1}$. We obtain $Y \cap \beta^{\dagger 1} = \mathcal{W}_{1}^{\beta}(Y) \cap \beta^{\dagger 1}$, and $\beta^{-1} = \alpha^{-1} \leq \beta < \alpha^{\dagger 1} = \beta^{\dagger 1}$ with $\beta < \beta^{\dagger 0} \leq \alpha < \beta^{\dagger 1}$. On the other hand we have $D_{0}^{\beta}[\mathcal{W}_{1}^{\beta}(Y);Y]$ by Lemma 7.8. Therefore $P_{0} \cap \beta^{\dagger 0} = Y \cap \beta^{\dagger 0} = \mathcal{W}_{1}^{\beta}(Y) \cap \beta^{\dagger 0} = W_{0}^{\beta}(\mathcal{W}_{1}^{\beta}(Y)) \cap \beta^{\dagger 0} = W_{0}^{\beta}(P_{0}) \cap \beta^{\dagger 0}$ by (50).

Thus $D_i^{\alpha}[P_i; Y]$ is shown. From $\alpha \in P_0$ we see by induction on i < N that $\alpha \in P_i \cap \alpha^{\dagger(i+1)} \subset W_{i+1}^{\alpha}(Y) \cap \alpha^{\dagger(i+1)} = P_{i+1}$ for the maximal *i*-distinguished set $W_{i+1}^{\alpha}(Y)$ for α and Y. \Box of Claim 7.18.

Claim 7.19 $D_N[P_N]$.

Proof of Claim 7.19. Let $\beta \leq P_N = W_N^{\alpha}(Y) \cap \alpha^{\dagger N}$. Then $\beta < \alpha^{\dagger N}$, and $\beta^{-N} \leq \alpha^{-N} < \alpha^{\dagger N}$. We show $W_N^{\beta}(W_N^{\alpha}(Y)) \cap \beta^{\dagger N} = W_N^{\alpha}(Y) \cap \beta^{\dagger N}$. **Case 1.** $\alpha^{-N} \leq \beta$: By $W_N^{\alpha}(Y) \cap \alpha^{-N} = Y \cap \alpha^{-N}$ with Wo[Y], and $\alpha^{-N} = \beta^{-N}$ we obtain $W_{\alpha}^{\alpha}(Y) = W_{\alpha}^{\alpha}(W_{\alpha}^{\alpha}(Y)) = W_{\alpha}^{\beta}(W_{\alpha}^{\alpha}(Y))$.

we obtain $W_N^{\alpha}(Y) = W_N^{\alpha}(W_N^{\alpha}(Y)) = W_N^{\beta}(W_N^{\alpha}(Y)).$ **Case 2.** $\beta < \alpha^{-N}$ and $\beta^{-N} \leq Y$: We obtain $\beta^{\dagger N} \leq \alpha^{-N}$. Hence $W_N^{\alpha}(Y) \cap \beta^{\dagger N} = Y \cap \beta^{\dagger N} = W_N^{\beta}(Y) \cap \beta^{\dagger N}$ by $D_N[Y]$. Therefore $W_N^{\beta}(Y) = W_N^{\beta}(W_N^{\alpha}(Y)).$ We obtain $W_N^{\alpha}(Y) \cap \beta^{\dagger N} = W_N^{\beta}(W_N^{\alpha}(Y)) \cap \beta^{\dagger N}.$ **Case 3.** $\beta < \alpha^{-N}$ and $Y < \beta^{-N}$: Then $\beta^{\dagger N} \leq \alpha^{-N}$. (49) yields $Y \cap \beta^{\dagger N} = Q_N^{\beta}(W_N^{\alpha}(Y))$

Case 3. $\beta < \alpha^{-N}$ and $Y < \beta^{-N}$: Then $\beta^{\dagger N} \leq \alpha^{-N}$. (49) yields $Y \cap \beta^{\dagger N} = W_N^{\beta}(Y) \cap \beta^{\dagger N}$. On the other hand we have $Y \cap \beta^{\dagger N} = W_N^{\alpha}(Y) \cap \beta^{\dagger N}$ and $W_N^{\beta}(Y) \cap \beta^{\dagger N} = W_N^{\beta}(W_N^{\alpha}(Y)) \cap \beta^{\dagger N}$. Therefore $W_N^{\beta}(W_N^{\alpha}(Y)) \cap \beta^{\dagger N} = W_N^{\alpha}(Y) \cap \beta^{\dagger N}$. \Box of Claim 7.19.

This completes a proof of Lemma 7.16.

Lemma 7.20 Assume $D_N[Y]$, $\mathbb{I}_N > \mathbb{S} \in Y \cap (St_k \cup \{0\})$ and $\{0, \Omega\} \subset Y$ for $0 < k \leq N$. Then $\mathbb{S}^{\dagger k} \in \mathcal{W}_{N+1}$.

Proof. Let us verify the condition (48) in Lemma 7.16 for $\alpha = \mathbb{S}^{\dagger k}$. Let $\alpha^{-1} \leq \alpha^{-1} \leq 1$ β . We have $\alpha = \alpha^{-1} \leq \beta$. Hence $\alpha^{\dagger 0} \leq \beta^{\dagger 0}$, and (48) is vacuously fulfilled. Thus it suffices to show that $\alpha = \mathbb{S}^{\dagger k} \in \mathcal{G}^{Y}$. $\alpha \in C^{\alpha}(Y)$ follows from

 $\mathbb{S} \in Y \cap \alpha$, cf. Definition 7.1.6. We show $\gamma \in C^{\alpha}(Y) \cap \alpha \Rightarrow \gamma \in Y$ by induction on $\ell\gamma$. By Proposition 7.12 and the assumption $\{0,\Omega\} \subset Y$, we can assume $\mathbb{S} \neq \gamma = \psi^f_{\sigma}(a) < \alpha = \mathbb{S}^{\dagger k} < \sigma$, cf. Definition 7.1.6. Suppose $\mathbb{S} < \gamma$. Then $S \neq \gamma = \varphi_{\sigma}(a) < a = S^{\dagger} < b, \text{ cf. Definition 7.1.6. Suppose } S < \gamma. \text{ Inch} \\ S \in \mathcal{H}_{a}(\gamma), \text{ and } \alpha = \mathbb{S}^{\dagger k} \in \mathcal{H}_{a}(\gamma) \cap \sigma \subset \gamma. \text{ We obtain } \gamma < \mathbb{S}. \text{ Lemma 7.10 with} \\ S \in Y \text{ and } D_{N}[Y] \text{ yields } \mathbb{S} \in W_{0}^{\mathbb{S}}(Y) \cap \mathbb{S}^{\dagger 0} = Y \cap \mathbb{S}^{\dagger 0} \text{ for } W_{0}^{\mathbb{S}}(Y) = W(C^{\mathbb{S}}(Y)), \\ \text{where } \forall \delta[\delta \in Y \Rightarrow \delta \in C^{\delta}(Y)]. \text{ We obtain } \gamma \in C^{\mathbb{S}}(Y) \text{ by } \gamma \in C^{\alpha}(Y), \mathbb{S} < \alpha \text{ and} \\ \text{Proposition 7.2.1. Hence } \gamma \in W_{0}^{\mathbb{S}}(Y) \cap \mathbb{S}^{\dagger 0} \subset Y \text{ follows. Therefore } \alpha \in \mathcal{G}^{Y}. \quad \Box$

Proposition 7.21 $\{0, \Omega\} \subset \mathcal{W}_{N+1}$.

Proof. For each $\alpha \in \{0, \Omega\}$ and any set $Y \subset OT(\mathbb{I}_N)$ we have $\alpha \in C^{\alpha}(Y)$. First let $\alpha = 0$. We obtain $C^0(\emptyset) \cap \alpha \subset \emptyset$, and $0 \in \mathcal{G}^{\emptyset}$. Moreover $D_N[\emptyset]$, and there is no β such that $\beta^{\dagger 0} < \alpha^{\dagger 0}$ since $\alpha^{\dagger 0} = \Omega$ is the least in SSt_0 . Hence the condition (48) is fulfilled, and we obtain $0 \in X = W_N^0(\emptyset) \cap 0^{\dagger N}$ with $D_N[X]$ by Lemma 7.16.

Next let $\alpha = \Omega$. Let $\gamma \in C^{\alpha}(X) \cap \alpha$. We show that $\gamma \in X$ by induction on $\ell\gamma$ as follows. We see that each strongly critical number $\gamma \in C^{\alpha}(X) \cap \alpha$ is in X from Definition 7.1. Otherwise $\gamma \in X$ is seen from IH using Proposition 7.12 and $0 \in X$. Therefore we obtain $\alpha \in \mathcal{G}^X$. Let $\beta^{\dagger 0} < \alpha^{\dagger 0}$. Then $\beta^{\dagger 0} = \Omega$ and $\beta < \Omega$. Let $\gamma \in W_0^{\beta}(X) \cap \Omega$. We

show $\gamma \in X$. We obtain $D_0^0[X;X]$ by Lemma 7.10, and $\gamma \in W_0^\beta(X) \cap \Omega =$ $W_0^0(X) \cap \Omega = X \cap \Omega$. Hence the condition (48) is fulfilled, and we obtain $\Omega \in \mathcal{W}_{N+1}$ by Lemma 7.16. \square

Lemma 7.22 $(\Sigma_{N+2}^1 \text{-DC})$ If $\alpha \in \mathcal{G}^{\mathcal{W}_{N+1}}$, then there exists an N-distinguished set Z such that $\{0, \Omega\} \subset Z$, $\alpha \in \mathcal{G}^Z \text{ and } \forall k \forall \mathbb{S} \in Z \cap (St_k \cup \{\Omega\}) [\mathbb{S}^{\dagger k} \in Z].$

Proof. Let $\alpha \in \mathcal{G}^{\mathcal{W}_{N+1}}$. We have $\alpha \in C^{\alpha}(\mathcal{W}_{N+1})$. Pick an N-distinguished set X_0 such that $\alpha \in C^{\alpha}(X_0)$. We can assume $\{0, \Omega\} \subset X_0$ by Proposition 7.21. On the other hand we have $C^{\alpha}(\mathcal{W}_{N+1}) \cap \alpha \subset \mathcal{W}_{N+1}$ and $\forall k \forall \mathbb{S} \in \mathcal{W}_{N+1} \cap (St_k \cup \mathbb{S})$ $\{\Omega\})[\mathbb{S}^{\dagger k} \in \mathcal{W}_{N+1}]$ by Lemma 7.20. We obtain

$$\forall n \forall X \exists Y \{ D_N[X] \to D_N[Y]$$

$$\land \quad \forall \beta \in OT(\mathbb{I}_N) \ (\ell(\beta) \le n \land \beta \in C^{\alpha}(X) \cap \alpha \to \beta \in Y)$$

$$\land \quad \forall k \forall \mathbb{S} \in (St_k \cup \{\Omega\}) \ (\ell(\mathbb{S}) \le n \land \mathbb{S} \in X \to \mathbb{S}^{\dagger k} \in Y) \}$$

Since $D_N[X]$ is Δ_{N+2}^1 , Σ_{N+2}^1 -DC yields a set Z such that $Z_0 = X_0$ and

 $\forall n \{ D_N[Z_n] \to D_N[Z_{n+1}] \}$ $\land \quad \forall \beta \in OT(\mathbb{I}_N) \ (\ell(\beta) \le n \land \beta \in C^{\alpha}(Z_n) \cap \alpha \to \beta \in Z_{n+1})$ $\land \quad \forall k \forall \mathbb{S} \in (St_k \cup \{\Omega\}) \left(\ell(\mathbb{S}) \le n \land \mathbb{S} \in Z_n \to \mathbb{S}^{\dagger k} \in Z_{n+1} \right) \}$ Let $Z = \bigcup_n Z_n$. We see by induction on n that $D_N[Z_n]$ for every n. Lemma 7.9.3 yields $D_N[Z]$. Let $\beta \in C^{\alpha}(Z) \cap \alpha$. Pick an n such that $\beta \in C^{\alpha}(Z_n)$ and $\ell \beta \leq n$. We obtain $\beta \in Z_{n+1} \subset Z$. Therefore $\alpha \in \mathcal{G}^Z$. Furthermore let $\mathbb{S} \in Z \cap (St_k \cup \{\Omega\})$. Pick an n such that $\mathbb{S} \in Z_n$ and $\ell(\mathbb{S}) \leq n$. We obtain $\mathbb{S}^{\dagger k} \in Z_{n+1} \subset Z$. \Box

Proposition 7.23 Let $D_N[Y]$ and $\alpha \in C^{\beta}(Y)$. Assume $Y \cap \beta < \delta$. Then $F_{\delta}(\alpha) \subset C^{\beta}(Y)$.

Proof. By induction on $\ell \alpha$. Let $\{0, \Omega, \mathbb{I}_N\} \not\supseteq \alpha \in C^{\beta}(Y)$. We have $\mathcal{E}(\alpha) \leq \alpha$ First consider the case $\alpha \notin \mathcal{E}(\alpha)$. If $\alpha \in Y \cap \beta \subset \mathcal{G}^Y$ by Proposition 7.15, then $\mathcal{E}(\alpha) \subset C^{\alpha}(Y) \cap \alpha \subset Y \subset C^{\beta}(Y)$ by Proposition 7.5. Otherwise we have $\alpha \notin \mathcal{E}(\alpha) \subset C^{\beta}(Y)$. In each case IH yields $F_{\delta}(\alpha) = F_{\delta}(\mathcal{E}(\alpha)) \subset C^{\beta}(Y)$.

Let $\alpha = \psi_{\pi}^{f}(a)$ for some π, f, a . If $\alpha < \delta$, then $F_{\delta}(\alpha) = \{\alpha\}$, and there is nothing to prove. Let $\alpha \geq \delta$. Then $F_{\delta}(\alpha) = F_{\delta}(\{\pi, a\} \cup SC(f))$. On the other side we see $\{\pi, a\} \cup SC(f) \subset C^{\beta}(Y)$ from $\alpha \in C^{\beta}(Y)$ and the assumption. IH yields $F_{\delta}(\alpha) \subset C^{\beta}(Y)$.

Finally let $\alpha \in N(\rho)$. Then $F_{\delta}(\alpha) = F_{\delta}(\rho)$. If $\rho \in C^{\beta}(Y)$, then IH yields $F_{\delta}(\rho) \subset C^{\beta}(Y)$. Otherwise we have $\alpha \in Y$, and $\alpha \in C^{\alpha}(Y)$. Hence $\rho \in C^{\alpha}(Y) \cap \alpha \subset Y \subset C^{\beta}(Y)$.

Proposition 7.24 Let $\gamma < \beta$. Assume $\alpha \in C^{\gamma}(Y)$ and $G_{\beta}(\alpha) < \gamma$. Moreover assume $\forall \delta[\ell \delta \leq \ell \alpha \& \delta \in C^{\gamma}(Y) \cap \gamma \Rightarrow \delta \in C^{\beta}(Y)]$. Then $\alpha \in C^{\beta}(Y)$.

Proof. By induction on $\ell\alpha$. If $\alpha < \gamma$, then $\alpha \in C^{\gamma}(Y) \cap \gamma$. The third assumption yields $\alpha \in C^{\beta}(Y)$. Assume $\alpha \geq \gamma$. Consider the case $\alpha = \psi_{\pi}^{f}(a)$ for some $\{\pi, a\} \cup SC(f) \subset C^{\gamma}(Y)$ and $\pi > \gamma$. If $\pi \leq \beta$, then $\{\alpha\} = G_{\beta}(\alpha) < \gamma$ by the second assumption. Hence this is not the case, and we obtain $\pi > \beta$. Then $G_{\beta}(\{\pi, a\} \cup SC(f)) = G_{\beta}(\alpha) < \gamma$. IH yields $\{\pi, a\} \cup SC(f) \subset C^{\beta}(Y)$. We conclude $\alpha \in C^{\beta}(Y)$ from $\pi > \beta$.

Next let $\gamma \leq \alpha \in N(\rho)$ with $\rho \in C^{\gamma}(Y)$. If $\alpha < \beta$, then $\{\alpha\} = G_{\beta}(\alpha) < \gamma$, and this is not the case. Let $\alpha \geq \beta$. Then $G_{\beta}(\alpha) = G_{\beta}(\rho)$. IH yields $\rho \in C^{\beta}(Y)$, and $\alpha \in C^{\beta}(Y)$ by $\alpha \geq \beta$.

The following Lemma 7.25 is a key result on distinguished classes.

Lemma 7.25 Suppose $D_N[Y]$ with $\{0, \Omega\} \subset Y$ and $\forall k \forall \mathbb{U} \in Y \cap (St_k \cup \{\Omega\})[\mathbb{U}^{\dagger k} \in Y]$. For $\eta \in \Psi_{\mathbb{I}_N} \cup \bigcup_{\mathbb{S} \in SSt} L(\mathbb{S})$, cf. Definition 6.12,

$$\eta \in \mathcal{G}^Y \tag{52}$$

$$R(\eta) \cap \{\gamma \in OT(\mathbb{I}_N) \cap \mathbb{I}_N : Y \cap \eta^{\dagger 1} < \gamma\} \cap \mathcal{G}^Y \subset Y$$
(53)

and

$$\forall \mathbb{T} \in \{\Omega\} \cup (LSt \cap \Psi) \forall \vec{k} (\eta \in L(\mathbb{T}^{\dagger \vec{k}}) \Rightarrow \mathbb{T} \in Y)$$
(54)

Then $\eta \in \mathcal{W}_{N+1}$. Moreover if there exists a set Z and an ordinal γ such that $Y = W_N^{\gamma}(Z)$ and $\eta^{-N} = \gamma^{-N}$, then $\eta \in Y$ holds.

Proof. By Lemma 7.16 and the hypothesis (52) it suffices to show (48)

$$\forall \beta \ge \eta^{-1} \left(Y \cap \eta^{\dagger 1} < \beta \,\&\, \beta^{\dagger 0} < \eta^{\dagger 0} \to W_0^\beta(Y) \cap \beta^{\dagger 0} \subset Y \right).$$

Assume $Y \cap \eta^{\dagger 1} < \beta$ and $\beta^{\dagger 0} < \eta^{\dagger 0}$. We have to show $W_0^{\beta}(Y) \cap \beta^{\dagger 0} \subset Y$. We prove this by induction on $\gamma \in W_0^{\beta}(Y) \cap \beta^{\dagger 0}$. Suppose $\gamma \in C^{\beta}(Y) \cap \beta^{\dagger 0}$ and

$$\mathrm{MIH}: C^{\beta}(Y) \cap \gamma \subset Y.$$

We show $\gamma \in Y$. We can assume that

$$Y \cap \eta^{\dagger 1} < \gamma \tag{55}$$

since if $\gamma \leq \delta$ for some $\delta \in Y \cap \eta^{\dagger 1}$, then by $Y \cap \eta^{\dagger 1} < \beta$ and $\gamma \in C^{\beta}(Y)$ we obtain $\delta < \beta, \gamma \in C^{\delta}(Y)$ and $\delta \in W(C^{\delta}(Y)) \cap \delta^{\dagger 0} = Y \cap \delta^{\dagger 0}$ by Lemma 7.10. Hence $\gamma \in W(C^{\delta}(Y)) \cap \delta^{\dagger 0} \subset Y$.

Moreover we can assume $\gamma \notin (Reg_0 \setminus \{\Omega, \mathbb{I}_N\}) \cap \beta$ with $Reg_0 = (Reg \setminus \Psi)$. For otherwise $\gamma \in Y$ by Definition 7.1.6 and $\gamma \in C^{\beta}(Y) \cap \beta$.

We show first

$$\gamma \in \mathcal{G}^Y \tag{56}$$

First $\gamma \in C^{\gamma}(Y)$ by $\gamma \in C^{\beta}(Y) \cap \beta^{\dagger 0}$ and Proposition 7.2. Second we show the following claim by induction on $\ell \alpha$:

$$\alpha \in C^{\gamma}(Y) \cap \gamma \Rightarrow \alpha \in Y \tag{57}$$

Proof of (57). Assume $\alpha \in C^{\gamma}(Y) \cap \gamma$. We can assume $\gamma^{\dagger 0} \leq \beta$ for otherwise we have $\alpha \in C^{\gamma}(Y) \cap \gamma = C^{\beta}(Y) \cap \gamma \subset Y$ by MIH.

By induction hypothesis on lengths, Proposition 7.12, and $\{0, \Omega\} \subset Y$, we can assume that $\alpha = \psi_{\pi}^{f}(a)$ for some $\pi > \gamma$ such that $\{\pi, a\} \cup SC(f) \subset C^{\gamma}(Y)$. **Case 1.** $\beta < \pi$: Then $G_{\beta}(\{\pi, a\} \cup SC(f)) = G_{\beta}(\alpha) < \alpha < \gamma$ by Proposition 6.19.1. Proposition 7.24 with induction hypothesis on lengths yields $\{\pi, a\} \cup SC(f) \subset C^{\beta}(Y)$. Hence $\alpha \in C^{\beta}(Y) \cap \gamma$ by $\pi > \beta$. MIH yields $\alpha \in Y$. **Case 2.** $\beta > \pi$: We have $\alpha < \gamma < \pi < \beta$. It suffices to show that $\alpha \leq Y \cap n^{\dagger 1}$.

Case 2. $\beta \geq \pi$: We have $\alpha < \gamma < \pi \leq \beta$. It suffices to show that $\alpha \leq Y \cap \eta^{\dagger 1}$. Then by (55) we have $\alpha \leq \delta \in Y \cap \eta^{\dagger 1}$ for some $\delta < \gamma$. $C^{\delta}(Y) \ni \alpha \leq \delta \in Y \cap \delta^{\dagger 0} = W(C^{\delta}(Y)) \cap \delta^{\dagger 0}$ yields $\alpha \in W(C^{\delta}(Y)) \cap \delta^{\dagger 0} \subset Y$.

Consider first the case $\gamma \notin \mathcal{E}(\gamma)$. By $\alpha = \psi_{\pi}^{f}(a) < \gamma < \pi$, we can assume that $\gamma \notin \{0, \Omega, \mathbb{I}_{N}\}$. Then let $\delta = \max S(\gamma)$ denote the largest immediate subterm of γ . Then $\delta \in C^{\gamma}(Y) \cap \gamma$, and by (55), $Y \cap \eta^{\dagger 1} < \gamma \in C^{\beta}(Y)$ we have $\delta \in C^{\beta}(Y) \cap \gamma$. Hence $\delta \in Y \cap \eta^{\dagger 1}$ by MIH. Also by $\alpha < \gamma$, we obtain $\alpha \leq \delta$, i.e., $\alpha \leq Y \cap \eta^{\dagger 1}$, and we are done.

Next let $\gamma \notin (Reg_0 \setminus \{\Omega, \mathbb{I}_N\})$ and $\gamma \in \mathcal{E}(\gamma)$. This means that $\gamma \in \Psi$. Let $\gamma = \psi_{\kappa}^g(b)$ for some b, g and $\kappa > \beta$ by (55) and $\gamma \in C^{\beta}(Y)$. We have $\alpha < \gamma < \pi \leq \beta < \kappa$. Let $\pi \preceq \rho$ and $\kappa \preceq \tau$ with $\{\rho, \tau\} \subset Reg_0$. We obtain $\rho = \tau$ by Proposition 3.39.

 $\pi \notin \mathcal{H}_b(\gamma)$ since otherwise by $\pi < \kappa$ we would have $\pi < \gamma$. Then by Proposition 3.27 we have $a \geq b$ and $SC(g) \cup \{\kappa, b\} \notin \mathcal{H}_a(\alpha)$. On the other

hand we have $K_{\gamma}(SC(g) \cup \{\kappa, b\}) < b \leq a$, i.e., $SC(g) \cup \{\kappa, b\} \subset \mathcal{H}_{a}(\gamma)$. By Proposition 6.20 pick a $\delta \in F_{\gamma}(SC(g) \cup \{\kappa, b\})$ such that $\mathcal{H}_{a}(\alpha) \not \supseteq \delta \in \gamma$. In particular $\delta < \gamma$. Also we have $SC(g) \cup \{\kappa, b\} \subset C^{\beta}(Y), Y \subset \mathcal{G}^{Y}$ by Proposition 7.15, and $Y \cap \eta^{\dagger 1} < \gamma$ by (55). Therefore by Proposition 7.23 with MIH we obtain $\alpha \leq \delta \in C^{\beta}(Y) \cap \gamma \subset Y$.

 \Box of (57) and (56).

Hence we obtain $\gamma \in \mathcal{G}^{Y}$. We have $\gamma < \beta^{\dagger 0} \leq \eta$ and $\gamma \in C^{\gamma}(Y)$. If $\gamma \in R(\eta)$, then the hypothesis (53) yields $\gamma \in Y$. In what follows assume $\gamma \notin R(\eta)$.

If $G_{\eta}(\gamma) < \gamma$, then Proposition 7.24 yields $\gamma \in C^{\eta}(Y) \cap \eta \subset Y$ by $\eta \in \mathcal{G}^{Y}$. In what follows suppose $G_{\eta}(\gamma) = \{\gamma\}$. This means $\gamma \in \Psi$ by $\gamma \notin (Reg_0 \setminus \{\Omega, \mathbb{I}_N\})$, and $\gamma \prec \tau$ for a $\tau < \eta$ by $\gamma \not\prec \eta$ and Definition 6.17.3. If $\eta \prec \mathbb{I}_N$, then $\gamma \prec \mathbb{I}_N$ by $\gamma \notin R(\eta)$. Hence this is not the case.

Let $\eta \in L(\mathbb{T}^{\dagger \vec{k}})$ with $\mathbb{T} \in \{\Omega\} \cup (LSt \cap \Psi)$. By (54) we obtain $\mathbb{T} \in Y$. On the other hand we have $Y \cap \eta^{\dagger 1} < \gamma$ by (55), and $\mathbb{T}^{\dagger \vec{i}} \in Y$ since Y is closed under $\mathbb{U} \mapsto \mathbb{U}^{\dagger i}$. Hence $\mathbb{T}^{\dagger \vec{i}} < \gamma$ as long as $\mathbb{T}^{\dagger \vec{i}} < \eta$. We obtain $\gamma \in L(\mathbb{T}^{\dagger \vec{k}})$ by Definition 3.35.4.

Let τ be maximal such that $\gamma \prec \tau < \eta$. We obtain $\tau \in \Psi$ by $\gamma \in L(\mathbb{T}^{\dagger \vec{k}}) \setminus R(\eta)$ and Proposition 6.13. From $\gamma \in C^{\gamma}(Y)$ we see $\tau \in C^{\gamma}(Y)$.

Next we show that

$$G_{\eta}(\tau) < \gamma \tag{58}$$

Let $\tau = \psi_{\kappa}^{f}(b)$ and $\gamma \leq \gamma_{1} = \psi_{\tau}^{g}(a_{1})$. Then $\eta < \kappa$ by the maximality of τ , and $G_{\eta}(\tau) = G_{\eta}(\{\kappa, b\} \cup SC(f)) < \tau$ by Proposition 6.19.1. On the other hand we have $\tau \in \mathcal{H}_{a_{1}}(\gamma_{1})$. Proposition 6.19.2 yields $G_{\eta}(\tau) \subset \mathcal{H}_{a_{1}}(\gamma_{1}) \cap \tau \subset \gamma_{1}$. We see $G_{\eta}(\tau) < \gamma$ inductively.

(58) is shown. Proposition 7.24 yields $\tau \in C^{\eta}(Y)$, and $\tau \in C^{\eta}(Y) \cap \eta \subset Y$ by $\eta \in \mathcal{G}^{Y}$. Therefore $Y \cap \eta^{\dagger 1} < \gamma < \tau \in Y$. This is not the case by (55). We are done.

Proposition 7.26 For $\alpha_1 = \psi_{\mathbb{I}_N}(a), \ \alpha_1 \in \mathcal{G}^{\mathcal{W}_{N+1}} \Rightarrow \alpha_1 \in \mathcal{W}_{N+1}.$

Proof. Let $\alpha_1 \in \mathcal{G}^{\mathcal{W}_{N+1}}$. By Lemma 7.22 pick an *N*-distinguished set *Z* such that $\{0, \Omega\} \subset Z$, $\alpha_1 \in \mathcal{G}^Z$ and $\forall k \forall \mathbb{S} \in Z \cap (St_k \cup \{\Omega\})[\mathbb{S}^{\dagger k} \in Z]$.

Claim 7.27 Let $SSt \ni \mathbb{T} < \alpha_1$ and $\gamma \in \mathcal{G}^Z \cap L(\mathbb{T}) \cap \Psi$. Then $\gamma < Z \cap \alpha_1$.

Proof of Claim 7.27. Let $\rho \prec \mathbb{S}^{\dagger \vec{k}} = \mathbb{T} < \alpha_1$ for an $\mathbb{S} \in LSt \cup \{\Omega\}$ and a $\vec{k} \neq \emptyset$. First let $\gamma = \rho$. We obtain $\mathbb{T} \in C^{\gamma}(Z)$ by $\gamma \in C^{\gamma}(Z)$, and $\mathbb{S} \in C^{\gamma}(Z) \cap \gamma \subset Z$. Hence $\gamma < \mathbb{T} = \mathbb{S}^{\dagger \vec{k}} \in Z \cap \alpha_1$ since Z is closed under $\mathbb{U} \mapsto \mathbb{U}^{\dagger i}$.

Second let $\gamma \prec^R \kappa \in N(\rho)$ for a κ . We show $\rho \in Z$ by induction on $\ell\gamma$. First let $\gamma = \psi_{\mathbb{I}_N[\sigma]}(b)$ for some b and $\sigma \preceq^R \kappa$. Then we obtain $\mathbb{I}_N[\sigma] \in C^{\gamma}(Z)$ by $\gamma \in C^{\gamma}(Z)$, and $\sigma \in C^{\gamma}(Z) \cap \gamma \subset Z$. Proposition 7.15 yields $\sigma \in \mathcal{G}^Z$. If $\sigma = \kappa = \mathbb{I}_N[\rho]$, then $\sigma \in C^{\sigma}(Z)$ yields $\rho \in C^{\sigma}(Z) \cap \sigma \subset Z$. Otherwise IH yields $\rho \in Z$. Second let $\gamma = \psi_{\sigma^{\dagger}\vec{i}}^f(b) \in C^{\gamma}(Z)$ for some f, b and $\sigma^{\dagger \vec{i}} \preceq^R \kappa$. We obtain $\sigma \in C^{\gamma}(Z) \cap \gamma \subset Z$, and $\sigma \in \mathcal{G}^Z$. We obtain $\sigma \prec^R \kappa$. If yields $\rho \in Z$. Third let $\gamma = \psi^f_{\tau}(a)$ with $\tau = \mathbb{W}^{\dagger j}[\sigma/\mathbb{W}]$. We obtain $\gamma < \tau \in C^{\gamma}(Z)$, and $\sigma \in C^{\gamma}(Z) \cap \gamma$. Hence $\sigma \in \mathcal{G}^Z$. If $\tau = \mathbb{W}^{\dagger j}[\sigma/\mathbb{W}] = \mathbb{U}^{\dagger i}[\rho/\mathbb{S}]$, then $\sigma \in C^{\sigma}(Z)$ yields $\rho \in C^{\sigma}(Z) \cap \sigma \subset Z$. Otherwise IH yields $\rho \in Z$.

Now $\rho \in Z$ yields $\rho \in C^{\rho}(Z)$, and this yields $\mathbb{S} \in C^{\rho}(Z) \cap \rho \subset Z$. Since Z is closed under $\mathbb{U} \mapsto \mathbb{U}^{\dagger i}$, we obtain $\gamma < \mathbb{S}^{\dagger \vec{k}} \in Z \cap \alpha_1$. \Box of Claim 7.27.

Since there is no $\gamma \prec \alpha_1$, if $\gamma \in R(\alpha_1)$, then $\gamma \in L(\mathbb{T}) \cap \Psi$ for a $SSt \ni \mathbb{T} < \alpha_1$ by Definition 6.12.1. Also $\alpha_1 \notin LmS$ for any $\mathbb{S} \in SSt$, and we have (53) by Claim 7.27. We conclude $\alpha_1 \in \mathcal{W}_{N+1}$ by Lemma 7.25.

Lemma 7.28 For each $n < \omega$, the following holds:

Let $a \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N+1)$. Then $\psi_{\mathbb{I}_N}(a) \in \mathcal{W}_{N+1}$ holds.

Proof. For each $n < \omega$, we have $\operatorname{TI}[\mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap (\omega_n(\mathbb{I}_N + 1))]$ by Lemma 7.13.2. We show the lemma by induction on $a \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N + 1)$. Assume

IH :
$$\Leftrightarrow \forall b \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap a \ (\psi_{\mathbb{I}_N}(b) \in OT(\mathbb{I}_N) \Rightarrow \psi_{\mathbb{I}_N}(b) \in \mathcal{W}_{N+1}).$$

Let $\alpha_1 = \psi_{\mathbb{I}_N}(a) \in OT(\mathbb{I}_N)$ with $a \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N+1)$. By Proposition 7.26 it suffices to show $\alpha_1 \in \mathcal{G}^{\mathcal{W}_{N+1}}$.

From $a \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1})$ with $\alpha_1 < \mathbb{I}_N$ we see $\alpha_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W}_{N+1})$. It suffices to show the following (59) by induction on $\ell\beta_1$.

$$\forall \beta_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1[\beta_1 \in \mathcal{W}_{N+1}]. \tag{59}$$

Proof of (59). Assume $\beta_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1$ and let

LIH :
$$\Leftrightarrow \forall \gamma \in \mathcal{C}^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1[\ell \gamma < \ell \beta_1 \Rightarrow \gamma \in \mathcal{W}_{N+1}].$$

We show $\beta_1 \in \mathcal{W}_{N+1}$. We can assume $\beta_1 \notin \{0, \Omega\}$ by Proposition 7.21. **Case 1.** $\beta_1 \notin \mathcal{E}(\beta_1)$: Assume $\beta_1 \notin \mathcal{W}_{N+1}$. Then $\beta_1 \notin N(\rho)$ for any ρ by $\beta_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1$ and Definition 7.1. We obtain $S(\beta_1) \subset \mathcal{C}^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1$. LIH yields $S(\beta_1) \subset \mathcal{W}_{N+1}$. Hence we conclude $\beta_1 \in \mathcal{W}_{N+1}$ from Proposition 7.12.

Case 2. In what follows consider the cases when $\beta_1 = \psi^g_{\pi}(b)$ for some π, b, g . We can assume $\pi > \alpha_1$. Then we see $\pi = \mathbb{I}_N$ and $\beta_1 = \psi_{\mathbb{I}_N}(b)$ with $b \in \mathcal{C}^{\alpha_1}(\mathcal{W}_{N+1})$. We obtain b < a by Proposition 3.17.1, and $b \in \mathcal{H}_b(\beta_1)$. By IH it suffices to show $b \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1})$.

By induction on ℓc we see that $c \in \mathcal{H}_b(\beta_1) \Rightarrow G_{\mathbb{I}_N}(c) < \beta_1$. For example let $c = \gamma_1^{\dagger \vec{i}}$ with $\gamma_1 \in LSt_N \cup \{\Omega\}$ and $\vec{i} \neq \emptyset$. Suppose $c > \beta_1$. Then $\gamma_1 \in \mathcal{H}_b(\beta_1)$. The induction hypothesis on ℓc yields $\{\gamma_1\} = G_{\mathbb{I}_N}(\gamma_1) < \beta_1 \in LSt_N$, and hence $\{c\} = G_{\mathbb{I}_N}(c) < \beta_1$.

In particular we obtain $G_{\mathbb{I}_N}(b) < \beta_1$. Proposition 7.24 with LIH yields $b \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1})$. This shows (59).

7.3 Layers of stable ordinals

In this subsection we examine ordinals in layers $L(\mathbb{S}) = \{\alpha \in OT(\mathbb{I}_N) : \alpha \prec^R \mathbb{S}\}$ for $\mathbb{S} \in SSt$. We show that there is no infinite descending chain in $L(\mathbb{S})$, cf. Lemma 7.32. Here we need the condition (12) and the fact that $\alpha \in M_{\rho}$ if α is in the domain of the Mostowski collapsing $\alpha \mapsto \alpha[\rho/\mathbb{S}]$, cf. Definition 3.33 and Proposition 7.31.

Let $k(\psi_{\kappa}^{f}(a)) = \{\kappa, a\} \cup SC(f) \text{ and } h(\psi_{\kappa}^{f}(a)) = \{a, \mathbf{g}_{0}^{*}(\psi_{\kappa}^{f}(a))\}.$

Proposition 7.29 Let Z be an N-distinguished set such that $\{0, \Omega\} \subset Z$ and $\forall k \forall \mathbb{S} \in Z \cap (St_k \cup \{\Omega\})[\mathbb{S}^{\dagger k} \in Z]$. Assume $\psi_{\mathbb{I}_N}(b) \in Z$, and let

$$\begin{split} \mathrm{MIH}(b;Z) &:\Leftrightarrow \forall \mathbb{T} \in (St \cup \{\Omega\}) \cap Z \forall k \forall \gamma \in L(\mathbb{T}^{\dagger k}) \cap \Psi \\ \left[k(\gamma) \subset \mathcal{C}^{\mathbb{I}_N}(Z) \& \mathbf{h}(\gamma) \subset \mathcal{C}^{\mathbb{I}_N}(Z) \cap b \Rightarrow \{\gamma\} \cup N(\gamma) \subset Z \right]. \end{split}$$

Then for any $\Theta \subset Z$, $\mathcal{H}_b(\Theta) \subset \mathcal{C}^{\mathbb{I}_N}(Z)$ holds.

Proof. Let $\Theta \subset Z$. Assuming $\gamma \in \mathcal{H}_b(\Theta)$, we show $\gamma \in \mathcal{C}^{\mathbb{I}_N}(Z)$ by induction on $\ell\gamma$. Let $\gamma \notin \Theta$. By IH and Proposition 7.12, we can assume $\gamma \in \Psi \cup (Reg_0 \setminus \{\Omega, \mathbb{I}_N\})$.

Case 1. $\gamma = \psi_{\kappa}^{f}(a)$ with $k(\gamma) \subset \mathcal{H}_{b}(\Theta)$: We show $\{\gamma\} \cup N(\gamma) \subset Z$. III yields $\{\kappa, a\} \subset k(\gamma) \subset C^{\mathbb{I}_{N}}(Z)$.

Case 1.1. $\kappa = \mathbb{I}_N$: Then we obtain $f = \emptyset$ and $\gamma = \psi_{\mathbb{I}_N}(a) < \psi_{\mathbb{I}_N}(b) = \delta \in Z$ and $N(\gamma) = \emptyset$. $a \in \mathcal{C}^{\mathbb{I}_N}(Z) \subset \mathcal{C}^{\delta}(Z)$ yields $\gamma \in \mathcal{C}^{\delta}(Z) \cap \delta \subset Z$.

Case 1.2. $\kappa < \mathbb{I}_N$: Let $\gamma \in L(\mathbb{S})$ with $\mathbb{S} = \mathbb{T}^{\dagger k}$ and $\mathbb{T} \in St \cup \{\Omega\}$. We claim that $\mathbb{T} \in Z$ and $h(\gamma) \subset \mathcal{C}^{\mathbb{I}_N}(Z) \cap b$. We have $\kappa \in \mathcal{C}^{\mathbb{I}_N}(Z) \cap \mathbb{I}_N \subset Z$. We obtain $\kappa \in \mathcal{G}^Z$. Let $\rho \prec \mathbb{S}$ be such that either $\rho = \kappa$ or $\kappa \prec^R \sigma \in N(\rho)$. In the latter case we obtain $\rho \in \mathcal{C}^{\kappa}(Z) \cap \kappa \subset Z$. We obtain $\rho \in Z$ and $\rho \in \mathcal{G}^Z$, from which we see $\mathbb{S} \in \mathcal{C}^{\rho}(Z)$ and $\mathbb{T} \in \mathcal{C}^{\rho}(Z) \cap \rho \subset Z$.

On the other, IH yields $a \in \mathcal{C}^{\mathbb{I}_N}(Z) \cap b$. We show $g_0^*(\gamma) \in \mathcal{C}^{\mathbb{I}_N}(Z) \cap b$.

Case 1.2.1. $\gamma \prec \mathbb{S}$: Then $g_0^*(\gamma) = p_{\mathbb{S}}(\gamma_0)$ for $\gamma \preceq \gamma_0 = \psi_{\mathbb{S}}^g(c)$. II with $p_{\mathbb{S}}(\gamma_0) \in \mathcal{H}_b(\Theta)$ yields $p_{\mathbb{S}}(\gamma_0) \in \mathcal{C}^{\mathbb{I}_N}(Z)$. On the other hand we have $p_{\mathbb{S}}(\gamma_0) < b$ by $\gamma_0 \in \mathcal{H}_b(\Theta)$.

Case 1.2.2. $\rho \prec \mathbb{S}$ and $\gamma \prec^R \sigma \in N(\rho)$ for some ρ and σ : Then $\mathbf{g}_0^*(\gamma) = \mathbf{g}_0^*(\rho)$. We obtain $\rho \in \mathcal{H}_b(\Theta)$. From **Case 1.2.1** with IH we see $\mathbf{g}_0^*(\rho) \in \mathcal{C}^{\mathbb{I}_N}(Z) \cap b$. Therefore MIH(b; Z) yields $\{\gamma\} \cup N(\gamma) \subset Z$.

Case 2. $\gamma \in N(\gamma_1)$ for a $\gamma_1 \in \Psi$: Then $\gamma_1 \in \mathcal{H}_b(\Theta)$, and **Case 1** yields $\gamma \in N(\gamma_1) \subset \mathbb{Z}$.

Proposition 7.30 1. Let $\gamma_1 = \gamma [\rho/\mathbb{S}]^{-1}$ be the Mostowski uncollapsing, and $\{\mathbb{S}, \gamma\} \subset C^{\rho}(Z)$. Then $\gamma_1 \in C^{\rho}(Z)$.

2.
$$\gamma \in \mathcal{H}_b(\rho) \cap C^{\rho}(Z) \Rightarrow \gamma \in \mathcal{H}_b(C^{\rho}(Z) \cap \rho).$$

Proof. Each is seen by induction on $\ell\gamma$. For Proposition 7.30.1, use the fact $\gamma_1 = \gamma [\rho/\mathbb{S}]^{-1} \ge \gamma$.

Proposition 7.31 Let $\mathbb{S} \in SSt$, $\eta \in L(\mathbb{S})$ and Z be an N-distinguished set such that $\{0, \Omega\} \subset Z$, $\forall k \forall \mathbb{S} \in Z \cap (St_k \cup \{\Omega\})[\mathbb{S}^{\dagger k} \in Z]$. Assume $\eta \in \mathcal{G}^Z$, $\psi_{\mathbb{I}_N}(b) \in Z$ and MIH(b; Z) in Proposition 7.29 for a $b \geq g_0^*(\eta)$. Then the following holds.

- 1. $g_0(\eta) \in \mathcal{C}^{\mathbb{I}_N}(Z).$
- 2. $g_1(\eta) \in \mathcal{C}^{\mathbb{I}_N}(Z).$
- 3. $g_2(\eta) \in \mathcal{C}^{\mathbb{I}_N}(Z).$

Proof. Proposition 7.31.2 is seen from Proposition 7.31.1 by induction on $\ell\eta$ as follows. Let $\eta > \rho \in L(\mathbb{S}) \cap \Psi$ be in the trail to η . We see $\mathbf{g}_0^*(\rho) = \mathbf{g}_0^*(\eta)$ from Definition 6.7. Moreover we see $\rho \in \mathcal{C}^{\eta}(Z) \cap \eta \subset Z$ from $\eta \in \mathcal{G}^Z$. In particular $\rho \in \mathcal{G}^Z$. By IH we obtain $\mathbf{g}_0(\rho) \in \mathcal{C}^{\mathbb{I}_N}(Z)$. On the other side, we see $\mathbf{g}_1(\eta) \in \mathcal{C}^{\mathbb{I}_N}(Z)$ if $\mathbf{g}_0(\rho) \in \mathcal{C}^{\mathbb{I}_N}(Z)$ for every $\eta > \rho \in L(\mathbb{S}) \cap \Psi$ in the trail to η from Definition 6.14.

7.31.1. Let
$$\eta \in \Psi$$
.

Case 1. $\eta = \rho$ or $\eta = \psi_{\mathbb{I}_N[\rho]}(c)$ for a $\rho \prec \mathbb{S}$ and a c: Then $\mathbf{p}_0(\rho) \leq \mathbf{g}_0(\rho) = \mathbf{g}_0(\eta) = \mathbf{g}_0^*(\eta) \leq b$. We show $\mathbf{p}_{\mathbb{S}}(\rho) = \mathbf{g}_0(\rho) \in \mathcal{C}^{\mathbb{I}_N}(Z)$. By (12) in Definition 3.31.6 we have $\mathbf{p}_0(\rho) \in \mathcal{H}_b(\rho)$, and $\mathbf{p}_{\mathbb{S}}(\rho) \in \mathcal{H}_b(\rho)$. On the other hand we have $\rho \in \mathcal{G}^Z$. We obtain $\mathbf{p}_{\mathbb{S}}(\rho) \in \mathcal{C}^{\rho}(Z)$ by $\rho \in \mathcal{C}^{\rho}(Z)$, and $\mathbf{p}_{\mathbb{S}}(\rho) \in \mathcal{H}_b(\mathcal{C}^{\rho}(Z) \cap \rho)$ by Proposition 7.30.2. Moreover we have $\mathcal{C}^{\rho}(Z) \cap \rho \subset Z$. Proposition 7.29 with MIH(b; Z) yields $\mathbf{p}_{\mathbb{S}}(\rho) \in \mathcal{H}_b(\mathcal{C}^{\rho}(Z) \cap \rho) \subset \mathcal{C}^{\mathbb{I}_N}(Z)$.

Case 2. Otherwise: Let $\rho \prec \mathbb{S}$ be such that $\eta \prec^R \tau \in N(\rho)$. Let $\eta_1 \in M_\rho$ be such that $\eta = \eta_1[\rho/\mathbb{S}]$. Then $\mathbf{g}_0(\eta) = \mathbf{g}_0(\eta_1)$ and $\mathbf{p}_0(\rho) \leq \mathbf{g}_0(\rho) = \mathbf{g}_0^*(\eta) \leq b$.

On the other hand we have $\eta \in \mathcal{G}^{\mathbb{Z}}$. $\eta \in \mathcal{C}^{\eta}(\mathbb{Z})$ yields $\rho \in \mathcal{C}^{\eta}(\mathbb{Z}) \cap \eta \subset \mathbb{Z}$. Hence $\rho \in \mathbb{Z}$. We obtain $\rho \in \mathcal{G}^{\mathbb{Z}}$. We see $\mathbb{S} \in \mathcal{C}^{\rho}(\mathbb{Z})$ from $\rho \in \mathcal{C}^{\rho}(\mathbb{Z})$. Hence $\{\mathbb{S}, \eta\} \subset \mathcal{C}^{\rho}(\mathbb{Z})$. Proposition 7.30.1 yields $\eta_1 \in \mathcal{C}^{\rho}(\mathbb{Z})$, and $\mathbf{g}_0(\eta_1) \in \mathcal{C}^{\rho}(\mathbb{Z})$ by $\eta_1 > \rho$. $\eta_1 \in M_{\rho} \subset \mathcal{H}_b(\rho)$ yields $\mathbf{g}_0(\eta_1) \in \mathcal{H}_b(\rho)$. We obtain $\mathbf{g}_0(\eta_1) \in \mathcal{H}_a(\mathcal{C}^{\rho}(\mathbb{Z}) \cap \rho)$ by Proposition 7.30.2. $\rho \in \mathcal{G}^{\mathbb{Z}}$ yields $\mathcal{C}^{\rho}(\mathbb{Z}) \cap \rho \subset \mathbb{Z}$. Hence Proposition 7.29 yields $\mathbf{g}_0(\eta_1) \in \mathcal{C}^{\mathbb{I}_N}(\mathbb{Z})$. 7.31.3. By induction on $\ell\eta$. Let $\eta \in \Psi$.

Case 1. $\eta = \rho \prec \mathbb{S}$: Then $p_0(\rho) = p_0(\eta)$. Let $f = m(\rho)$. Then $g_2(\rho) = o_{\mathbb{S}}(f) + 1$ and $SC(f) \subset \mathcal{H}_b(\rho)$ for $b \geq p_0(\eta)$ by (12) in Definition 3.31.6. Moreover $SC(f) \subset \mathcal{C}^{\rho}(Z)$ by $\rho \in \mathcal{C}^{\rho}(Z)$. Hence we obtain $SC(f) \subset \mathcal{H}_b(\mathcal{C}^{\rho}(Z) \cap \rho)$ by Proposition 7.30.2, where $\mathcal{C}^{\rho}(Z) \cap \rho \subset Z$. Proposition 7.29 with MIH(b; Z)yields $SC(f) \subset \mathcal{C}^{\mathbb{I}_N}(Z)$, and $o_{\mathbb{S}}(f) \in \mathcal{C}^{\mathbb{I}_N}(Z)$.

Case 2. Otherwise: Let $\rho \prec \mathbb{S}$ be such that $\eta = \eta_1[\rho/\mathbb{S}]$ with $\eta_1 \in M_\rho \cap L(\mathbb{S}_1)$ and $\mathbf{g}_0(\eta_1) = \mathbf{g}_0(\eta)$, where $\eta \prec^R (\mathbb{S}_1[\rho/\mathbb{S}])$ and $M_\rho \subset \mathcal{H}_b(\rho)$ for $\mathbf{p}_0(\rho) \leq \mathbf{g}_0(\rho) = \mathbf{g}_0^*(\eta) \leq b$. Then $\ell\eta_1 < \ell\eta$. $\eta \in C^{\eta}(Z)$ with $\rho < \eta$ yields $\eta \in C^{\rho}(Z)$ and $\rho \in C^{\eta}(Z) \cap \eta \subset Z$. We see $\mathbb{S} \in C^{\rho}(Z)$ from $\rho \in C^{\rho}(Z)$. We obtain $\eta_1 \in C^{\rho}(Z)$ by Proposition 7.30.1 and $\eta \in C^{\rho}(Z)$, and $\eta_1 \in \mathcal{H}_b(C^{\rho}(Z) \cap \rho)$ by Proposition 7.30.2. On the other hand we have $C^{\rho}(Z) \cap \rho \subset Z$. By Proposition 7.29 we obtain $\eta_1 \in C^{\mathbb{I}_N}(Z) \cap \mathbb{I}_N \subset Z$. Hence $\eta_1 \in \mathcal{G}^Z$. Moreover we see $\mathbf{g}_0^*(\eta_1) < b = \mathbf{p}_0(\rho) \leq \mathbf{g}_0^*(\eta)$ from $\eta_1 \in \mathcal{H}_b(\rho)$. IH yields $\mathbf{g}_2(\eta) = \mathbf{g}_2(\eta_1) \in C^{\mathbb{I}_N}(Z)$. \Box **Lemma 7.32** Let $\mathbb{S} = \mathbb{T}^{\dagger \vec{k}} \in SSt$ with $\mathbb{T} \in \{\Omega\} \cup (LSt \cap \Psi)$, $\mathbb{T} < \eta \in L(\mathbb{S})$, and Z be an N-distinguished set such that $\{0, \Omega, \mathbb{T}\} \subset Z$, $\forall k \forall \mathbb{U} \in Z \cap (St_k \cup \{\Omega\})[\mathbb{U}^{\dagger k} \in Z]$. Assume $\eta \in \mathcal{G}^Z$, $b \geq g_0^*(\eta)$, $\Lambda = \psi_{\mathbb{I}_N}(b) \in Z$, and MIH(b; Z) in Proposition 7.29. Then $\eta \in Z$.

Proof. By Lemma 6.15 we obtain $SC(\mathbf{g}_2(\eta)) \subset \Lambda = \psi_{\mathbb{I}_N}(b)$. An ordinal $\mathbf{g}_2^{\Lambda}(\eta) = o_{\Lambda}(f) + 1 < \mathbb{I}_N$ is obtained from $\mathbf{g}_2(\eta) = o_{\mathbb{I}_N}(f) + 1$ in Definition 6.1.2 by changing the base \mathbb{I}_N to Λ . Then for $SC(\mathbf{g}_2(\gamma)) \cup SC(\mathbf{g}_2(\delta)) \subset \Lambda$, $\mathbf{g}_2(\delta) < \mathbf{g}_2(\gamma) \Leftrightarrow \mathbf{g}_2^{\Lambda}(\delta) < \mathbf{g}_2^{\Lambda}(\gamma)$ by Proposition 3.3, and $\mathbf{g}_2(\gamma) \in \mathcal{C}^{\mathbb{I}_N}(Z) \Leftrightarrow \mathbf{g}_2^{\Lambda}(\gamma) \in Z$ by the assumption $\Lambda \in Z$.

On the other side, we see $W_N^{\mathbb{T}}(Z) \cap \mathbb{S} = Z \cap \mathbb{S}$ from $\mathbb{T} \in Z$ and $D_N[Z]$. Hence $\mathcal{G}^Y \cap \mathbb{S} = \mathcal{G}^Z \cap \mathbb{S}$ for $Y = W_N^{\mathbb{T}}(Z) \cap \mathbb{S}$.

We see $Wo[\mathcal{C}^{\mathbb{I}_N}(Z)]$ from $\mathcal{C}^{\mathbb{I}_N}(Z) \cap \mathbb{I}_N = Z \cap \mathbb{I}_N$ as in Lemma 7.13. We show $\eta \in Z \cap \mathbb{S} = W_N^{\mathbb{T}}(Z) \cap \mathbb{S}$ by induction on $\mathbf{g}^{\Lambda}(\eta) = (\mathbf{g}_1(\eta), \mathbf{g}_2^{\Lambda}(\eta))$ with respect to the lexicographic order $<_{lx}$ on $\mathcal{C}^{\mathbb{I}_N}(Z) \times Z$.

Let $\gamma \in R(\eta)$ be such that $\gamma \in \mathcal{G}^Z$. Then $\gamma \in R(\eta) \subset L(\mathbb{S})$, $\mathbb{T}^{-N} = \gamma^{-N} = \eta^{-N}$ and $\mathbb{T} < \gamma < \eta < \mathbb{S}$. By Lemma 6.15 we obtain $g_0^*(\gamma) \leq g_0^*(\eta)$, $g(\gamma) <_{lx} g(\eta)$ and $SC(g_2(\gamma)) \subset \Lambda = \psi_{\mathbb{I}_N}(b)$. Proposition 7.31 yields $\{g_1(\gamma), g_2(\gamma), g_1(\eta), g_2(\eta)\} \subset C^{\mathbb{I}_N}(Z)$. We obtain $g^{\Lambda}(\gamma) <_{lx} g^{\Lambda}(\eta)$. IH yields $\gamma \in Z$, and (53) is shown. On the other hand we have $\mathbb{T} \in Z$ for (54). Lemma 7.25 yields $\eta \in Z$.

Proposition 7.33 Let $D_N[Z]$ and $\rho \in L(\mathbb{S}) \cap Z \cap \Psi$ with an $\mathbb{S} \in SSt$. Then $N(\rho) \subset \mathcal{G}^Z$.

Proof. Let $\alpha \in N(\rho)$. We obtain $\alpha \in C^{\alpha}(Z)$ by $\rho \in Z \cap \alpha$. We show $\beta \in C^{\alpha}(Z) \cap \alpha \Rightarrow \alpha \in Z$ by induction on $\ell\beta$. Let $\rho \neq \beta \in C^{\alpha}(Z) \cap \alpha$. If $\beta < \rho$, then $\beta \in C^{\rho}(Z) \cap \rho \subset Z$ by Propositions 7.2.1 and 7.15. Let $\rho < \beta < \alpha$. By IH, Proposition 7.12 and Definition 7.1 we may assume that $\beta = \psi^{f}_{\sigma}(c)$ with $\sigma > \alpha$. Then $\beta < \rho$ by Proposition 3.39.

Corollary 7.34 For each $\zeta \in C^{\mathbb{I}_N}(W_{N+1})$, the following holds:

Let $\mathbb{S} = \mathbb{T}^{\dagger \vec{k}} \in SSt$ with $\mathbb{T} \in \{\Omega\} \cup (LSt \cap \Psi)$, $\eta \in N(\rho)$ with $\rho \in L(\mathbb{S})$, and $\{\mathbb{T}, \rho\} \subset \mathcal{W}_{N+1}$. Assume $\zeta \geq g_0^*(\eta)$ and $\operatorname{MIH}(\zeta; \mathcal{W}_{N+1})$ in Proposition 7.29. Then $\eta \in \mathcal{W}_{N+1}$.

Proof. By $\mathbf{g}_0^*(\eta) \leq \zeta \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1})$ and Lemma 7.28 we obtain $\psi_{\mathbb{I}_N}(\zeta) \in \mathcal{W}_{N+1}$. As in the proof of Lemma 7.22 we see that there exists an *N*-distinguished set *Z* such that $\{0, \Omega, \mathbb{T}, \rho\} \subset Z, \forall k \forall \mathbb{U} \in Z \cap (St_k \cup \{\Omega\})[\mathbb{U}^{\dagger k} \in Z], \psi_{\mathbb{I}_N}(\zeta) \in Z$, and $\operatorname{MIH}(\zeta; Z)$. Then $\eta \in Z \subset \mathcal{W}_{N+1}$ follows from Lemma 7.32 and Proposition 7.33.

Definition 7.35 For irreducible functions f let

$$f \in J :\Leftrightarrow SC(f) \subset \mathcal{W}_{N+1}.$$

For $a \in OT(\mathbb{I}_N)$ and irreducible functions f, define:

$$A(\zeta, a, f) :\Leftrightarrow \forall \sigma \in \mathcal{W}_{N+1} \cap \mathbb{I}_N[\mathbf{g}_0^*(\psi_\sigma^f(a)) \leq \zeta \Rightarrow \psi_\sigma^f(a) \in \mathcal{W}_{N+1}]$$

SIH(ζ, a) : $\Leftrightarrow \forall b \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap a \forall f \in J A(\zeta, b, f).$
SSIH(ζ, a, f) : $\Leftrightarrow \forall g \in J[g <_{l_x}^0 f \Rightarrow A(\zeta, a, g)].$

Lemma 7.36 For each $\zeta \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1})$, the following holds:

Assume $a \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap (\zeta + 1)$, $f \in J$, $\operatorname{SIH}(\zeta, a)$, $\operatorname{SSIH}(\zeta, a, f)$ in Definition 7.35. Moreover assume $\operatorname{MIH}(\zeta; \mathcal{W}_{N+1})$ in Proposition 7.29. Then for any $\mathbb{S} = \mathbb{T}^{\dagger \vec{k}} \in SSt$ with $\mathbb{T} \in (\{\Omega\} \cup (LSt \cap \Psi)) \cap \mathcal{W}_{N+1}$ and any $\kappa \in \mathcal{W}_{N+1} \cap (L(\mathbb{S}) \cup \{\mathbb{S}\})$ the following holds:

$$\mathbf{g}_0^*(\psi_\kappa^f(a)) \le \zeta \Rightarrow \psi_\kappa^f(a) \in \mathcal{W}_{N+1}$$

Proof. Let $\alpha_1 = \psi_{\kappa}^f(a) \in OT(\mathbb{I}_N)$ with $a \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap (\zeta+1), \kappa \in \mathcal{W}_{N+1} \cap (L(\mathbb{S}) \cup \{\mathbb{S}\})$ and $f \in J$ such that $\mathbb{S} = \mathbb{T}^{\dagger \vec{k}}$ with $\mathbb{T} \in \mathcal{W}_{N+1}$, and $\mathbf{g}_0^*(\alpha_1) \leq \zeta$. By Lemma 7.28 we have $\psi_{\mathbb{I}_N}(\zeta) \in \mathcal{W}_{N+1}$. By Lemma 7.32 and the assumption $\mathrm{MIH}(\zeta; \mathcal{W}_{N+1})$ it suffices to show $\alpha_1 \in \mathcal{G}^{\mathcal{W}_{N+1}}$.

By Lemma 7.10 we have $\{\kappa, a\} \cup SC(f) \subset C^{\alpha_1}(\mathcal{W}_{N+1})$, and hence $\alpha_1 \in C^{\alpha_1}(\mathcal{W}_{N+1})$. It suffices to show the following claim by induction on $\ell\beta_1$.

Claim 7.37 $\forall \beta_1 \in C^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1[\beta_1 \in \mathcal{W}_{N+1}].$

Proof of Claim 7.37. Assume $\beta_1 \in C^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1$ and let

LIH :
$$\Leftrightarrow \forall \gamma \in C^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1[\ell \gamma < \ell \beta_1 \Rightarrow \gamma \in \mathcal{W}_{N+1}].$$

We show $\beta_1 \in \mathcal{W}_{N+1}$. We can assume $\beta_1 \notin \{0, \Omega\}$ by Proposition 7.21. **Case 1.** $\beta_1 \notin \mathcal{E}(\beta_1)$: Assume $\beta_1 \notin \mathcal{W}_{N+1}$. Then $\beta_1 \notin N(\rho)$ for any ρ by $\beta_1 \in \mathcal{C}^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1$ and Definition 7.1. We obtain $S(\beta_1) \subset C^{\alpha_1}(\mathcal{W}_{N+1}) \cap \alpha_1$. LIH yields $S(\beta_1) \subset \mathcal{W}_{N+1}$. Hence we conclude $\beta_1 \in \mathcal{W}_{N+1}$ from Proposition 7.12.

In what follows consider the cases when $\beta_1 = \psi_{\pi}^g(b)$ for some π, b, g . We can assume $\pi > \alpha_1$ and $\{\pi, b\} \cup SC(g) \subset C^{\alpha_1}(\mathcal{W}_{N+1})$. Then either $\pi = \mathbb{I}_N$ or $\beta_1 \in L(\mathbb{S})$ for $\alpha_1 \in L(\mathbb{S})$.

Case 2. $\pi = \mathbb{I}_N$ and b < a: As in the proof of Lemma 7.28 we see $b \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1})$. We obtain $\beta_1 = \psi_{\mathbb{I}_N}(b) \in \mathcal{W}_{N+1}$ by $b < a \leq \zeta$ and Lemma 7.28.

Case 3. $\pi < \mathbb{I}_N, b < a, \beta_1 < \kappa$ and $\{\pi, b\} \cup SC(g) \subset \mathcal{H}_a(\alpha_1)$: Then $\beta_1 \in L(\mathbb{S})$. Let *B* denote a set of subterms of β_1 defined recursively as follows. First $\{\pi, b\} \cup SC(g) \subset B$. Let $\alpha_1 \leq \beta \in B$. If $\beta =_{NF} \gamma_m + \cdots + \gamma_0$, then $\{\gamma_i : i \leq m\} \subset B$. If $\beta =_{NF} \varphi \gamma \delta$, then $\{\gamma, \delta\} \subset B$. If $\beta = \psi^h_\sigma(c)$, then $\{\sigma, c\} \cup SC(h) \subset B$. If $\beta \in N(\tau)$, then $\tau \in B$.

Then from $\{\pi, b\} \cup SC(g) \subset C^{\alpha_1}(\mathcal{W}_{N+1})$ we see inductively that $B \subset C^{\alpha_1}(\mathcal{W}_{N+1})$. Hence by LIH we obtain $B \cap \alpha_1 \subset \mathcal{W}_{N+1}$. Moreover if $\alpha_1 \leq \psi^h_{\sigma}(c) \in B$, then $c \in K_{\alpha_1}(\{\pi, b\} \cup SC(g)) < a$.

We claim that

$$\forall \beta \in B(\beta \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1})) \tag{60}$$

Proof of (60) by induction on $\ell\beta$. Let $\beta \in B$. We may assume that $\alpha_1 \leq \beta$ is a strongly critical number such that $\beta \notin \{\Omega, \mathbb{I}_N\} \cup SSt$ by induction hypothesis on the lengths. First consider the case when $\alpha_1 \leq \beta = \psi^h_{\sigma}(c)$. By induction hypothesis we have $\{\sigma, c\} \cup SC(h) \subset C^{\mathbb{I}_N}(\mathcal{W}_{N+1})$. On the other hand we have c < a and $\mathbf{g}^*_0(\beta) \leq \mathbf{g}^*_0(\alpha_1)$ by Proposition 6.16. SIH (ζ, a) yields $\beta \in \mathcal{W}_{N+1}$.

Second let $\alpha_1 \leq \beta \in N(\tau)$ for a $\tau \in L(\mathbb{S})$. By IH we obtain $\tau \in \mathcal{W}_{N+1}$. We claim that $\mathbf{g}_0^*(\tau) \leq \mathbf{g}_0^*(\alpha_1) \leq \zeta$. If $\tau \leq \alpha_1$, then we obtain $\mathbf{g}_0^*(\tau) = \mathbf{g}_0^*(\alpha_1)$. Otherwise $\alpha_1 < \tau = \psi_{\sigma}^h(c) \in B \subset \mathcal{H}_a(\alpha_1)$ for some σ, h, c . We obtain $\mathbf{g}_0^*(\tau) \leq \mathbf{g}_0^*(\alpha_1)$ by Proposition 6.16. On the other hand we have $\mathbb{T} \in \mathcal{W}_{N+1}$ by one of the assumptions. Corollary 7.34 yields $\beta \in \mathcal{W}_{N+1}$.

Thus (60) is shown.

In particular we obtain $\{\pi, b\} \cup SC(g) \subset C^{\mathbb{I}_N}(\mathcal{W}_{N+1})$. Moreover we have b < a and $\mathbf{g}_0^*(\beta_1) \leq \mathbf{g}_0^*(\alpha_1)$ by Proposition 6.9. Therefore once again $SIH(\zeta, a)$ yields $\beta_1 \in \mathcal{W}_{N+1}$.

Case 4. $b = a, \pi = \kappa, \forall \delta \in SC(g)(K_{\alpha_1}(\delta) < a)$ and $g <_{lx}^0 f$: Obviously $\mathbf{g}_0^*(\beta_1) = \mathbf{g}_0^*(\alpha_1)$. As in (60) we see that $SC(g) \subset \mathcal{W}_{N+1}$ from $SIH(\zeta, a)$. SSIH (ζ, a, f) yields $\beta_1 \in \mathcal{W}_{N+1}$.

Case 5. $a \leq b \leq K_{\beta_1}(\delta)$ for some $\delta \in SC(f) \cup \{\kappa, a\}$: It suffices to find a γ such that $\beta_1 \leq \gamma \in \mathcal{W}_{N+1} \cap \alpha_1$. Then $\beta_1 \in \mathcal{W}_{N+1}$ follows from $\beta_1 \in C^{\alpha_1}(\mathcal{W}_{N+1})$ and Propositions 7.2.1 and 7.11.

 $k_X(\alpha)$ denotes the set in Definition 6.17. In general we see that $a \in K_X(\alpha)$ iff $\psi_{\sigma}^h(a) \in k_X(\alpha)$ for some σ, h , and for each $\psi_{\sigma}^h(a) \in k_X(\psi_{\sigma_0}^{h_0}(a_0))$ there exists a sequence $\{\alpha_i\}_{i\leq m}$ of subterms of $\alpha_0 = \psi_{\sigma_0}^{h_0}(a_0)$ such that $\alpha_m = \psi_{\sigma}^h(a), \alpha_i = \psi_{\sigma_i}^{h_i}(a_i)$ for some σ_i, a_i, h_i , and for each $i < m, X \not\ni \alpha_{i+1} \in \mathcal{E}(C_i)$ for $C_i = \{\sigma_i, a_i\} \cup SC(h_i)$.

Let $\delta \in SC(f) \cup \{\kappa, a\}$ such that $b \leq \gamma$ for a $\gamma \in K_{\beta_1}(\delta)$. Pick an $\alpha_2 = \psi_{\sigma_2}^{h_2}(a_2) \in \mathcal{E}(\delta)$ such that $\gamma \in K_{\beta_1}(\alpha_2)$, and an $\alpha_m = \psi_{\sigma_m}^{h_m}(a_m) \in k_{\beta_1}(\alpha_2)$ for some σ_m, h_m and $a_m \geq b \geq a$. We have $\alpha_2 \in \mathcal{W}_{N+1}$ by $\delta \in \mathcal{W}_{N+1}$. If $\alpha_2 < \alpha_1$, then $\beta_1 \leq \alpha_2 \in \mathcal{W}_{N+1} \cap \alpha_1$, and we are done. Assume $\alpha_2 \geq \alpha_1$, i.e., $\alpha_2 \notin \alpha_1$. Then $a_2 \in K_{\alpha_1}(\alpha_2) < a \leq b$, and m > 2.

Let $\{\alpha_i\}_{2 \leq i \leq m}$ be the sequence of subterms of α_2 such that $\alpha_i = \psi_{\sigma_i}^{h_i}(a_i)$ for some σ_i, a_i, h_i , and for each $i < m, \beta_1 \leq \alpha_{i+1} \in \mathcal{E}(C_i)$ for $C_i = \{\sigma_i, a_i\} \cup SC_{\mathbb{I}}(h_i)$.

Let $\{n_j\}_{0 \leq j \leq k}$ $(0 < k \leq m-2)$ be the increasing sequence $n_0 < n_1 < \cdots < n_k \leq m$ defined recursively by $n_0 = 2$, and assuming n_j has been defined so that $n_j < m$ and $\alpha_{n_j} \geq \alpha_1$, n_{j+1} is defined by $n_{j+1} = \min(\{i : n_j < i < m : \alpha_i < \alpha_{n_j}\} \cup \{m\})$. If either $n_j = m$ or $\alpha_{n_j} < \alpha_1$, then k = j and n_{j+1} is undefined. Then we claim that

$$\forall j \le k(\alpha_{n_j} \in \mathcal{W}_{N+1}) \& \alpha_{n_k} < \alpha_1 \tag{61}$$

Proof of (61). By induction on $j \leq k$ we show first that $\forall j \leq k(\alpha_{n_j} \in \mathcal{W}_{N+1})$. We have $\alpha_{n_0} = \alpha_2 \in \mathcal{W}_{N+1}$. Assume $\alpha_{n_j} \in \mathcal{W}_{N+1}$ and j < k.

Then $n_j < m$, i.e., $\alpha_{n_{j+1}} < \alpha_{n_j}$, and by $\alpha_{n_j} \in C^{\alpha_{n_j}}(\mathcal{W})$, we have $C_{n_j} \subset C^{\alpha_{n_j}}(\mathcal{W}_{N+1})$, and hence $\alpha_{n_j+1} \in \mathcal{E}(C_{n_j}) \subset C^{\alpha_{n_j}}(\mathcal{W}_{N+1})$. We see inductively that $\alpha_i \in C^{\alpha_{n_j}}(\mathcal{W}_{N+1})$ for any i with $n_j \leq i \leq n_{j+1}$. Therefore $\alpha_{n_{j+1}} \in C^{\alpha_{n_j}}(\mathcal{W}_{N+1}) \cap \alpha_{n_j} \subset \mathcal{W}_{N+1}$ by Propositions 7.2.1 and 7.11.

Next we show that $\alpha_{n_k} < \alpha_1$. We can assume that $n_k = m$. This means that $\forall i(n_{k-1} \leq i < m \Rightarrow \alpha_i \geq \alpha_{n_{k-1}})$. We have $\alpha_2 = \alpha_{n_0} > \alpha_{n_1} > \cdots > \alpha_{n_{k-1}} \geq \alpha_1$, and $\forall i < m(\alpha_i \geq \alpha_1)$. Therefore $\alpha_m \in k_{\alpha_1}(\alpha_2) \subset k_{\alpha_1}(\{\kappa, a\} \cup SC(h))$, i.e., $a_m \in K_{\alpha_1}(\{\kappa, a\} \cup SC(h))$ for $\alpha_m = \psi_{\sigma_m}^{h_m}(a_m)$. On the other hand we have $K_{\alpha_1}(\{\kappa, a\} \cup SC(h)) < a$ for $\alpha_1 = \psi_{\sigma_m}^{h}(a)$. Thus $a \leq a_m < a$, a contradiction.

(61) is shown, and we obtain $\beta_1 \leq \alpha_{n_k} \in \mathcal{W}_{N+1} \cap \alpha_1$. This completes a proof of Claim 7.37 and of the lemma.

Corollary 7.38 For each $\zeta \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1})$, $\operatorname{MIH}(\zeta; \mathcal{W}_{N+1})$ holds.

Proof. For each $n < \omega$, we have $\operatorname{TI}[\mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N + 1)]$ by Lemma 7.13.2. We show $\operatorname{MIH}(\zeta; \mathcal{W}_{N+1})$ by induction on $\zeta \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1})$. Assume $\forall \xi \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \zeta \operatorname{MIH}(\xi; \mathcal{W}_{N+1})$.

Let $\mathbb{S} = \mathbb{T}^{\dagger \vec{k}}$ with $\mathbb{T} \in \mathcal{W}_{N+1}$, and $\gamma = \psi_{\kappa}^{f}(a) \in L(\mathbb{S})$ be such that $k(\gamma) = \{\kappa, a\} \cup SC(f) \subset \mathcal{C}^{\mathbb{I}_{N}}(\mathcal{W}_{N+1})$ and $h(\gamma) = \{a, \mathbf{g}_{0}^{*}(\gamma)\} \subset \mathcal{C}^{\mathbb{I}_{N}}(\mathcal{W}_{N+1}) \cap \zeta$. We obtain MIH $(\xi; \mathcal{W}_{N+1})$ by IH for $\xi = \max\{a, \mathbf{g}_{0}^{*}(\gamma)\}$.

We obtain $\gamma \in \mathcal{W}_{N+1}$ by Lemma 7.36 and MIH $(\xi; \mathcal{W}_{N+1})$ with subsidiary induction on $a \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap (\xi+1)$ and sub-subsidiary induction on $f \in J$. Then Corollary 7.34 yields $N(\gamma) \subset \mathcal{W}_{N+1}$.

Here by induction on $f \in J$ we mean by induction along $g <_{lx}^0 f$. In the proof of Lemma 7.36, SSIH (ζ, a, f) is invoked in **Case 4**, i.e., only when $\psi_{\kappa}^g(a) < \psi_{\kappa}^f(a)$ with $\kappa < \mathbb{I}_N$. Then Lemma 6.3 yields $o_{\mathbb{I}_N}(g) < o_{\mathbb{I}_N}(f) \in \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1})$ for $SC(f) \subset \mathcal{C}^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \Lambda$, where $\Lambda = \psi_{\mathbb{I}_N}(b)$ and $b = g_0^*(\psi_{\kappa}^f(a)) \ge p_0(\psi_{\kappa}^f(a))$. Hence $o_{\Lambda}(g) < o_{\Lambda}(f) \in \mathcal{W}_{N+1}$ by $\Lambda \in \mathcal{W}_{N+1}$.

Lemma 7.39 For each $n < \omega$, the following holds:

If one of the followings holds, then $\alpha \in W_{N+1}$ for $\alpha \in OT(\mathbb{I}_N)$.

- 1. $\alpha = \mathbb{S}^{\dagger k}$ with $\mathbb{S} \in \mathcal{W}_{N+1} \cap (St_k \cup \{\Omega\})$.
- 2. $\alpha = \psi_{\mathbb{I}_N}(a)$ with $a \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \omega_n(\mathbb{I}_N+1)$.
- 3. $\alpha = \psi_{\kappa}^{f}(a) \in L(\mathbb{S}) \text{ for } \mathbb{S} = \mathbb{T}^{\dagger k} \text{ with } \mathbb{T} \in \mathcal{W}_{N+1} \text{ and } k(\alpha) \cup h(\alpha) = \{\kappa, a, \mathbf{g}_{0}^{*}(\alpha)\} \cup SC(f) \subset \mathcal{C}^{\mathbb{I}_{N}}(\mathcal{W}_{N+1}) \cap \omega_{n}(\mathbb{I}_{N}+1).$
- 4. $\alpha \in N(\rho)$ for $\rho \in \mathcal{W}_{N+1} \cap L(\mathbb{S})$ with $\mathbb{S} = \mathbb{T}^{\dagger k}$ such that $\mathbb{T} \in \mathcal{W}_{N+1}$ and $g_0^*(\rho) < \omega_n(\mathbb{I}_N + 1).$

Proof. 7.39.1 is seen from Lemma 7.20.7.39.2 follows from Lemma 7.28.7.39.3 follows from Lemma 7.36 and Corollary 7.38.7.39.4 follows from Corollaries 7.34 and 7.38.

Let us conclude Theorem 1.2. For each $\alpha \in OT(\mathbb{I}_N)$, $\alpha \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1})$ is seen by metainduction on the lengths $\ell \alpha$ using Propositions 7.12, 7.21 and Lemma 7.39. Note that $\ell(\mathbf{g}_0^*(\psi_{\kappa}^f(\alpha))) < \ell(\psi_{\kappa}^f(\alpha))$ and $\ell(\mathbb{T}) < \ell(\rho)$ for $\rho \in L(\mathbb{S})$ and $\mathbb{S} = \mathbb{T}^{\dagger k}$. Therefore we obtain Σ_{N+2}^1 -DC+BI $\vdash \alpha \in C^{\mathbb{I}_N}(\mathcal{W}_{N+1}) \cap \Omega = \mathcal{W}_{N+1} \cap \Omega =$ $W(C^0(\mathcal{W}_{N+1})) \cap \Omega = W(OT(\mathbb{I}_N)) \cap \Omega$, and Σ_{N+2}^1 -DC+BI $\vdash Wo[\alpha]$ for each $\alpha < \psi_{\Omega}(\varepsilon_{\mathbb{I}_N+1})$.

8 Outcomes on \mathbb{Z}_2

In this final section let us conclude some standard outcomes of an ordinal analysis of the theory \mathbf{Z}_2 .

Let $\operatorname{TI}[\Pi_0^{1-}, \psi_\Omega(\varepsilon_{\mathbb{I}_N+1})]$ denote a schema of transfinite induction $\forall \alpha \in OT(\mathbb{I}_N) \cap \Omega$ $(\operatorname{Prg}[OT(\mathbb{I}_N), A] \to OT(\mathbb{I}_N) \cap \alpha \subset A)$ up to $\psi_\Omega(\varepsilon_{\mathbb{I}_N+1})$ in $OT(\mathbb{I}_N)$ applied to arithmetic formulas $A \in \Pi_0^{1-}$ in the language of the first-order arithmetic PA. Let $T_0 = \operatorname{PA} + \bigcup \{\operatorname{TI}[\Pi_0^{1-}, \psi_\Omega(\varepsilon_{\mathbb{I}_N+1})] : N < \omega\}$, and $T_1 = \operatorname{FiX}^i(T_0)$ denote the intuitionistic fixed point theory over T_0 . The language of the theory T_1 is expanded by unary predicate symbols I for each operator $\Phi(X, x)$, in which every occurrence of a unary predicate symbol X is strictly positive. The axioms in T_1 are obtained from T_0 by adding the axioms $\forall x[I(x) \leftrightarrow \Phi(I, x)]$ for a fixed point I. The axiom schema $\operatorname{TI}[\Pi_0^{1-}, \psi_\Omega(\varepsilon_{\mathbb{I}_N+1})]$ of transfinite induction as well as schema of complete induction may be applied to arbitrary first-order formulas in the expanded language with the predicates I. The underlying logic in T_1 is the intuitionistic first-order logic with the axiom $\forall x, y(x = y \to I(x) \to I(y))$. The excluded middle $\forall x(\neg I(x) \lor I(x))$ for the predicate I is not available in T_1 .

Lemma 8.1 FiX^{*i*}(T_0) is a conservative extension of T_0 . Moreover the fact is provable in the fragment $I\Sigma_1^0$ of the first-order arithmetic: $I\Sigma_1^0 \vdash \Pr_{T_1}(\lceil \varphi \rceil) \rightarrow \Pr_{T_0}(\lceil \varphi \rceil)$, where $\Pr_T(x)$ is a standard provability predicate for a theory T.

Proof. The fact is seen as in [1, 3]. To formalize a proof of the fact in $I\Sigma_1^0$, follow a finitary analysis in section 4.4 of [3].

Theorem 8.2 Z₂ is a conservative extension of $\mathsf{PA} + \bigcup \{ \mathrm{TI}[\Pi_0^{1-}, \psi_\Omega(\varepsilon_{\mathbb{I}_N+1})] : N < \omega \}$. Moreover the fact is provable in the fragment $I\Sigma_1^0$.

Proof. Assume that $\mathbb{Z}_2 \vdash A$ for an arithmetic sentence $A \in \Pi_0^{1-}$. Pick an $N < \omega$ such that Σ_{N+2}^1 -DC+BI $\vdash A$. By Lemma 2.3 we obtain $\mathsf{KP}\omega + \Pi_N$ -Collection+ $(V = L) \vdash A^{set}$, and hence $\mathsf{KP}\omega + \Pi_N$ -Collection $\vdash A^{set}$. Then by Lemma 2.5 we obtain $S_{\mathbb{I}_N} \vdash A^{set}$.

Now we see that the proof of Theorem 1.1 in sections 4 and 5 is formalizable in the intuitionistic fixed point theory $T_1 = \operatorname{FiX}^i(T_0)$ over T_0 . Let us regard each of the relations $(\mathcal{H}_{\gamma}, \Theta; \mathbb{Q}_{\Pi}) \vdash_{c,\gamma_0}^{*a} \Gamma; \Pi^{\{\cdot\}}$ and $(\mathcal{H}_{\gamma}, \Theta, \mathbb{Q}) \vdash_{c,d,e,\beta,\gamma_0}^{a} \Gamma$ as a fixed point of a strictly positive operator. Then by applying transfinite induction to first-order formulas with the fixed point predicates, Theorem 1.1 is proved. Therefore we obtain $\operatorname{FiX}^i(T_0) \vdash A$, and $T_0 \vdash A$ by Lemma 8.1. \Box We see readily that the transfinite induction $\operatorname{TI}(\psi_{\Omega}(\mathbb{I}_{\omega}))$ up to $\psi_{\Omega}(\mathbb{I}_{\omega})$ is equivalent to the Π_1^1 -soundness $\operatorname{RFN}_{\Pi_1^1}(\mathbb{Z}_2)$ of \mathbb{Z}_2 over RCA_0 , where $\operatorname{TI}(\psi_{\Omega}(\mathbb{I}_{\omega}))$ denotes a Π_1^1 -sentence $\forall N \forall \alpha \in OT(\mathbb{I}_N) \cap \Omega \forall Y$ ($\operatorname{Prg}[OT(\mathbb{I}_N), Y] \to OT(\mathbb{I}_N) \cap \alpha \subset Y$).

Definition 8.3 Let $\alpha \in OT(\mathbb{I}_N)$ be an ordinal term.

j

- 1. DS_{α} denotes a Π_2^0 -sentence saying that 'there is no primitive recursive and descending sequence $\{f(n)\}_n$ of ordinals with $f(0) < \alpha$ '. This means that $f(0) < \alpha \Rightarrow \exists n(f(n+1) \not< f(n)).$
- 2. WDS_{α} denotes a Π_3^0 -sentence saying that 'for every primitive recursive and weakly descending sequence $\{f(n)\}_n$ of ordinals with $f(0) < \alpha$, there exists an n such that $\forall m \ge n(f(m) = f(n))$ '. This is equivalent to the principle that 'for every primitive recursive sequence $\{f(n)\}_n$ of ordinals, there exists an n such that $\forall m(f(n) \le f(m))$.
- 3. $DS_{\psi_{\Omega}(\varepsilon_{\mathbb{I}_{N}+1})} :\Leftrightarrow \forall \alpha \in OT(\mathbb{I}_{N}) \cap \Omega DS_{\alpha} \text{ and } DS_{\psi_{\Omega}(\mathbb{I}_{\omega})} :\Leftrightarrow \forall N > 0 DS_{\psi_{\Omega}(\varepsilon_{\mathbb{I}_{N}+1})}.$ Also $WDS_{\psi_{\Omega}(\varepsilon_{\mathbb{I}_{N}+1})} :\Leftrightarrow \forall \alpha \in OT(\mathbb{I}_{N}) \cap \Omega WDS_{\alpha} \text{ and } WDS_{\psi_{\Omega}(\mathbb{I}_{\omega})} :\Leftrightarrow \forall N > 0 WDS_{\psi_{\Omega}(\varepsilon_{\mathbb{I}_{N}+1})}.$
- 4. A computable (total) function f on integers is said to be $\psi_{\Omega}(\varepsilon_{\mathbb{I}_N+1})$ recursive if f is defined from α -recursive functions g, r, h by $\psi_{\Omega}(\varepsilon_{\mathbb{I}_N+1})$ recursion:

$$f(y,x) = \begin{cases} g(y,x,f(y,r(y,x))) & \text{if } r(y,x) < x < \Omega \text{ in } OT(\mathbb{I}_N) \\ h(y,x) & \text{otherwise} \end{cases}$$

- 5. RFN_{Σ_{2}^{0}} (**Z**₂) denotes the uniform reflection principle of **Z**₂ for Σ_{n}^{0} -formulas.
- **Corollary 8.4** 1. The 2-consistency $\operatorname{RFN}_{\Sigma_2^0}(\mathbf{Z}_2)$ of \mathbf{Z}_2 is equivalent to $WDS_{\psi_{\Omega}(\mathbb{I}_{\omega})}$ over $I\Sigma_1^0$.
 - 2. \mathbf{Z}_2 is Π^0_3 -conservative over $I\Sigma^0_1 + \{WDS_{\psi_\Omega(\varepsilon_{\mathbb{I}_N+1})} : 0 < N < \omega\}$.
 - 3. The 1-consistency $\operatorname{RFN}_{\Sigma_1^0}(\mathbf{Z}_2)$ of \mathbf{Z}_2 is equivalent to $DS_{\psi_{\Omega}(\mathbb{I}_{\omega})}$ over $I\Sigma_1^0$.
 - 4. \mathbf{Z}_2 is Π_2^0 -conservative over $I\Sigma_1^0 + \{DS_{\psi_\Omega(\varepsilon_{\mathbb{I}_N+1})} : 0 < N < \omega\}$.
 - 5. For computable total function f on \mathbb{N} , f is provably computable in \mathbb{Z}_2 iff f is $\psi_{\Omega}(\varepsilon_{\mathbb{I}_N+1})$ -recursive for an $N < \omega$.

Proof. Each follows from Theorem 8.2 as in chapter 4 of [3].

For the consistency $Con(\mathbf{Z}_2)$ of \mathbf{Z}_2 we obtain the following.

Corollary 8.5 There are primitive recursive predicate B and primitive recursive function f such that both of $\forall N > 0 \forall \alpha \in OT(\mathbb{I}_N) \cap \Omega(f(N,\alpha) < \alpha \rightarrow B(N, f(N, \alpha)) \rightarrow B(N, \alpha))$ and $\forall N > 0 \forall \alpha \in OT(\mathbb{I}_N) \cap \Omega B(N, \alpha) \rightarrow Con(\mathbb{Z}_2)$ is provable in $I\Sigma_1^{0}$.

Proof. This is seen from Theorem 8.2 as in section 4.3 of [3].

References

- T. Arai, Quick cut-elimination for strictly positive cuts, Ann. Pure Appl. Logic 162 (2011), 807-815.
- [2] T. Arai, A simplified ordinal analysis of first-order reflection, Jour. Symb. Logic 85 (2020) 1163-1185.
- [3] T. Arai, Ordinal Analysis with an Introduction to Proof Theory, (Springer, Singapore, 2020)
- [4] T. Arai, Wellfoundedness proof with the maximal distinguished set, Arch. Math. Logic 62 (2023) 333-357.
- [5] T. Arai, An ordinal analysis of a single stable ordinal, submitted.
- [6] J. Barwise, Admissible Sets and Structures (Springer, Berlin, 1975)
- [7] W. Buchholz, Normalfunktionen und konstruktive Systeme von Ordinalzahlen. in: J. Diller, G. H. Müller, eds. Proof Theory Symposion Kiel 1974, Lect. Notes Math. vol. 500, pp. 4-25 (Springer, Berlin, 1975)
- [8] W. Buchholz, A new system of proof-theoretic ordinal functions, Ann. Pure Appl. Logic 32 (1986), 195-207.
- W. Buchholz, A simplified version of local predicativity, in: P. H. G. Aczel, H. Simmons and S. S. Wainer, eds. Proof Theory. pp. 115-147 (Cambridge UP, Cambridge, 1992)
- [10] W. Buchholz, Review of the paper: A. Setzer, Well-ordering proofs for Martin-Löf type theory, Bull. Symb. Logic 6 (2000) 478-479.
- [11] G. Jäger, A well-ordering proof for Feferman's theory T, Archiv f. math. Logik u. Grundl. 23 (1983) 65-77.
- [12] G. Jäger, Theories for admissible sets, A unifying approach to proof theory, Studies in Proof Theory Lecture Notes 2 (Bibliopolis, Napoli, 1986)
- [13] M. Rathjen, Proof theory of reflection, Ann. Pure Appl. Logic 68 (1994) 181-224.
- [14] M. Rathjen, An ordinal analysis of parameter free Π¹₂-comprehension, Arch. Math. Logic 44 (2005) 263-362.
- [15] S. Simpson, Subsystems of Second Order Arithmetic, second edition (Cambridge UP, Cambridge, 2009)