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Abstract

In this paper we give an ordinal analysis of a set theory with ΠN -
Collection.

1 Introduction

Throughout in this paper N denotes a fixed positive integer. In this paper we
give an ordinal analysis of a Kripke-Platek set theory with the axiom of Infinity
and one of ΠN -Collection, denoted by KPω + ΠN -Collection. Our proof is an
extension of [4, 5]. Since [5] has not yet appeared, some proofs are duplicated
for the readers’ conveniences.

In [5] we analyzed proof-theoretically a set theory KPℓr + (M ≺Σ1
V ) ex-

tending KPℓr with an axiom stating that ‘there exists a transitive set M such
that M ≺Σ1

V ’. An ordinal analysis of an extension KPi+ (M ≺Σ1
V ) is given

in M. Rathjen[14]. Our proof is an extension of [2, 5]. In [2], a set theory KPΠN
of ΠN -reflection is analyzed, which is an extension of M. Rathjen’s analysis for
Π3-reflection in [13].

Σ1
N+2-DC+BI [Σ1

N+2-AC+BI] denotes a second order arithmetic obtained
from ACA0+BI by adding the axiom of Σ1

N+2-Dependent Choice [Σ1
N+2-Axiom

of Choice], resp. It is easy to see that Σ1
N+2-DC+BI is interpreted canonically

to the set theory KPω + ΠN -Collection + (V = L) with the axiom V = L of
constructibility. It is well known that Σ1

N+2-DC0 implies Σ1
N+2-AC, which yields

∆1
N+2-CA, a fortiori Σ1

N+1-CA, cf. Lemma VII.6.6 of [15]. Moreover it is known
that Σ1

N+2-DC+BI is Π1
4-conservative over Σ1

N+2-AC+BI [over ∆1
N+2-CA+BI],

resp., cf. Exercise VII.5.13 and Theorem VII.6.16 of [15].
Let n be a positive integer. We say that an ordinal α is n-stable if Lα ≺Σn

L
for the constructible universe L =

∪
α Lα. In general, a transitive and non-

empty set M is n-stable if M ≺Σn V for the universe V . We see that (V,∈
) |= KPω +ΠN -Collection if V enjoys the ∆0({sti}0<i≤N )-collection, where sti
denotes the predicate for the class {M ∈ V :M ≺Σi

V } of i-stable sets in V .
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We introduce an extension SIN of KPω + ΠN -Collection in the language
{∈} ∪ {sti}0<i≤N , which codifies Σ({sti}0<i≤N )-reflection. We aim to give an
ordinal analysis of the theory SIN .

In the following theorems, Ω denotes the least recursively regular ordinal
ωCK1 , and ψΩ a collapsing function such that ψΩ(α) < Ω. IN is an ordinal term
denoting an ordinal such that LIN |= KPω +ΠN -Collection + (V = L).

First we show the following Theorem 1.1.

Theorem 1.1 Suppose SIN ⊢ θLΩ for a Σ1-sentence θ in the language {∈} of
set theory. Then LψΩ(εIN+1) |= θ holds.

It is not hard to see that the ordinal ψΩ(εIN+1) is computable. Let < de-
note a computable well-ordering of type ψΩ(εIN+1) on the set of natural num-
bers. Conversely we show that Σ1

N+2-DC+BI proves that each initial segment
of ψΩ(εIN+1) is well-founded.

Theorem 1.2 Σ1
N+2-DC+BI ⊢Wo[α] for each α < ψΩ(εIN+1).

For T ⊃ ACA0, |T | denotes the proof-theoretic ordinal of T , i.e., the supre-
mum of order types of computable well-orderings ≺ on the set of natural num-
bers for which T proves the fact that ≺ is a well-ordering. Also let |KPω +
ΠN -Collection|ΣΩ

1
denote the ΣΩ

1 -ordinal of KPω + ΠN -Collection, i.e., the or-

dinal min{α ≤ ωCK1 : ∀θ ∈ Σ1

(
KPω +ΠN -Collection ⊢ θLΩ ⇒ Lα |= θ

)
}. For

more on ordinal analysis see [3]. We conclude the following Theorem 1.3, where
ψΩ(εIN+1) denotes the order type of the initial segment OT (IN )∩Ω of a notation
system OT (IN ) of ordinals.

Theorem 1.3 |∆1
N+2-CA+BI| = |Σ1

N+2-AC+BI| = |Σ1
N+2-DC+BI| = |KPω +

ΠN -Collection|ΣΩ
1
= ψΩ(εIN+1).

Let Z2 = Σ1
∞-DC be the full second order arithmetic with the Dependent

Choice schema, and ZFC−Power denote the set theory ZFC minus the power set
axiom. Z2 proves the (Π1

1-)soundness of Σ1
N+2-DC + BI, and hence Z2 proves

that (OT (IN ), <) is a well ordering for each N . Z2 is canonically interpreted in
(ZFC− Power) + (V = L), which is Π1

1-conservative over ZFC− Power.
Assume ZFC−Power ⊢ θ for a sentence θ. Since SIN subsumes ΠN -Collection

and ΣN -Separation, there is an N such that SIN ⊢ θ. Therefore we conclude
the following.

Theorem 1.4 ψΩ(Iω) := sup{ψΩ(IN ) : 0 < N < ω} = |Z2| = |ZFC−Power|ΣΩ
1
.

Let us mention the contents of this paper. In the next section 2 a second or-
der arithmetic Σ1

N+2-DC+BI is interpreted to a set theory KPω+ΠN -Collection+
(V = L), and KPω +ΠN -Collection is shown to be a subtheory of a set theory
SIN . In section 3 ordinals for our analysis of ΠN -Collection are introduced, and
a computable notation system OT (IN ) is extracted.
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Theorem 1.1 is proved in sections 4 and 5. In section 4 operator controlled
derivations are introduced. In section 5, stable ordinals are removed from deriva-
tions. Although our proof of Theorem 1.1 is based on operator controlled deriva-
tions introduced by W. Buchholz[9], it is hard for us to give its sketch here. See
subsection 4.2 for an outline of the proof.

Theorem 1.2 is proved in sections 6 and 7. For 0 ≤ i ≤ N , we intro-
duce i-maximal distinguished sets, which are Σ1

2+i-definable. A 0-maximal dis-
tinguished set is Σ1

2-definable as in [4]. Σ1
N+2-(Dependent) Choice is needed

to handle limits of N -stable ordinals. Our proof of Theorem 1.2 is based on
maximal distinguished class introduced again by Buchholz[7]. A sketch of the
well-foundedness proof is outlined in subsection 6.1.

In the final section 8 let us conclude some standard outcomes of an ordinal
analysis of the theory Z2.

IH denotes the Induction Hypothesis, MIH the Main IH, SIH the Subsidiary
IH, and SSIH the Sub-Subsidiary IH.

2 ΠN-Collection

In this section a second order arithmetic Σ1
N+2-DC+BI is interpreted canonically

to a set theory KPω + ΠN -Collection + (V = L), and KPω + ΠN -Collection is
shown to be a subtheory of a set theory SIN .

For subsystems of second order arithmetic, we follow largely Simpson’s
monograph[15]. The schema Bar Induction, BI is denoted by TI in [15]. BI
allows the transfinite induction schema for well-founded relations.

Σ1
N+2-AC+BI denotes a second order arithmetic obtained from Π1

1-CA0 +
BI by adding the axiom Σ1

N+2-AC, ∀n∃XF (n,X) → ∃Y ∀nF (n, Yn) for each
Π1
N+1-formula F (n,X), where m ∈ Yn ⇔ (n,m) ∈ Y for a bijective pairing

function (·, ·). Σ1
N+2-DC+BI denotes a second order arithmetic obtained from

Π1
1-CA0+BI by adding the axiom Σ1

N+2-DC for each Π1
N+1-formula F (n,X, Y ),

∀n∀X∃Y F (n,X, Y ) → ∀X0∃Y ∀n[Y0 = X0 ∧ F (n, Yn, Yn+1)]. It is easy to see
that the formulas F can be Σ1

N+2 in the axioms.
The axioms of the set theory KPω + ΠN -Collection consists of those of

KPω (Kripke-Platek set theory with the Axiom of Infinity, cf.[6, 12]) plus
ΠN -Collection: for each ΠN -formula A(x, y) in the language of set theory,
∀x ∈ a∃yA(x, y) → ∃b∀x ∈ a∃y ∈ bA(x, y).

ΣN -Separation denotes the axiom ∃y∀x(x ∈ y ↔ x ∈ a∧φ(x)) for each ΣN -
formula φ(x). ∆N+1-Separation denotes the axiom ∀x ∈ a(φ(x) ↔ ¬ψ(x)) →
∃y∀x(x ∈ y ↔ x ∈ a ∧ φ(x)) for each ΣN+1-formulas φ(x) and ψ(x).

ΣN+1-Replacement denotes the axiom stating that if ∀x ∈ a∃!yφ(x, y), then
there exists a function f with its domain dom(f) = a such that ∀x ∈ aφ(x, f(x))
for each ΣN+1-formula φ(x, y).

Lemma 2.1 KPω +ΠN -Collection proves each of ΣN -Separation, ∆N+1 −
Separation and ΣN+1-Replacement.
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Proof. We show that {x ∈ a : φ(x)} exists as a set for each Σi-formula φ by
(meta)induction on i ≤ N . The case i = 0 follows from ∆0-Separation. Let
φ ≡ ∃y θ(x, y) with a Πi−1-matrix θ. We have by logic ∀x ∈ a∃y(∃zθ(x, z) →
θ(x, y)). By Πi-Collection pick a set b so that ∀x ∈ a∃y ∈ b(φ(x) → θ(x, y)).
In other words, {x ∈ a : φ(x)} = {x ∈ a : ∃y ∈ b θ(x, y)}. If i = 1, then
∃c[c = {x ∈ a : ∃y ∈ b θ(x, y)}] by ∆0-Separation. Let 2 ≤ i ≤ N . By Πi−2-
Collection we obtain a Πi−1-formula σ such that ∃y ∈ b θ(x, y) ↔ σ(x). By IH
we obtain ∃c[c = {x ∈ a : σ(x)}].

∆N+1-Separation follows from ΣN -Separation as in [6], p.17, Theorem 4.5(∆
Separation), and ΣN+1-Replacement follows from ∆N+1-Separation as in [6],
p.17, Theorem 4.6(Σ Replacement). 2

For a formula A in the language of second order arithmetic let Aset denote
the formula obtained from A by interpreting the first order variable x as x ∈ ω
and the second order variable X as X ⊂ ω.

The following is the Quantifier Theorem in p.125 of [12], in which KPlr is
defined as a set theory for limits of admissible sets with restricted induction.
KPlr is a subtheory of KPω + ΠN -Collection. Ad(x) designates that x is an
admissible set.

Lemma 2.2 For each Σ1
N+1-formula F (n, a, Y ), there exists a ΣN -formula AΣ(d, n, a, Y )

in the language of set theory so that for FΣ(n, a, Y ) :⇔ ∃d[Ad(d) ∧ Y ∈ d ∧
AΣ(d, n, a, Y )],

KPlr ⊢ n, a ∈ ω ∧ Y ⊂ ω → {F set(n, a, Y ) ↔ FΣ(n, a, Y )}.

For an ordinal α, Lα denotes the initial segment of Gödel’s constructible
universe L =

∪
α Lα. x ∈ L is a Σ1-formula. <L denotes a canonical ∆1 well

ordering of L such that if y <L x ∈ Lα, then y ∈ Lα, cf. p.162 of [6]. V = L
denotes the axiom of Constructibility.

Lemma 2.3 For each sentence A in the language of second order arithmetic,

Σ1
N+2−DC+ BI ⊢ A⇒ KPω +ΠN -Collection + (V = L) ⊢ Aset.

Proof. By the Quantifier Theorem 2.2 F set(n,X, Y ) is equivalent to a ΠN -
formula φ(n,X, Y ) for a Π1

N+1-formula F (n,X, Y ), n ∈ ω and X ⊂ ω. It
suffices to show for a ΠN -formula φ(n,X, Y ) that assuming ∀n ∈ ω∀X ⊂ ω∃Y ⊂
ωφ(n,X, Y ) and X0 ⊂ ω, there exists a function f with its domain dom(f) = ω
such that ∀n ∈ ω[f(0) = X0∧φ(n, f(n), f(n+1))]. By induction on k ∈ ω using
V = L we see that there exists a unique family (Yn)n<k of subsets of ω such that
∀n < k[φ(n, Yn, Yn+1) ∧ ∀Z <L Yn+1¬φ(n, Yn, Z)], where ∀Z <L Y ¬φ(n, Y, Z)
is equivalent to a ΣN -formula under ΠN−1-Collection. By ΣN+1-Replacement
pick a function g with dom(g) = ω and rng(g) ⊂ <ωP(ω) so that for any k ∈ ω
g(k) is the unique sequence (Yn)n<k ∈ kP(ω) with Y0 = X0. Then the function
f(n) = (g(n+ 1)) (n) is a desired one. 2
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It is easy to see that KPω+ΠN -Collection+(V = L) ⊢ A⇒ KPω+ΠN -Collection ⊢
AL for anyA, and each Π1

1-sentenceB on ω is absolute for L, KPω+ΠN -Collection ⊢
B ↔ BL.

Next we show that KPω + ΠN -Collection is contained in a set theory SIN .
The language of the theory SIN is {∈,M0} ∪ {sti}0<i≤N with unary predicate
constants sti and an individual constant M0. sti(a) is intended to denote the
fact that a is an i-stable set and M0 is intended to denote the least admissible
set LωCK

1
above Lω. The axioms of SIN are obtained from those1 of KPω by

adding the following axioms. By a ∆0({sti}0<i<k)-formula we mean a bounded
formula in the language Lk = {∈,M0} ∪ {sti}i<k.

1. The axioms for the admissible set M0: M0 ̸= ∅, ∀x ∈M0∀y ∈ x(y ∈M0),
and the axioms stating that (M0,∈) |= KPω.

2. ∆0({sti}0<i≤N )-collection:

∀x ∈ a∃y θ(x, y) → ∃b∀x ∈ a∃y ∈ b θ(x, y)

for each ∆0({sti}0<i≤N )-formula θ in which the predicates sti may occur.
Note that Σ1({sti}0<i≤N )-collection follows from this.

3.
∀a∃b[a ∈ b ∧ stN (b)] (1)

4. For each i+ 1 ≤ N :

sti+1(a) →M0 ∈ a ∧ ∀y ∈ a∀z ∈ y(z ∈ a) ∧ lsti(a) (2)

where lsti(a) :⇔ sti(a) ∧ ∀b ∈ a∃c ∈ a (b ∈ c ∧ sti(c)) and st0(c) :⇔ (0 =
0).

5. For 0 < i ≤ N :
sti(a) ∧ φ(u) ∧ u ∈ a→ φa(u) (3)

for each Σ1({stj}j<i)-formula φ ≡ (∃x θ) in the language Li = {∈,M0} ∪
{stj}j<i, where φa ≡ (∃x ∈ a θ).

Note that if lsti+1(a) for a transitive set a, then lsti(a) holds.

Lemma 2.4 SIN ⊢ sti(M) ∧ u ∈ M → [φM (u) ↔ φ(u)] for set-theoretic Σi-
formulas φ.

Proof. Argue in SIN . The case i = 1 follows from the axiom (3). We show

stk(a) ∧ u ∈ a→
[
θa(u) ↔ ∃b ∈ a{sti(b) ∧ u ∈ b ∧ θb(u)}

]
(4)

1In the axiom schemata ∆0-Separation and ∆0-Collection, ∆0-formulas remain to mean a
∆0-formula in which sti does not occur, while the axiom of foundation may be applied to a
formula in which sti may occur.

5



for 0 ≤ i < k ≤ N + 1 and Π1({stj}j<i−1)-formula θ(u), where a = V ,
stN+1(V ) :⇔ (0 = 0) and θV (u) :⇔ θ when k = N + 1.

Assume stk(a) and θ
a(u) with u ∈ a. By the axioms (1) and (2) there exists

a set b ∈ a such that sti(b) and u ∈ b. θb(u) follows logically. Conversely assume
θb(u) for b ∈ a such that sti(b) and u ∈ b. (3) yields θ(u), a fortiori θa(u). Thus
(4) is shown.

Let φ(u) ∈ Σ1+n({stj}j<i) and sti+n(a) with u ∈ a. From (4) we see by
(meta-)induction on n that there exists a Σ1({stj}j<i+n)-formula θ such that
φa ↔ θa and φ↔ θ.

Now we show φM (u) ↔ φ(u), where 0 ≤ n < N , st1+n(M), φ ∈ Σ1+n and
u ∈ M . Suppose φM (u). Pick a Σ1({stj}j<n)-formula θ such that φM (u) ↔
θM (u) and φ(u) ↔ θ(u). θ(u) follows logically, and φ(u) follows. Conversely
assume φ(u). Then we obtain θ(u), and (3) yields θM (u), and hence φM (u). 2

Lemma 2.5 SIN is an extension of KPω +ΠN -Collection. Namely SIN proves
ΠN -Collection.

Proof. Argue in SIN . Let A(x, y) be a ΠN -formula in the language of set
theory. We obtain by the axiom (1) and Lemma 2.4

A(x, y) ↔ ∃b(stN (b) ∧ x, y ∈ b ∧Ab(x, y)) (5)

Assume ∀x ∈ a∃yA(x, y). Then we obtain ∀x ∈ a∃y∃b(stN (b) ∧ x, y ∈ b ∧
Ab(x, y)) by (5). Since stN (b)∧x, y ∈ b∧Ab(x, y) is a ∆0({sti}0<i≤N )-formula,
pick a set c such that ∀x ∈ a∃y ∈ c∃b ∈ c(stN (b) ∧ x, y ∈ b ∧ Ab(x, y)) by
∆0({sti}0<i≤N )-Collection. Again by (5) we obtain ∀x ∈ a∃y ∈ cA(x, y). 2

3 Ordinals for ΠN-Collection

In this section up to subsection 3.2 we work in a set theory ZFC({Sti}0<i≤N ),
where each Sti is a unary predicate symbol. Let St0 denote the set of uncount-
able cardinals below IN . Ω and IN are strongly critical numbers with Ω < IN ,
i.e., non-zero ordinals closed under the binary Veblen function φαβ = φα(β).
We assume that Sti+1 ⊂ Sti for i < N , each Sti is an unbounded class of
ordinals below IN such that the least element of Sti is larger than Ω, Ω <
min(

∪
0<i≤N Sti). The predicate Sti is identified with the class {α ∈ ON : α ∈

Sti}. α†i denotes the least ordinal> α in the class Sti when α < IN . α†i := IN
if α ≥ IN . Put α† := α†1. Let SSti := {α†i : α ∈ ON} and LSti = Sti \ SSti.

Γa denotes the a-th strongly critical number. For ordinals α, ε(α) denotes
the least epsilon number above α, and Γ(α) the least strongly critical number
above α. For ordinals α, β, and γ, γ = α − β designates that α = β + γ. α+̇β
denotes the sum α + β when α + β equals to the commutative (natural) sum
α#β, i.e., when either α = 0 or α = α0 + ωα1 with ωα1+1 > β.

u, v, w, x, y, z, . . . range over sets in the universe, a, b, c, α, β, γ, δ, . . . range
over ordinals< ε(IN ), and ξ, ζ, η, . . . range over ordinals< Γ(IN ), and ordinals≤
IN are denoted by π, κ, ρ, σ, τ, λ, . . ..
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Let S ∈ Sti with i > 0. A ‘Mahlo degree’ m(π) of ordinals π < S with higher
reflections is defined to be a finite function f : IN → φIN (0). Let Λ ≤ IN be a
strongly critical number. To denote ordinals< φΛ(0), it is convenient for us to
introduce an ordinal function θ̃b(ξ; Λ) < φΛ(0) for ξ < φΛ(0) and b < Λ as in
[4, 5], which is a b-th iterate of the exponential θ̃1(ξ; Λ) = Λξ with the base Λ.

Definition 3.1 Let Λ ≤ IN be a strongly critical number. φb(ξ) denotes the
binary Veblen function on (IN )†0 = ωIN+1 with φ0(ξ) = ωξ, and φ̃b(ξ; Λ) :=
φb(Λ · ξ).

Let b, ξ < (IN )†0. θb(ξ) [θ̃b(ξ; Λ)] denotes a b-th iterate of φ0(ξ) = ωξ [of
φ̃0(ξ; Λ) = Λξ], resp. Specifically ordinals θb(ξ), θ̃b(ξ; Λ) < (IN )†0 are defined
by recursion on b as follows. θ0(ξ) = θ̃0(ξ; Λ) = ξ, θωb(ξ) = φb(ξ), θ̃ωb(ξ; Λ) =
φ̃b(ξ; Λ), and θc+̇ωb(ξ) = θc(θωb(ξ)), θ̃c+̇ωb(ξ; Λ) = θ̃c(θ̃ωb(ξ; Λ); Λ).

A finite set SC(a) of strongly critical numbers is defined recursively as
follows. SC(0) = ∅, SC(a) =

∪
i≤m SC(ai) for a = ωam+̇ · · · +̇ωa0 , and

SC(a) = SC(b)∪ SC(c) for a = φb(c) if a is not strongly critical. SC(a) = {a}
if a is strongly critical.

Let Λ ≤ IN be a strongly critical number. Let us define a normal form of
non-zero ordinals ξ < φΛ(0). Let ξ = Λζ . If ζ < Λζ , then θ̃1(ζ; Λ) is the normal
form of ξ, denoted by ξ =NF θ̃1(ζ; Λ). Assume ζ = Λζ , and let b > 0 be the
maximal ordinal such that there exists an ordinal η with ζ = φ̃b(η; Λ) > η.
Then ξ = φ̃b(η; Λ) =NF θ̃ωb(η; Λ).

Let ξ = Λζmam + · · ·+Λζ0a0, where ζm > · · · > ζ0 and 0 < a0, . . . , am < Λ.
Let Λζi =NF θ̃bi(ηi; Λ) with bi = ωci for each i. Then ξ =NF θ̃bm(ηm; Λ) · am +
· · ·+ θ̃b0(η0; Λ) · a0.

Definition 3.2 Let ξ < φΛ(0) be a non-zero ordinal with its normal form:

ξ =
∑
i≤m

θ̃bi(ξi; Λ) · ai =NF θ̃bm(ξm; Λ) · am + · · ·+ θ̃b0(ξ0; Λ) · a0 (6)

where θ̃bi(ξi; Λ) > ξi, θ̃bm(ξm; Λ) > · · · > θ̃b0(ξ0; Λ), bi = ωci < Λ, and 0 <
a0, . . . , am < Λ. θ̃b0(ξ0; Λ) is said to be the tail of ξ, denoted θ̃b0(ξ0; Λ) = tl(ξ),
and θ̃bm(ξm; Λ) the head of ξ, denoted θ̃bm(ξm; Λ) = hd(ξ).

1. ζ is a segment of ξ iff there exists an n (0 ≤ n ≤ m + 1) such that
ζ =NF

∑
i≥n θ̃bi(ξi; Λ) · ai = θ̃bm(ξm; Λ) · am+ · · ·+ θ̃bn(ξn; Λ) · an for ξ in

(6).

2. Let ζ =NF θ̃b(ξ; Λ) with θ̃b(ξ; Λ) > ξ and b = ωb0 , and c be an or-
dinal. An ordinal θ̃−c(ζ; Λ) is defined recursively as follows. If b ≥ c,
then θ̃−c(ζ; Λ) = θ̃b−c(ξ; Λ). Let c > b. If ξ > 0, then θ̃−c(ζ; Λ) =
θ̃−(c−b)(θ̃bm(ξm; Λ); Λ) for the head term hd(ξ) = θ̃bm(ξm; Λ) of ξ in (6).

If ξ = 0, then let θ̃−c(ζ; Λ) = 0.

3. Let ξ < φIN (0) be such that SC(ξ) ⊂ Λ for a strongly critical number
Λ < IN . Then ξ[Λ : IN ] denotes an ordinal< φΛ(0) obtained from ξ by
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changing the base IN into Λ. This means that ξ[Λ : IN ] is obtained from
ξ in (6) by replacing θbi(ξi; IN ) · ai by θbi(ξi[Λ : IN ]; Λ) · ai.

Proposition 3.3 Let ξ, ζ < φIN (0) be such that SC(ξ, ζ) ⊂ Λ for a strongly
critical number Λ < IN . Then ξ < ζ iff ξ[Λ : IN ] < ζ[Λ : IN ].

Definition 3.4 1. A function f : Λ → φΛ(0) with a finite support supp(f) =
{c < Λ : f(c) ̸= 0} ⊂ Λ is said to be a finite function with base Λ if
∀i > 0(ai = 1) and a0 = 1 when b0 > 1 in f(c) =NF θ̃bm(ξm; Λ) · am +
· · ·+ θ̃b0(ξ0; Λ) · a0 for any c ∈ supp(f).

It is identified with the finite function f ↾supp(f). When c ̸∈ supp(f), let
f(c) := 0. f, g, h, . . . range over finite functions.

Let SC(f) :=
∪
{SC(c) ∪ SC(f(c)) : c ∈ supp(f)}.

For an ordinal c, fc and f
c are restrictions of f to the domains supp(fc) =

{d ∈ supp(f) : d < c} and supp(f c) = {d ∈ supp(f) : d ≥ c}. gc ∗ f c
denotes the concatenated function such that supp(gc ∗ f c) = supp(gc) ∪
supp(f c), (gc ∗ f c)(a) = g(a) for a < c, and (gc ∗ f c)(a) = f(a) for a ≥ c.

2. Let f be a finite function and c ≤ Λ, ξ < Γ(Λ) ordinals. A relation f <cΛ ξ
is defined by induction on the cardinality of the finite set {d ∈ supp(f) :
d > c} as follows. If f c = ∅, then f <cΛ ξ holds. Let f c ̸= ∅. If f c+1 = ∅,
then f <cΛ ξ iff f(c) < ξ. Otherwise for d = min{d > 0 : c+ d ∈ supp(f)},
f <cΛ ξ iff there exists a segment µ of ξ such that f(c) < µ and f <c+dΛ

θ̃−d(tl(µ); Λ), where tl(µ) is the tail of µ with base Λ.

The following Proposition 3.5 is shown in [4].

Proposition 3.5 1. ζ ≤ ξ < φΛ(0) ⇒ θ̃−c(ζ; Λ) ≤ θ̃−c(ξ; Λ).

2. θ̃c(θ̃−c(ζ; Λ); Λ) ≤ ζ for ζ < φΛ(0).

Although the following Proposition 3.6 is shown in [5], let us reproduce its
proof.

Proposition 3.6 f <cΛ ξ ≤ ζ ⇒ f <cΛ ζ.

Proof. By induction on the cardinality n of the finite set {d ∈ supp(f) : d >
c} = {c + d1 < · · · < c + dn} with c < c + d1. If n = 0, then there is nothing
to prove. Let n > 0. We have f(c) < µ, and f <c+d1Λ θ̃−d1(tl(µ); Λ) for a
segment µ of ξ. We show the existence of a segment λ of ζ such that µ ≤ λ,
and θ̃−d1(tl(µ); Λ) ≤ θ̃−d1(tl(λ); Λ). Then IH yields f <c+d1Λ θ̃−d1(tl(λ); Λ), and
f <cΛ ζ follows.

If µ is a segment of ζ, then λ = µ works. Otherwise ξ < ζ and there exists a
segment λ of ζ such that µ < λ, and tl(µ) < tl(λ). We obtain θ̃−d1(tl(µ); Λ) ≤
θ̃−d1(tl(λ); Λ) by Proposition 3.5.1. 2
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3.1 Skolem hulls and Mahlo classes

In this subsection Skolem hulls Ha(X), collapsing functions ψ and Mahlo classes
Mhai,c(ξ) are introduced. ψ-functions are introduced in Buchholz[8].

Definition 3.7 Let A ⊂ IN be a set, and α ≤ IN a limit ordinal.

α ∈M(A) :⇔ A ∩ α is stationary in α⇔ every club subset of α meets A.

In the following Definition 3.8, φαβ = φα(β) denotes the binary Veblen
function on (IN )†0. For a < ε(IN ), c < IN , ξ < Γ(IN ), and X ⊂ IN , define
simultaneously classesHa(X) ⊂ Γ(IN ),Mhai,c(ξ) ⊂ (IN+1) (i > 0), and ordinals

ψIN (a) ≤ IN and ψfκ(a) ≤ κ by recursion on ordinals a as follows.

Definition 3.8 Let a < ε(IN ), c < IN , ξ < Γ(IN ), and X ⊂ IN .

1. (Inductive definition of Ha(X))

(a) {0,Ω, IN} ∪X ⊂ Ha(X), where Ω ∈ SSt0.

(b) If x, y ∈ Ha(X), then x+ y ∈ Ha(X) and φxy ∈ Ha(X).

(c) Let α = ψπ(b) with π ∈ Ha(X)∩SSt0∩ IN , b ∈ Ha(X)∩a such that
{π, b} ⊂ Hb(α). Then α ∈ Ha(X).

(d) Let α = ψIN (b) with b ∈ Ha(X)∩a. Then α ∈ Ha(X)∩(LStN∪{IN}).
(e) Let α ∈ Ha(X) ∩ IN . Then α†i ∈ Ha(X) ∩ SSti for each 0 < i ≤ N .

(f) Let α = ψfπ(b) with b < a, and a finite function f : IN → φIN (0) such
that {π, b} ∪ SC(f) ⊂ Ha(X) ∩Hb(α). Then α ∈ Ha(X).

2. (Definitions of Mhai,c(ξ) and Mhai,c(f) for 0 < i ≤ N)
The classesMhai,c(ξ) are defined for c < IN , a < ε(IN ) and ξ < φIN (0). By
main induction on ordinals π < IN with subsidiary induction on c < IN
we define π ∈Mhai,c(ξ) iff π ∈ LSti−1, {a, c, ξ} ⊂ Ha(π) and the following
condition is met for any finite functions f, g : IN → φIN (0) such that
f <cIN ξ:

SC(f, g) ⊂ Ha(π)&π ∈Mhai,0(gc) ⇒ π ∈M(Mhai,0(gc ∗ f c))

where SC(f, g) = SC(f) ∪ SC(g) and

Mhai,c(f) :=
∩

{Mhai,d(f(d)) : d ∈ supp(f c)}

=
∩

{Mhai,d(f(d)) : c ≤ d ∈ supp(f)}.

Mhai,0(gc) =
∩
{Mhai,d(g(d)) : d ∈ supp(gc)} =

∩
{Mhai,d(g(d)) : c > d ∈

supp(g)}. When f = ∅ or f c = ∅, let Mhai,c(∅) := LSti−1.
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3. (Definition of ψfπ(a))

Let a, π be ordinals, and f : IN → φIN (0) a finite function. Then ψfi,π(a)
denotes the least ordinal κ < π such that

κ ∈Mhai,0(f)&Ha(κ) ∩ π ⊂ κ& {π, a} ∪ SC(f) ⊂ Ha(κ) (7)

if such a κ exists. Otherwise set ψfi,π(a) = π.

4. ψΩ(a) := min({Ω} ∪ {β : Ha(β) ∩ Ω ⊂ β}) and

ψIN (a) := min({IN} ∪ {κ ∈ LStN : Ha(κ) ∩ IN ⊂ κ}) (8)

5. For classes A ⊂ IN , let α ∈Ma
i,c(A) iff α ∈ A and for any finite functions

g : IN → φIN (0)

α ∈Mhai,0(gc)&SC(gc) ⊂ Ha(α) ⇒ α ∈M
(
Mhai,0(gc) ∩A

)
(9)

The following Propositions 3.9, 3.10 and 3.11 are seen as in [5].

Proposition 3.9 Assume π ∈Mhai,c(ζ) and ξ < ζ with SC(ξ) ⊂ Ha(π). Then
π ∈Mhai,c(ξ) ∩Ma

i,c(Mhai,c(ξ)).

Proof. Proposition 3.6 yields π ∈ Mhai,c(ξ). π ∈ Ma
i,c(Mhai,c(ξ)) is seen from

the function f such that f <cIN ζ with supp(f) = {c} and f(c) = ξ. 2

Proposition 3.10 Suppose π ∈Mhai,c(ξ).

1. Let f <cIN ξ with SC(f) ⊂ Ha(π). Then π ∈Ma
i,c(Mhai,c(f

c)).

2. Let π ∈Ma
i,d(A) for d > c and A ⊂ IN . Then π ∈Ma

i,c(Mhai,c(ξ) ∩A).

Proof. 3.10.1. Let g be a function such that π ∈ Mhai,0(gc) with SC(gc) ⊂
Ha(π). We obtain π ∈ M

(
Mhai,0(gc) ∩Mhai,c(f

c)
)
by Definition 3.8.2 of π ∈

Mhai,c(ξ).
3.10.2. Let π ∈Ma

i,d(A) for d > c. Then π ∈Mhai,c(ξ) ∩A. Let g be a function
such that π ∈Mhai,0(gc) with SC(gc) ⊂ Ha(π). We obtain by (9) and d > c with

the function gc ∗ h, π ∈ M
(
Mhai,0(gc) ∩Mhai,c(ξ) ∩A

)
, where supp(h) = {c}

and h(c) = ξ. 2

Proposition 3.11 Each of x ∈ Ha(y), x ∈ Mhai,c(f) and x = ψfκ(a) is a
∆1({Sti}0<i≤N )-predicate in ZFC({Sti}0<i≤N ).

Proof. An inspection of Definition 3.8 shows that x ∈ Ha(y), ψ
f
κ(a) and x ∈

Mhai,c(f) are simultaneously defined by recursion on a < ε(IN ), in which x ∈
Mhai,c(f) is defined by recursion on ordinals x < IN with subsidiary recursion
on c < IN . 2
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3.2 A small large cardinal hypothesis

It is convenient for us to assume the existence of a small large cardinal in
justification of Definition 3.8. Shrewd cardinals as well as A-shrewd cardinals
are introduced by M. Rathjen[14].

Definition 3.12 (Rathjen[14])
Let η > 0. A cardinal κ is η-shrewd iff for any P ⊂ Vκ, and a set-theoretic
formula φ(x, y) if Vκ+η |= φ[P, κ], then there are 0 < κ0, η0 < κ such that
Vκ0+η0 |= φ[P ∩Vκ0 , κ0]. For classes A, κ is A-η-shrewd iff for any P ⊂ Vκ, and
a formula φ(x, y) in the language {∈, R} with a unary predicate R if (Vκ+η;A) |=
φ[P, κ], then there are 0 < κ0, η0 < κ such that (Vκ0+η0 ;A) |= φ[P ∩ Vκ0

, κ0],
where (Vα;A) denotes the structure (Vα,∈;A ∩ Vα), and for the formulas φ in
the language {∈, R}, R(t) is interpreted as t ∈ A ∩ Vα in (Vα;A) |= φ.

Obviously each A-η-shrewd cardinal is η-shrewd. We see easily that each η-
shrewd cardinal is regular. A cardinal κ is said to be (< η)-shrewd [A-(< η)-
shrewd ] if κ is δ-shrewd [A-δ-shrewd] for every δ < η, resp.

On the other side subtle cardinals are introduced by R. Jensen and K. Kunen.
The following Lemma 3.13 is shown in [14] by Rathjen.

Lemma 3.13 (Lemma 2.7 of [14])
Let π be a subtle cardinal. The set {κ ∈ Vπ : (Vπ;A) |= ‘κ is A-shrewd’} of
A-shrewd cardinals in (Vπ;A) is stationary in π for each class A.

Definition 3.14 Let π be a cardinal. The classes Bn and An are defined re-
cursively for n < ω. Let

B0 = {κ ∈ Vπ : Vπ |= ‘κ is an uncountable cardinal’}
An = {⟨i, σ⟩ : i ≤ n, σ ∈ Bi}

Bn+1 = {κ ∈ Vπ : (Vπ;An) |= ‘κ is an An-shrewd cardinal’}.

We say that a cardinal κ ∈ Vπ is n-shrewd in π iff κ ∈ Bn. An n-shrewd carinal
is an n-shrewd limit iff the set of n-shrewd cardinals is cofinal in it.

B1 is the set of shrewd cardinals in Vπ, and a 1-shrewd cardinal is a shrewd
cardinal in π. Each An+1-shrewd cardinal is An-shrewd, and each (n + 1)-
shrewd cardinal is n-shrewd.

Lemma 3.15 Let π be a subtle cardinal.

1. The set of n-shrewd cardinals in π is stationary in π for each n < ω.

2. Let κ be an (n+ 1)-shrewd cardinal in π. If (Vκ+η;An) |= φ[P, κ] for 0 <
η < π, P ⊂ Vκ and a formula φ(x, y) in {∈, R}, then there are an n-shrewd
limit κ0 < κ and 0 < η0 < κ such that (Vκ0+η0 ;An) |= φ[P ∩ Vκ0 , κ0].

11



Proof. 3.15.1. From Lemma 3.13 we see that the set of An−1-shrewd cardinals
is stationary in a subtle cardinal π.
3.15.2. Let κ be an (n+1)-shrewd cardinal in π. Then κ is n-shrewd, and hence
(Vκ+η;An) |= ∃x(x ∈ P )∧R(⟨n, κ⟩) for each P = {α} ⊂ Vκ with κ < κ+η < π.
Since κ is An-shrewd, there are 0 < κ0, η0 < κ such that (Vκ0+η0 ;An) |= ∃x(x ∈
P ∩ Vκ0

) ∧ R(⟨n, κ0⟩). This means that α < κ0 is n-shrewd. Therefore κ is an
n-shrewd limit.

Suppose (Vκ+η;An) |= φ[P, κ] for 0 < η < π, P ⊂ Vκ and a formula φ(x, y)
in {∈, R}. Then (Vκ+η;An) |= φ[P, κ] ∧ R(⟨n, κ⟩) ∧ ∀α < κ∃σ < κ(σ > α ∧
R(⟨n, σ⟩)). Since κ is An-shrewd, there are an n-shrewd limit κ0 < κ and
0 < η0 < κ such that (Vκ0+η0 ;An) |= φ[P ∩ Vκ0

, κ0]. 2

In this subsection we work in an extension T of ZFC by adding the axiom stating
that there exists a regular cardinal IN in which the set of N -shrewd cardinals is
stationary. Ω denotes the least uncountable ordinal ω1, For 0 < i ≤ N , Sti = Bi
the class of i-shrewd cardinals in VIN . LSti denotes the class of i-shrewd limits
in VIN . Let StN+1 = SStN+1 = {IN} with IN = Ω†(N+1). Also St0 denotes the
class of uncountable cardinals in VIN , and LSt0 the class of limit cardinals in
VIN . A successor n-shrewd cardinal is an n-shrewd cardinal in VIN , but not in
LStn.

Lemma 3.16 T ⊢ ∀a < Γ(IN )[ψIN (a) < IN ].

Proof. We see that the set C = {κ < IN : Ha(κ) ∩ IN ⊂ κ} is a club subset of
the regular cardinal IN . This shows the existence of a κ ∈ LStN ∩C, and hence
ψIN (a) < IN by the definition (8). 2

α†i(k)

is defined by recursion on k < ω by α†i(0) = α and α†i(k+1)

= (α†i(k)

)†i.

Proposition 3.17 Let a ∈ Ha(ψIN (a)), b ∈ Hb(ψIN (b)), c ∈ Hc(ψΩ(c)) and
d ∈ Hd(ψΩ(d)).

1. ψIN (a) < ψIN (b) iff a < b.

2. Ω†N(k)

< ψIN (b) for every k < ω.

3. Let α = ψIN (a) and 0 < k < ω. Then α†N(k)

< ψIN (b) iff α < ψIN (b).

ψIN (b) < α†N(k)

iff ψIN (b) ≤ α.

4. ψΩ(c) < ψΩ(d) iff c < d.

5. If x < y, then ψIN (x) ≤ ψIN (y).

Proof. 3.17.2 and 3.17.3. Let β = ψIN (b). By the definition (8) and Ω ∈
Hb(β) ∩ IN ⊂ β we obtain Ω < β. Let α ∈ {Ω, ψIN (a)}. If α < β, then

β ∈ LStN yields α†N(k)

< β.
3.17.5. We obtain ψIN (y) ∈ LStN and Hx(ψIN (y)) ∩ IN ⊂ Hy(ψIN (y)) ∩ IN ⊂
ψIN (y) by x < y and Lemma 3.16. Hence ψIN (x) ≤ ψIN (y). 2
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3.3 ψ-functions

In this subsection we work in ZFC({Sti}0<i≤N ) with Sti = Bi, and show that

ψfi,S(a) < S for i-shrewd cardinal S in Lemma 3.19, and introduce an irreducibil-
ity of finite functions in Definition 3.24 using Lemma 3.21, which is needed to
define a normal form in ordinal notations.

Lemma 3.18 Let S be an i-shrewd cardinal with 0 < i ≤ N , a < ε(IN ), h :
IN → φIN (0) a finite function with {a}∪SC(h) ⊂ Ha(S). Then S ∈Mhai,0(h)∩
M(Mhai,0(h)).

Proof. By induction on ξ < φIN (0) we show S ∈Mhai,c(ξ) for {a, c, ξ} ⊂ Ha(S).
Let {a, c, ξ} ∪ SC(f) ⊂ Ha(S) with f <cIN ξ and a < ε(IN ). We show

S ∈ Ma
i,c(Mhai,c(f

c)), which yields S ∈ Mhai,c(ξ). IH yields S ∈ Mhai,c(f
c) by

Proposition 3.5.2, θ̃−e(ζ; IN ) ≤ ζ. By the definition (9) it suffices to show that

∀g[S ∈Mhai,0(gc)&SC(gc) ⊂ Ha(S) ⇒ S ∈M
(
Mhai,0(gc) ∩Mhai,c(f

c)
)
].

Let g : IN → φIN (0) be a finite function such that SC(gc) ⊂ Ha(S) and
S ∈ Mhai,0(gc). We have to show S ∈ M(A ∩ B) for A = Mhai,0(gc) ∩ S and
B =Mhai,c(f

c) ∩ S. Let C be a club subset of S.
We have S ∈ Mhai,0(gc) ∩Mhai,c(f

c), and {a} ∪ SC(gc, f c) ⊂ Ha(S). Pick
a b < S so that {a} ∪ SC(gc, f

c) ⊂ Ha(b). Since the cardinality of the set
Ha(S) is equal to S, pick a bijection F : S → Ha(S). Each α < Γ(IN ) with
α ∈ Ha(S) is identified with its code, denoted by F−1(α) < S. Let P be the

class P = {(π, d, α) ∈ S3 : π ∈ Mh
F (α)
i,F (d)(F (ξ))}, where F (d) ∈ Ha(S) ∩ (c + 1)

and F (α) < Γ(IN ) with {F (d), F (α)} ⊂ Ha(π). For fixed i, a and c, the set
{(d, ζ) ∈ (Ha(S) ∩ (c+ 1)) × Γ(IN ) : S ∈ Mhai,d(ζ)} is defined from the classes
P and {Stj}j<i by recursion on ordinals d ≤ c.

Let φ be a formula in {∈}∪{Stj}j<i such that (VS+c†i ; {Stj}j<i) |= φ[P,C, S, b]
iff S ∈Mhai,0(gc)∩Mhai,c(f

c) and C is a club subset of S, where {Stj}j<i = Ai−1.
Since S is i-shrewd in VIN , pick b < S0 < η < S such that (VS0+η; {Stj}j<i) |=
φ[P ∩ S0, C ∩ S0,S0, b]. We obtain S0 ∈ A ∩B ∩ C.

Therefore S ∈ Mhai,c(ξ) is shown for every {c, ξ} ⊂ Ha(S). This yields S ∈
Mhai,0(h) for SC(h) ⊂ Ha(S). S ∈ M(Mhai,0(h)) follows from the i-shrewdness
of S. 2

Lemma 3.19 Let S be an i-shrewd cardinal, a an ordinal, and f : IN → φIN (0)

a finite function such that {a,S} ∪ SC(f) ⊂ Ha(S). Then ψfi,S(a) < S holds.

Proof. Suppose {a,S} ∪ SC(f) ⊂ Ha(S). By Lemma 3.18 we obtain S ∈
M(Mhai,0(f)). The set C = {κ < S : Ha(κ) ∩ S ⊂ κ, {a,S} ∪ SC(f) ⊂ Ha(κ)}
is a club subset of the regular cardinal S, and Mhai,0(f) is stationary in S. This
shows the existence of a κ ∈ Mhai,0(f) ∩ C ∩ S, and hence ψfi,S(a) < S by the
definition (7). 2
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Proposition 3.20 Let α be either Ω or an i-shrewd cardinal for 0 < i ≤ N and
S = α†i. Assume {a,S}∪SC(f) ⊂ Ha(S) for an ordinal a and a finite function

f : IN → φIN (0). Then α†j < ψfi,S(a) for every j < i, and ψfi,S(a) ∈ LSti−1\Sti.

Proof. Let κ = ψfi,S(a) < S. We obtain α ∈ Ha(κ) by α†i = S ∈ Ha(κ), and

α†j ∈ Ha(κ) ∩ S for S ∈ LStj . α < κ is seen from α†j ∈ Ha(κ) ∩ S ⊂ κ in the
definition (7). 2

The following Lemma 3.21 and Corollary 3.23 are seen as in [5].

Lemma 3.21 Assume IN > π ∈ Mhai,d(ξ) ∩ Mhai,c(ξ0), ξ0 ̸= 0, and d < c.

Moreover let ξ1 ∈ Ha(π) for ξ1 ≤ θ̃c−d(ξ0; IN ), and tl(ξ) ≥ ξ1 when ξ ̸= 0.
Then π ∈Mhai,d(ξ + ξ1) ∩Ma

i,d(Mhai,d(ξ + ξ1)).

Proof. π ∈ Ma
i,d(Mhai,d(ξ + ξ1)) follows from π ∈ Mhai,d(ξ + ξ1) and π ∈

Mhai,c(ξ0) ⊂Ma
i,c(Mhai,c(∅)) by Proposition 3.10.1.

Let f be a finite function such that SC(f) ⊂ Ha(π), and f <
d
IN ξ + ξ1. We

show π ∈Ma
i,d(Mhai,d(f

d)) by main induction on the cardinality of the finite set
{e ∈ supp(f) : e > d} with subsidiary induction on ξ1.

First let f <dIN µ for a segment µ of ξ. By Proposition 3.9 we obtain

π ∈Mhai,d(µ) and π ∈Ma
i,d(Mhai,d(f

d)).
In what follows let f(d) = ξ + ζ with ζ < ξ1. By SIH we obtain π ∈

Mhai,d(f(d))∩Ma
i,d(Mhai,d(f(d))). If {e ∈ supp(f) : e > d} = ∅, thenMhai,d(f

d) =
Mhai,d(f(d)), and we are done. Otherwise let e = min{e ∈ supp(f) : e >

d}. By SIH we can assume f <eIN θ̃−(e−d)(tl(ξ1); IN ). We obtain f <eIN
θ̃−(e−d)(θ̃c−d(ξ0; IN ); IN ) = θ̃−e(θ̃c(ξ0; IN ); IN ) by ξ1 ≤ θ̃c−d(ξ0; IN ), Proposi-
tions 3.6 and 3.5.1. We claim that π ∈ Ma

i,c0
(Mhai,c0(f

c0)) for c0 = min{c, e}.
If c = e, then the claim follows from the assumption π ∈ Mhai,c(ξ0) and

f <eIN ξ0. Let e = c + e0 > c. Then θ̃−e(θ̃c(ξ0; IN ); IN ) = θ̃−e0(hd(ξ0); IN ),
and f <cIN ξ0 with f(c) = 0 yields the claim. Let c = e + c1 > e. Then

θ̃−e(θ̃c(ξ0; IN ); IN ) = θ̃c1(ξ0; IN ). MIH yields the claim.
On the other hand we have Mhai,d(f

d) = Mhai,d(f(d)) ∩Mhai,c0(f
c0). π ∈

Mhai,d(f(d)) ∩ Ma
i,c0

(Mhai,c0(f
c0)) with d < c0 yields by Proposition 3.10.2,

π ∈Ma
i,d(Mhai,d(f(d)) ∩Mhai,c0(f

c0)), i.e., π ∈Ma
i,d(Mhai,d(f

d)). 2

Definition 3.22 For finite functions f, g : IN → φIN (0), Mhai,0(g) ≺ Mhai,0(f)
iff the following holds:

∀π ∈Mhai,0(f)
(
SC(g) ⊂ Ha(π) ⇒ π ∈M(Mhai,0(g))

)
.

Corollary 3.23 Let f, g : IN → φIN (0) be finite functions and c ∈ supp(f).
Assume that there exists an ordinal d < c such that (d, c) ∩ supp(f) = (d, c) ∩
supp(g) = ∅, gd = fd, g(d) < f(d) + θ̃c−d(f(c); IN ) · ω, and g <cIN f(c).

ThenMhai,0(g) ≺Mhai,0(f) holds. In particular if π ∈Mhai,0(f) and SC(g) ⊂
Ha(π), then ψ

g
i,π(a) < π.
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Proof. Let π ∈ Mhai,0(f) =
∩
{Mhai,e(f(e)) : e ∈ supp(f)} and SC(g) ⊂

Ha(π). Lemma 3.21 with π ∈Mhai,d(f(d))∩Mhai,c(f(c)) yields π ∈Mhai,d(g(d))∩
Ma
i,c(Mhai,c(g

c)). On the other hand we have π ∈Mhai,0(gd) =
∩
{Mhai,e(f(e)) :

e ∈ supp(f) ∩ d}. Hence π ∈M(Mhai,0(g)).
Now suppose SC(g) ⊂ Ha(π). The set C = {κ < π : Ha(κ)∩π ⊂ κ, {π, a}∪

SC(g) ⊂ Ha(κ)} is a club subset of the regular cardinal π, and Mhai,0(g) is
stationary in π. This shows the existence of a κ ∈Mhai,0(g) ∩C ∩ π, and hence
ψgi,π(a) < π by the definition (7). 2

Definition 3.24 An irreducibility of finite functions f : IN → φIN (0) is defined
by induction on the cardinality n of the finite set supp(f). If n ≤ 1, f is defined
to be irreducible. Let n ≥ 2 and c < c+d be the largest two elements in supp(f),
and let g be a finite function such that supp(g) = supp(fc) ∪ {c}, gc = fc and
g(c) = f(c) + θ̃d(f(c+ d); IN ).

Then f is irreducible iff tl(f(c)) > θ̃d(f(c+ d); IN ) and g is irreducible.

Definition 3.25 Let f, g : IN → φIN (0) be irreducible finite functions, and b
an ordinal. Let us define a relation f <blx g by induction on the cardinality
#{e ∈ supp(f) ∪ supp(g) : e ≥ b} as follows. f <blx g holds iff f b ̸= gb and for
the ordinal c = min{c ≥ b : f(c) ̸= g(c)}, one of the following conditions is met:

1. f(c) < g(c) and let µ be the shortest segment of g(c) such that f(c) < µ.
Then for any c < c+d ∈ supp(f), if tl(µ) ≤ θ̃d(f(c+d); IN ), then f <c+dlx g
holds.

2. f(c) > g(c) and let ν be the shortest segment of f(c) such that ν > g(c).
Then there exist a c < c + d ∈ supp(g) such that f <c+dlx g and tl(ν) ≤
θ̃d(g(c+ d); IN ).

In [4] the following Proposition 3.26 is shown.

Proposition 3.26 Let f, g : IN → φIN (0). If f <0
lx g, then Mhai,0(f) ≺

Mhai,0(g).

Proposition 3.27 Let f, g : IN → φIN (0) be irreducible functions, and assume

that ψfi,π(b) < π and ψgi,κ(a) < κ.

Then ψfi,π(b) < ψgi,κ(a) iff one of the following cases holds:

1. π ≤ ψgi,κ(a).

2. b < a, ψfi,π(b) < κ, and SC(f) ∪ {π, b} ⊂ Ha(ψ
g
i,κ(a)).

3. b > a, and SC(g) ∪ {κ, a} ̸⊂ Hb(ψ
f
i,π(b)).

4. b = a, κ < π, and κ ̸∈ Hb(ψ
f
i,π(b)).

5. b = a, π = κ, SC(f) ⊂ Ha(ψ
g
i,κ(a)), and f <

0
lx g.

6. b = a, π = κ, SC(g) ̸⊂ Hb(ψ
f
i,π(b)).

Proof. This is seen from Proposition 3.26 as in [2]. 2
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3.4 A computable notation system for ΠN -collection

Although Propositions 3.17, 3.20, and 3.27 suffice for us to define a com-
putable notation system for Hε(IN )(0), we need a notation system closed un-
der Mostowski collapsings to remove stable ordinals from derivations as in [5],

cf. section 5. Two new constructors IN [·] and S†⃗i[ρ/S] are used to generate terms
in OT (IN ).

Definition 3.28 ρ ≺ σ denotes the transitive closure of the relation {(ρ, σ) :
∃f, a(ρ = ψfσ(a))}. Let ρ ⪯ σ :⇔ ρ ≺ σ ∨ ρ = σ.

Let S ∈ SSti and ρ ≺ S. We define a set Mρ = Hb(ρ) from ρ in (10) in
such a way that Hb(ρ)∩ S ⊂ ρ. Then a Mostowski collapsing Mρ ∋ α 7→ α[ρ/S]
in Definition 3.33 maps ordinal terms α ∈ Mρ to α[ρ/S] < S isomorphically.
The transitive collapse (Mρ)

[ρ/S] = {α[ρ/S] : α ∈ Mρ} is an initial segment in
OT (IN ) such that (Mρ)

[ρ/S] < κ if ρ < κ ≺ S. Note that both ρ and κ can be
interpreted as uncountable cardinals, and the cardinality of the set Mρ is equal
to ρ.

Let us define simultaneously the followings: A set OT (IN ) of terms over con-
stants 0,Ω, IN and constructors +, φ, ψ, IN [∗], ∗†i (0 < i ≤ N), and ∗0[∗1/∗2].
Its subsets SSti, LSti with Sti = SSti ∪ LSti, and sets Mρ (ρ ∈ Ψ), finite
sets KX(α) of subterms of α for X ⊂ OT (IN ). Let SSt =

∪
0<i≤N SSti and

LSt =
∪

0<i≤N LSti. For each S ∈ SSt, there exists a unique i such that
S ∈ SSti.

For i > 0, κ ∈ Sti is intended to designate that κ is an i-shrewd cardinal,
or κ is an i-stable ordinal. κ ∈ SSti [κ ∈ LSti] is intended to designate that
κ is a successor i-stable ordinal [κ is a limit of i-stable ordinals], resp. κ ∈ St0
is intended to designate that κ is an uncountable cardinal, or κ is either a
recursively regular ordinal or their limit. We have Sti = SSti ∪ LSti with
SSti ∩ LSti = ∅, and Sti+1 ⊂ LSti. If S ∈ SSti, then the ordinal term ψfS (a)

in Definition 3.31.5 denotes the ordinal ψfi,S(a) in (7) of Definition 3.8.3.
α =NF αm + · · · + α0 means that α = αm + · · · + α0 with αm ≥ · · · ≥ α0

and each αi is a non-zero additive principal number. α =NF φβγ means that
α = φβγ and β, γ < α.

Sets SC(α) of strongly critical numbers are slightly modified as SC(Ω) =
SC(IN ) = ∅. Specifically SC(0) = ∅, SC(α) =

∪
i≤m SC(αi) for α =NF αm +

· · ·+ α0, and SC(a) = SC(b) ∪ SC(c) for a =NF φb(c). SC(Ω) = SC(IN ) = ∅.
SC(a) = {a} if a ̸∈ {Ω, IN} is strongly critical.

For α = ψfπ(a), let m(α) = f . SC(f) =
∪
{SC(c)∪SC(f(c)) : c ∈ supp(f)}.

Immediate subterms of terms are defined as follows. k(αm + · · · + α0) =
{α0, . . . , αm}, k(φαβ) = {α, β}, k(ψIN (a)) = {IN , a}, and k(ψfσ(α)) = {σ, α} ∪
SC(f).

Note that in the following Definition 3.31, e.g., there is no clause for con-
structing κ = ψS(a) from a for S ̸∈ SSt.

Definition 3.29 1. α ∈ Ψ :⇔ ∃κ, f, a(α = ψfκ(a)) and α ∈ ΨS :⇔ ∃κ ⪯
S∃f, a(α = ψfκ(a)).
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2. For a sequence i⃗ = (i0, i1, . . . , in) of numbers, let α†⃗i = (· · · ((α†i0)†i1) · · ·)†in .

3. By i⃗ ≤ i let us understand that i⃗ = (i0, i1, . . . , in) is a non-empty and
non-increasing sequence of numbers such that 0 < in ≤ · · · ≤ i1 ≤ i0 ≤ i.

Definition 3.30 1. Let α ⪯ ψgS(b) for an S ∈ SSt and a g with b = p0(α).
Then let

Mα := Hb(α) (10)

2. For α ∈ Ψ, an ordinal p0(α) is defined.

(a) If α ⪯ ψgS(b), then p0(α) = b.

(b) If there are ρ and β ∈ Mρ such that LSti ∋ ρ ≺ S ∈ SSti+1 and
α = β[ρ/S] ̸= β, then p0(α) = p0(β).

(c) p0(α) = 0 otherwise.

3. α† := α†1.

Definition 3.31 (Definitions of OT (IN ) and KX(α))
Let Sti = SSti ∪ LSti ⊂ OT (IN ) with SSti ∩ LSti = ∅ and Sti+1 ⊂ LSti. For
δ, α ∈ OT (IN ), Kδ(α) = KX(α), where X = {β ∈ OT (IN ) : β < δ}.

1. {0,Ω, IN} ⊂ OT (IN ) and Ω†i ∈ SSti for 0 < i ≤ N . Let StN+1 = {IN}.
m(α) = KX(α) = ∅ for α ∈ {0, IN ,Ω} ∪ {Ω†i : 0 < i ≤ N}.

2. If α =NF αm + · · · + α0 (m > 0) with {αi : i ≤ m} ⊂ OT (IN ), then
α ∈ OT (IN ), and m(α) = ∅.
Let α =NF φβγ < ε(IN ) with {β, γ} ⊂ OT (IN ). Then α ∈ OT (IN ) and
m(α) = ∅.
In each case KX(α) = KX(k(α)).

3. Let α = ψΩ(a) with a ∈ OT (IN ) and Kα(a) < a. Then α ∈ OT (IN ).

Let m(α) = ∅. KX(α) = ∅ if α ∈ X. KX(α) = {a} ∪KX(a) if α ̸∈ X.

4. Let α = ψIN (a) with a ∈ OT (IN ) such that Kα(a) < a. Then α ∈ LStN
and α†i ∈ SSti for 0 < i ≤ N . For β ∈ {α, α†i}, m(β) = ∅. Also
KX(α†i) = ∅ if α†i ∈ X. KX(α†i) = KX(α) if α†i ̸∈ X. KX(α) = ∅ if
α ∈ X. KX(α) = {a} ∪KX(a) if α ̸∈ X.

5. Let T ∈ LStk ∪ {Ω} and S = T†⃗i ∈ SSti+1 for a non-empty and non-
increasing sequence of numbers i⃗ = (i0 ≥ i1 ≥ · · · ≥ in) such that i0 ≤ k

and in = i + 1, cf. Proposition 3.32. Let α = ψfS (a), where {a,S} ⊂
OT (IN ), and if f ̸= ∅, then there are {d, ξ} ⊂ OT (IN ) such that supp(f) =
{d}, 0 < f(d) = ξ < (IN )2, d < IN . If KS({S, a} ∪ SC(f)) < a for
SC(f) = SC({d, ξ}), and

SC(f) ⊂ Ha(SC(a)) (11)
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then α ∈ LSti and α
†j ∈ SStj for 0 < j ≤ i.

Let a = p0(α), m(α) = f . KX(α) = ∅ if α ∈ X. KX(α) = {a} ∪
KX({a,S} ∪ SC(f)) if α ̸∈ X.

m(α†j) = ∅. KX(α†j) = ∅ if α†j ∈ X. KX(α†j) = KX(α) if α†j ̸∈ X.

6. Let {π, a, d} ⊂ OT (IN ) with π ≺ S ∈ SSti+1, m(π) = f , d < c ∈ supp(f),
and (d, c) ∩ supp(f) = ∅.
When g ̸= ∅, let g be an irreducible finite function such that SC(g) ⊂
OT (IN ), gd = fd, (d, c) ∩ supp(g) = ∅, g(d) < f(d) + θ̃c−d(f(c); IN ) · ω,
and g <cIN f(c).

Then α = ψgπ(a) ∈ LSti and α
†j ∈ SStj for 0 < j ≤ i if Kπ(k(α)) < a,

and

SC(g) ∪ {p0(α)} ⊂Mα (12)

Let m(α) = g. KX(α) = ∅ if α ∈ X. KX(α) = {a} ∪KX(k(α)) if α ̸∈ X.

m(α†j) = ∅. KX(α†j) = ∅ if α†j ∈ X. KX(α†j) = KX(α) if α†j ̸∈ X.

7. Let S ∈ SSti and 0 < k ≤ i. Then S†k ∈ SStk.

m(S†k) = ∅. KX(S†k) = ∅ if S†k ∈ X. KX(S†k) = KX(S) if S†k ̸∈ X.

8. Let SStMi = SSti ∪ {α[ρ/S] : ρ ≺ S ∈ SStM , α ∈ Mρ ∩ SStMi } and
SStM =

∪
0<i≤N SSt

M
i . Also let LStMi = LSti ∪ {α[ρ/S] : ρ ≺ S ∈

SStM , α ∈Mρ ∩ LStMi } and LStM =
∪

0<i≤N LSt
M
i .

Let ρ ≺ S ∈ SStMi+1 and i⃗ = (i0 ≥ i1 ≥ · · · ≥ in) (n ≥ 0) with 0 < in ≤
i0 ≤ i + 1. Then (S†⃗i[ρ/S]) ∈ SStMin ⊂ OT (IN ), where a term S†⃗i[ρ/S] is
built from terms S†⃗i, ρ and S by the constructor ∗0[∗1/∗2].

9. Let α = β[ρ/S] with S < β ∈ Mρ, ρ ≺ S, and S ∈ SStM . Then α ∈
OT (IN ) \ St.

Note that in Definition 3.31.5,

Kα(k(T)) ∪ {b} < a (13)

follows from S = T†⃗i ∈ Ha(α) if T = ψgσ(b) ∈ LStk with k(T) = {σ, b} ∪ SC(g),
and α = ψfS (a).

Proposition 3.32 Let α ∈ OT (IN ).

1. α ∈ LStN iff α = ψIN (a) for an a. For 0 < i < N , α ∈ LSti ∩Ψ iff there
exists an S ∈ SSti+1 such that α ≺ S.

2. β ∈ SStk iff there exists an α ∈ {Ω} ∪ (LSti ∩ Ψ) for an k ≤ i ≤ N
and a non-empty and non-increasing sequence i⃗ = (i0 ≥ i1 ≥ · · · ≥ in) of

numbers such that k = in > 0, α ∈ LSti ⇒ i0 ≤ i and β = α†⃗i.
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3. Let ψfS (a) ∈ OT (IN ) with S ∈ SSt. Suppose that there exists a sequence

{(Tm,Sm, i⃗m)}m≤n of Tm ∈ LSt ∩ Ψ, Sm ∈ SSt and sequences i⃗m of

numbers such that T0 = ψIN (b), Sm = T†⃗im
m and Tm+1 ≺ Sm (m < n), and

S = Sn. Then b < a holds.

4. α ∈ SStM iff there exists a ρ and an i⃗ such that α ∈ {ρ†⃗i,S†⃗i[ρ/S]}.

Proof. 3.32.1 and 3.32.2. We see these from Definitions 3.31.1, 3.31.4, 3.31.5,
3.31.6 and 3.31.7.
3.32.3. Let Tm = ψgmσm

(bm) and Tm ⪯ ψ
fm−1

Sm−1
(am−1) for ψ

fm−1

Sm−1
= ψIN and

a−1 = b. In general, if σ = ψfτ (c) ∈ Hb(ψ
g
σ(b)) with ψgσ(b) < σ, then c < b.

Hence am−1 ≤ bm. On the other we obtain bm < am by (13), where an = a.
Therefore b = a−1 < an = a. 2

Sets Hγ(X) are defined for {γ}∪X ⊂ OT (IN ) in such a way that α ∈ Hγ(X)
iff KX(α) < γ for α, γ ∈ OT (IN ) and X ⊂ OT (IN ). In particular OT (IN ) =
Hε(IN )(0), and Hγ(X) is closed under Mostowski collapsing α 7→ α[ρ/S] if γ ≥
IN , and differs from sets defined in Definition 3.8.

We define terms α[ρ/S], sets KX(α[ρ/S]) and a relation β < γ on OT (IN )
recursively as follows.

Definition 3.33 (Definitions of α[ρ/S] and KX(α[ρ/S]))
Let ρ ≺ S ∈ SStMi+1. We define a term α[ρ/S] ∈ OT (IN ) for α ∈ Mρ in such a
way that α[ρ/S] = α iff α < ρ. Moreover α[ρ/S] ∈ St iff either α[ρ/S] = α ∈ St
or α[ρ/S] = ρ ∈ SSt.

Also KX(α[ρ/S]) is defined recursively as follows. The map α 7→ α[ρ/S]
commutes with ψ, φ, IN [·], and +. KX(α[ρ/S]) = ∅ if α[ρ/S] ∈ X.

1. α[ρ/S] := α when α < S.
In what follows assume α ≥ S, α[ρ/S] ≥ ρ and α[ρ/S] ̸∈ X.

2. (S)[ρ/S] := ρ and (IN )[ρ/S] := IN [ρ].

For i⃗ = (i0 ≥ i1 ≥ · · · ≥ in) ≤ i + 1, (S†⃗i)[ρ/S] := (S†⃗i[ρ/S]) ∈ SStMin ,

cf. Definition 3.31.8. Here S†⃗i[ρ/S] ̸= ρ†⃗i.

KX(α[ρ/S]) = KX(ρ) if α[ρ/S] ∈ {IN [ρ],S†⃗i[ρ/S]}.

3. Let α = ψIN (a). Then α[ρ/S] = ψIN [ρ](a[ρ/S]).
KX(α[ρ/S]) = KX({ρ, a[ρ/S]}) ∪ {a[ρ/S]}.

4. Let α = ψfκ(a). Then α[ρ/S] = ψ
f [ρ/S]
κ[ρ/S](a[ρ/S]), where (f [ρ/S]) : IN [ρ] →

φIN [ρ](0), supp(f [ρ/S]) = (supp(f))[ρ/S] = {c[ρ/S] : c ∈ supp(f)} and
(f [ρ/S])(c[ρ/S]) = (f(c))[ρ/S] for f : IN [ρ] → φIN [ρ](0) and c ∈ supp(f).

KX(α[ρ/S]) = KX({κ[ρ/S], a[ρ/S]} ∪ SC(f [ρ/S])) ∪ {a[ρ/S]}.
Mα[ρ/S] = Hb[ρ/S](α[ρ/S]) for b = p0(α) and b[ρ/S] = p0(α[ρ/S]).
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5. Let α = IN [τ ] ̸= IN . Then α[ρ/S] = IN [τ [ρ/S]], where IN [τ ] ∈ Mρ iff
τ ∈Mρ. KX(α[ρ/S]) = KX(τ [ρ/S]).

6. Let α = ψIN [τ ](a) for IN [τ ] ̸= IN . Then α[ρ/S] = ψIN [τ [ρ/S]](a[ρ/S]).
KX(α[ρ/S]) = KX({τ [ρ/S], a[ρ/S]}) ∪ {a[ρ/S]}.

7. Let α = τ †⃗j with S < τ ∈ LStM . Then α[ρ/S] = (τ [ρ/S])†⃗j , where

τ †⃗j ∈Mρ iff τ ∈Mρ. KX(α[ρ/S]) = KX(τ [ρ/S]).

8. Let α = T†⃗j [τ/T], where τ ≺ T ∈ SStM . Then α[ρ/S] = T†⃗j
1 [τ1/T1], where

τ1 = τ [ρ/S] ≺ T1 = T[ρ/S] ∈ SStM and T†⃗j
1 = (T1)

†⃗j . KX(α[ρ/S]) =
KX(τ [ρ/S]).

9. Let α = φβγ. Then α[ρ/S] = φ(β[ρ/S])(γ[ρ/S]).
KX(α[ρ/S]) = KX(β[ρ/S], γ[ρ/S]).

10. For α = αm + · · · + α0 (m > 0), α[ρ/S] = (αm[ρ/S]) + · · · + (α0[ρ/S]).
KX(α[ρ/S]) =

∪
{KX(αi[ρ/S])) : i ≤ m}.

A relation α < β for α, β ∈ OT (IN ) is defined according to Lemmas 3.16 and
3.19, Propositions 3.17, 3.20, and 3.27, and Corollary 3.23, provided that α ∈
Hγ(X) is replaced by KX(α) < γ. The relation enjoys ψfκ(a) < κ according to
Lemma 3.19 and Corollary 3.23. Moreover we obtain S†i < ψg0S†(i+1)(b0) < S†(i+1)

for i + 1 ≤ N , and LStN ∋ τ0 = ψIN (c0) < ψh0

τ†
0

(d0) < τ †0 < IN by Proposition

3.20 and Lemma 3.16. Hence if S < ψIN (c0), then S < S†i < ψg0S†(i+1)(b0) <

S†(i+1) < τ0 = ψIN (c0) < ψh0

τ†
0

(d0) < τ †0 < IN . The Mostowski collapsing

·[ρ/S] maps these inequalities isomorphically to ρ < S†i[ρ/S] < ψgS†(i+1)[ρ/S](b) <

S†(i+1)[ρ/S] < τ = ψIN [ρ](c) < ψhτ†(d) < τ † < IN [ρ] < ρ†0, where b = b0[ρ/S],
etc.

Definition 3.34 For terms π, κ ∈ OT (IN ), a relation π ≺R κ is defined recur-
sively as follows.

1. Let π ≺ κ ⪯ S ∈ SStMi+1, and i⃗ ≤ i+1. Then each of π ≺R κ, S†⃗i[π/S] ≺R

κ and IN [π] ≺R κ holds. Moreover π†⃗i ≺R κ holds provided that π†⃗i ̸∈
SSt.

2. τ ≺R π ≺R κ⇒ τ ≺R κ.

Let π ⪯R κ :⇔ π ≺R κ ∨ π = κ. For S ∈ SSt, let

L(S) := {α ∈ OT (IN ) : α ≺R S}.

Note that L(S)∩SSt = ∅, and SSt ∋ ρi⃗ ̸≺R S for LSti ∋ ρ ≺ S ∈ SSti+1 and
i⃗ ≤ i. For each strongly critical number Ω < α ̸∈ {IN}∪St, there exists a unique
S ∈ SSt such that α ≺R S. If β ≺R T and α ≺R S with T < S, then β < α. In
other words, L(T) < L(S) for layers L(S). Moreover if η ̸∈

∪
S∈SSt L(S) ∪ SSt

and η ∈ Ψ, then either η ≺ Ω or η ≺ IN .
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Definition 3.35 Let β, α ∈ OT (IN ) ∩ IN be strongly critical numbers. β < α
iff one of the following cases holds:

1. β = ψΩ(b), α = ψΩ(a) and b < a.

2. β = ψπ(b), α = ψκ(a), π = κ ∈ {IN} ∪ {σ ∈ OT (IN ) : ∃ρ(σ = IN [ρ])},
and b < a.

3. β = Ω and Ω ̸= α ̸= ψΩ(a).

4. S†⃗i < T†⃗j iff (S) ∗ i⃗ <lx (T) ∗ j⃗ for S,T ∈ {Ω} ∪ (LSt ∩ Ψ), where i⃗ =
(i0, i1, . . . , in) <lx (j0, j1, . . . , jm) = j⃗ iff either ∃k ≤ min{n,m}(∀p <
k(ip = jp)& ik < jk) or n < m&∀p ≤ n(ip = jp).

5. (a) There is an S ∈ SSt such that α ≺R S > β ∈ LStN .

(b) There is a T ∈ SSt such that β ≺R T < α.

6. There are T,S ∈ SSt such that β ≺R T and α ≺R S with T < S.

7. There is an S ∈ SSt such that β, α ≺R S and one of the following holds:

(a) β = ψfπ(b), α = ψgκ(a), and there is a ρ ⪯R S such that κ, π ⪯ ρ and
one of the following holds:

i. π ≤ α.

ii. b < a, β < κ, and Kα(SC(f) ∪ {π, b}) < a

iii. b > a and b ≤ Kβ(SC(g) ∪ {κ, a}).
iv. b = a, κ < π, and b ≤ Kβ(κ).

v. b = a, π = κ, Kα(SC(f)) < a, and f <0
lx g.

vi. b = a, π = κ, and b ≤ Kβ(SC(g)).

(b) There are IN [ρ] ≺R S, c, d and i⃗, j⃗ such that β ⪯R (ψIN [ρ](d))
†⃗i,

α ⪯R (ψIN [ρ](c))
†⃗j and ψIN [ρ](d) < ψIN [ρ](c).

(c) There are i⃗, IN [ρ] such that ρ ≺ T ⪯R S, β ⪯R T†⃗i[ρ/T] and α ⪯R
IN [ρ].

(d) There are ρ ≺ T ⪯R S, σ, τ ≺ U = T†⃗i[ρ/T], k⃗ and l⃗ such that

τ < σ, (τ, σ) ̸= (β, α), α = σ ∨ α ⪯R IN [σ] ∨ α ⪯R U†k⃗[σ/U], and
β = τ ∨ β ⪯R IN [τ ] ∨ β ⪯R U†⃗l[τ/U].

Lemma 3.36 (OT (IN ), <) is a computable linear order. Specifically each of
α < β and α = β is decidable for α, β ∈ OT (IN ), and α ∈ OT (IN ) is decid-
able for terms α over symbols {0,Ω, IN ,+, φ, ψ}, {†i : 0 < i ≤ N}, IN [∗] and
∗0[∗1/∗2].

In particular the order type of the initial segment {α ∈ OT (IN ) : α < Ω} is
less than ωCK1 if it is well-founded.
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In what follows by ordinals we mean ordinal terms in OT (IN ). ℓα denotes
the length of ordinal terms α, which means the number of occurrences of symbols
in α.

Proposition 3.37 If S ∈ Sti+1 = SSti+1 ∪ LSti+1 and α < S, then α†i < S.

Proof. This is seen from Proposition 3.32 and Definition 3.35. 2

Proposition 3.38 {S} ∪ SC(m(ρ)) ∪ {p0(ρ)} ⊂Mρ for ρ ∈ ΨS.

Proof. If ρ = ψfS (a) with an S ∈ SSt, then we obtain f = m(ρ), a = p0(ρ),
{S} ∪ SC(f) ∪ {p0(ρ)} ⊂ Ha(α) = Mρ by Definition 3.31.5. Otherwise {S} ∪
SC(m(ρ)) ∪ {p0(ρ)} ⊂Mρ follows from (12) in Definition 3.31.6. 2

An ordinal term σ ∈ OT (IN ) is said to be regular if either σ ∈ {Ω, IN} ∪
{σ ∈ OT (IN ) : ∃ρ(σ = IN [ρ])} or ψfσ(a) is in OT (IN ) for some f and a. Reg
denotes the set of regular terms. Then Reg = SStM ∪ {IN [ρ] : ∃S ∈ SStM (ρ ≺
S)}∪{Ω, IN}. We see that for each α ∈ Ψ, there exists a κ ∈ Reg0 := (Reg \Ψ)

such that α ≺ κ. Such a κ is either in {Ω, IN} or one of the form IN [ρ], ρ†⃗i or

S†⃗i[ρ/S] with a non-empty i⃗.

Proposition 3.39 Let ψfπ(a) < ψgκ(b) < π < κ and π ⪯ ρ and κ ⪯ τ with
{ρ, τ} ⊂ Reg0. Then ρ = τ .

Proof. From Definition 3.35 we see that the only possible case is Definition
3.35(7a). 2

Lemma 3.40 For ρ ≺ S and S ∈ SSt, {α[ρ/S] : α ∈ Mρ} is a transitive
collapse of Mρ in the following sense. Let {α, β, γ} ⊂Mρ.

1. β < α⇔ β[ρ/S] < α[ρ/S].

2. β ≺R α⇔ β[ρ/S] ≺R α[ρ/S].

3. S < γ ⇒
(
Kγ(β) < α⇔ Kγ[ρ/S](β[ρ/S]) < α[ρ/S]

)
.

4. OT (IN ) ∩ α[ρ/S] = {γ[ρ/S] : γ ∈Mρ ∩ α}.

Proof. We show Lemmas 3.40.1- 3.40.3 simultaneously by induction on the
sum 2ℓα + 2ℓβ for α, β ∈ Mρ. We see easily that S > Γ(IN [ρ]) > α[ρ/S] > ρ
when α > S. Also α[ρ/S] ≤ α.
3.40.2 and 3.40.3 are seen from IH.
3.40.1. Let k(ψgκ(a)) = SC(g) ∪ {κ, a}. Let S < β = ψfπ(b) < ψgκ(a) = α
with k(β, α) ⊂ Mρ. From IH with Definition 3.35 we see that β[ρ/S] =

ψ
f [ρ/S]
π[ρ/S](b[ρ/S]) < ψ

g[ρ/S]
κ[ρ/S](a[ρ/S]) = α[ρ/S]. Other cases are seen from IH.

3.40.3. Suppose Kγ(β) < α for S < γ. Then Kγ[ρ/S](β[ρ/S]) < α[ρ/S] is seen
from IH and Lemma 3.40.1 using the fact γ[ρ/S] > ρ.
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3.40.4. Let β ∈ OT (IN )∩α[ρ/S] for α ∈Mρ. We show by induction on ℓβ that
there exists a γ ∈ Mρ such that β = γ[ρ/S]. If β < ρ, then β[ρ/S] = β．Also
ρ = S[ρ/S] and IN [ρ] = (IN )[ρ/S]. Let Γ(IN [ρ]) > α[ρ/S] > β > ρ. We may
assume IN [ρ] > β > ρ by IH.

If β = IN [τ ], then IN [τ ] > τ . Pick a κ ∈ Mρ such that κ[ρ/S] = τ . Then
β = (IN [κ])[ρ/S].

If β = τ †⃗i, then τ †⃗i > τ . Pick a κ ∈ Mρ such that κ[ρ/S] = τ . Then

β = (κ†⃗i)[ρ/S].
If β = T†⃗j

1 [τ1/T1], then T†⃗j
1 [τ1/T1] > τ1. Pick a τ ∈ Mρ such that τ [ρ/S] =

τ1. Then for τ ≺ T ∈ SStM , we obtain β = (T†⃗j [τ/T])[ρ/S].
Finally let β = ψfπ(b) with k(β) ⊂ Hb(β), b < Γ(IN [ρ]) and f : Λ → φΛ(0)

for π ⪯ σ†k⃗ with a k⃗ ̸= ∅. We have β ≺ σ†k⃗, ρ < β < IN [ρ], and ρ ≺ S.
By Definition 3.35 we obtain σ ̸= S. Suppose β < S < σ†k⃗. Then α < ρ by

Definition 3.35. Hence we may assume σ†k⃗ < S. Then we obtain ρ < σ†k <

IN [ρ]. Hence σ ≺R IN [ρ] or σ ≺R S†⃗i[ρ/S] for an i⃗. By IH with π ≤ σ†k⃗

there are {c, κ, λ} ⊂ Mρ and g : λ → φλ(0) such that c[ρ/S] = b, κ[ρ/S] = π,
λ[ρ/S] = Λ, SC(g) ⊂Mρ, g[ρ/S] = f in the sense that (supp(g))[ρ/S] = supp(f)
and (g(d))[ρ/S] = f(d[ρ/S]) for every d ∈ supp(g). Let γ = ψgκ(c) ∈ Mρ. Then
γ[ρ/S] = ψfπ(b) = β and k(γ) ⊂ Hc(γ).

Other cases are seen from IH. 2

Lemma 3.41 1. Let α = ψΩ(a) with a ∈ Ha(α). Then Ha(α) ∩ Ω ⊂ α.

2. Let α = ψIN (a) with a ∈ Ha(α). Then Ha(α) ∩ IN ⊂ α.

3. Let S ∈ SSt, and α = ψfκ(a) < κ with κ ⪯ S and {κ, a}∪SC(f) ⊂ Ha(α).
Then Ha(α) ∩ κ ⊂ α.

Proof. We see β ∈ Ha(α) ∩ Ω ⇒ β < α = ψΩ(a) by induction on the lengths
ℓβ of β. Lemmas 3.41.2 and 3.41.3 are seen similarly using the fact ρ < α ⇒
IN [ρ] < α for α ∈ {ψIN (a), ψfκ(a)}. 2

Proposition 3.42 Let S ∈ SSt, and ρ = ψfκ(a) < κ with κ ⪯ S and Hγ(κ)∩S ⊂
κ for γ ≤ a. Then Hγ(ρ) ∩ S ⊂ ρ.

Proof. If κ = S, then Hγ(ρ) ∩ S ⊂ Ha(ρ) ∩ S ⊂ ρ by γ ≤ a and Lemma
3.41.3. Let κ = ψgπ(b) < S. We have κ ∈ Ha(ρ) by (7), and hence b < a by
S > κ > ρ. We obtain Hγ(ρ) ∩ S ⊂ Hγ(κ) ∩ S ⊂ κ. γ ≤ a with Lemma 3.41.3
yields Hγ(ρ) ∩ S ⊂ Hγ(ρ) ∩ κ ⊂ Ha(ρ) ∩ κ ⊂ ρ. 2

Lemma 3.43 Let ρ ∈ ΨS for an S ∈ SSt.

1. Hγ(Mρ) ⊂Mρ if γ ≤ p0(ρ).

2. Mρ ∩ S = ρ and ρ ̸∈Mρ.

3. If σ < ρ and p0(σ) ≤ p0(ρ), then Mσ ⊂Mρ.
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Proof. Lemmas 3.43.2 and 3.43.3 are seen readily.
3.43.1. Let γ ≤ b = p0(ρ). We show α ∈ Mρ = Hb(ρ) by induction on ℓα
for α ∈ Hγ(Mρ). Let k(α) ⊂ Hγ(Mρ) ∩ Ha(α) be such that a < γ ≤ b and
α = ψgκ(a) ∈ Hγ(Mρ). IH yields k(α) ⊂Mρ. We obtain α ∈ Hb(ρ).

Other cases are seen from IH. 2

Definition 3.44 (Mostowski uncollapsing)
Let α be an ordinal term and ρ ≺ S with S ∈ SSt. If there exists a β ∈ Mρ

such that α = β[ρ/S], then α[ρ/S]−1 := β. Otherwise α[ρ/S]−1 := 0. Let
X[ρ/S]−1 := {α[ρ/S]−1 : α ∈ X} for a set X of ordinal terms.

We see that ordinal terms ρ and β ∈ Mρ with ρ ≤ α = β[ρ/S] < Γ(IN [ρ]) are
uniquely determined from α, when such β and ρ exist.

4 Operator controlled derivations

We prove Theorem 1.1 assuming that the notation system (OT (IN ), <) is a well
ordering. Operator controlled derivations are introduced by W. Buchholz[9],
which we follow. In this section except otherwise stated, α, β, γ, . . . , a, b, c, d, . . .
and ξ, ζ, ν, µ, . . . range over ordinal terms in OT (IN ), f, g, h, . . . range over finite
functions.

4.1 Classes of sentences

Following Buchholz[9] let us introduce a language of ramified set theory RS.

Definition 4.1 RS-terms and their levels are inductively defined.

1. For each α ∈ OT (IN ) ∩ IN , Lα is an RS-term of level α.

2. Let ϕ(x, y1, . . . , yn) be a set-theoretic formula in the language {∈}, and
a1, . . . , an RS-terms of levels<α ∈ OT (IN ) ∩ IN .

Then [x ∈ Lα : ϕLα(x, a1, . . . , an)] is an RS-term of level α.

Let us identify the individual constant M0 in the language of SIN with the
RS-term LΩ.

Definition 4.2 1. |u| denotes the level of RS-terms u, and Tm(α) the set
of RS-terms of level< α ∈ OT (IN ) ∩ (IN + 1). Tm = Tm(IN ) is then the
set of RS-terms, which are denoted by u, v, w, . . .

2. RS-formulas are constructed from literals u ∈ v, u ̸∈ v and sti(u),¬sti(u)
for 0 < i ≤ N by propositional connectives ∨,∧, bounded quantifiers
∃x ∈ u,∀x ∈ u and unbounded quantifiers ∃x,∀x. Unbounded quantifiers
∃x,∀x are denoted by ∃x ∈ LIN ,∀x ∈ LIN , resp.

It is convenient for us not to restrict propositional connectives ∨,∧ to
binary ones. Specifically when Ai are RS-formulas for i < n < ω, A0∨· · ·∨
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An−1 and A0∧· · ·∧An−1 are RS-formulas. Even when n = 1, A0∨· · ·∨A0

is understood to be different from the formula A0. For Γ = {Ai : i < n}
we write

∨
Γ ≡ (A0 ∨ · · · ∨An−1) and

∧
Γ ≡ (A0 ∧ · · · ∧An−1).

3. For RS-terms and RS-formulas ι, k(ι) denotes the set of ordinal terms α
such that the constant Lα occurs in ι, and |ι| = max(k(ι) ∪ {0}).
Also let B(k(ι)) :=

∪
{B(α) : α ∈ k(ι)}, cf. Definition 4.10 and (19) in

Definition 4.14.

Let k(n) = B(k(n)) = ∅ and |n| = 0 for natural numbers n.

4. Li = {∈} ∪ {stj : 0 < j < i}.

5. ∆0(Li)-formulas, Σ1(Li)-formulas and Σ(Li)-formulas are defined as in [6].
Specifically if ψ is a Σ(Li)-formula, then so is the formula ∀y ∈ z ψ. θ(u)

denotes a ∆0(Li)-formula obtained from a Σ(Li)-formula θ by restricting
each unbounded existential quantifier to u.

6. For a Σ1(Li)-formula ψ(x1, . . . , xm) and u1, . . . , um ∈ Tm(κ) with κ ≤
IN , ψ(Lκ)(u1, . . . , um) is a Σ1(Li : κ)-formula. ∆0(Li : κ)-formulas and
Σ(Li : κ)-formulas are defined similarly

7. For θ ≡ ψ(Lκ)(u1, . . . , um) ∈ Σ(Li : κ) and λ < κ, with u1, . . . , um ∈
Tm(λ), θ(λ,κ) :≡ ψ(Lλ)(u1, . . . , um).

In what follows we consider only sentences without free variables. Sentences
are denoted A,C possibly with indices.

For each sentence A, either a disjunction is assigned as A ≃
∨
(Aι)ι∈J , or a

conjunction is assigned as A ≃
∧
(Aι)ι∈J . By sti(u) we understand that there

is a successor i-stable ordinal S such that LS = u.

Definition 4.3 1. For v, u ∈ Tm(IN ) with |v| < |u|, let

(v∈̇u) :≡
{
A(v) if u ≡ [x ∈ Lα : A(x)]
v ̸∈ L0 if u ≡ Lα

and (u = v) :≡ (∀x ∈ u(x ∈ v) ∧ ∀x ∈ v(x ∈ u)).

2. When A ≃
∨
(Aι)ι∈J , let ¬A ≃

∧
(Aι)ι∈J .

3. (v ∈ u) :≃
∨
(Aw)w∈J for Aw :≡ ((w∈̇u) ∧ (w = v)) and J = Tm(|u|).

4. (A0 ∨ · · · ∨An−1) :≃
∨
(Aι)ι∈J for J := n.

5. For u ∈ Tm(IN ) ∪ {LIN }, ∃x ∈ uA(x) :≃
∨
(Av)v∈J for Av :≡ ((v∈̇u) ∧

A(v)) and J = Tm(|u|), where Tm(|LIN |) = Tm(IN ) = Tm and (v∈̇LIN ) :≡
(v ̸∈ L0).

6. sti(u) :≃
∨
(LS = u)LS∈Ji with Ji = {LS : |u| ≥ S ∈ SSti}, where sti

denotes the predicate symbol in the language LN+1, while SSti ⊂ OT (IN )
in the definition of Ji.
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7. For A ≃
∨
(Aι)ι∈J let [ρ]J = {ι ∈ J : k(ι) ⊂Mρ}.

It is clear that k(Aι) ⊂ H0(k(A) ∪ k(ι)).
The rank rk(ι) of sentences or terms ι is defined slightly modified from [9]

so that the following Proposition 4.5 holds.

Definition 4.4 1. rk(¬A) := rk(A).

2. rk(Lα) = ωα.

3. rk([x ∈ Lα : A(x)]) = max{ωα, rk(A(L0))}.

4. rk(v ∈ u) = max{rk(v) + 4, rk(u) + 1}.

5. rk(sti(u)) = rk(u) + 5.

6. rk(A0 ∨ · · · ∨An−1) = max({0} ∪ {rk(Ai) + 1 : i < n}).

7. rk(∃x ∈ uA(x)) = max{rk(u), rk(A(L0))}+ 2 for u ∈ Tm(IN ) ∪ {LIN }.
For finite sets ∆ of sentences, let rk(∆) = max({0} ∪ {rk(δ) : δ ∈ ∆}).

Proposition 4.5 Let A be a sentence with A ≃
∨
(Aι)ι∈J or A ≃

∧
(Aι)ι∈J .

1. rk(A) < IN + ω.

2. rk(
∨
Γ) = max({0} ∪ {rk(A) + 1 : A ∈ Γ}).

3. ω|u| ≤ rk(u) ∈ {ω|u|+ i : i ∈ ω}, and ω|A| ≤ rk(A) ∈ {ω|A|+ i : i ∈ ω}.

4. rk(sti(u)) ∈ {rk(u) + i : i < ω}.

5. For v ∈ Tm(|u|), rk(v∈̇u) ≤ rk(u).

6. ∀ι ∈ J(rk(Aι) < rk(A)).

Proof. 4.5.5. Let α = |u|. We obtain rk(v) < ω(|v| + 1) ≤ ωα by Proposition
4.5.3. First let u be Lα. Then (v∈̇u) ≡ (v ̸∈ L0), and rk(v ̸∈ L0) = max{rk(v) +
4, 1} < ωα = rk(u).

Next let u be an RS-term [x ∈ Lα : A(x)] with A(x) ≡ (ϕLα(x, u1, . . . , un))
for a set-theoretic formula ϕ(x, y1, . . . , yn), and RS-terms u1, . . . , un ∈ Tm(α).
Then (v∈̇u) ≡ (A(v)). If ϕ is a bounded formula, then we see from Proposition
4.5.3 that rk(A(v)) < ωα. Otherwise rk(A(v)) = ωα + i for an i < ω. Hence
rk(A(v)) = rk(A(L0)) = rk(u).
4.5.6. First let A be a formula v ∈ u, and w ∈ Tm(α) with α = |u| > 0.
Then rk(w∈̇u) ≤ rk(u) by Proposition 4.5.5. Moreover max{rk(∀x ∈ w(x ∈
v)), rk(∀x ∈ v(x ∈ w))} = max{rk(w), rk(v), rk(L0 ∈ v), rk(L0 ∈ w)} + 2.
We have max{rk(w), rk(L0 ∈ w)} + 2 < ωα ≤ rk(u), and rk(L0 ∈ v) =
max{4, rk(v) + 1}. Hence max{rk(w∈̇u), rk(∀x ∈ w(x ∈ v)), rk(∀x ∈ v(x ∈
w))}+ 2 ≤ max{rk(v) + 3, rk(u)}. Therefore rk(Aw) < rk(A).
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Next let A be a formula ∃x ∈ uB(x), and v ∈ Tm(α) with α = |u|. Then
rk(v∈̇u) ≤ rk(u) by Proposition 4.5.5. Moreover either rk(B(v)) < ω(|v|+ 1) ≤
ωα ≤ rk(u) or rk(B(v)) = rk(B(L0)). This shows rk(Av) < rk(A).

Finally let A be a formula sti(u), and Aα ≡ (Lα = u) with α ≤ |u| and α ∈
SSti. In particular 0 < α ≤ |u|. We obtain max{rk(∀x ∈ Lα(x ∈ u)), rk(∀x ∈
u(x ∈ Lα))} = max{rk(Lα), rk(u), 3} + 3, where rk(Lα) = ωα ≤ rk(u). Hence
rk(Aα) = rk(u) + 4 < rk(A). 2

Definition 4.6 Let ρ ≺ S ∈ SSti for an 0 < i ≤ N , and k(ι) ⊂ Mρ for
RS-terms and RS-formulas ι. Then ι[ρ/S] denotes the result of replacing each
unbounded quantifier Qx by Qx ∈ LIN [ρ], and each ordinal term α ∈ k(ι) by

α[ρ/S] for the Mostowski collapse in Definition 3.33. ι[ρ/S] is defined recursively
as follows.

1. (Lα)
[ρ/S] ≡ Lα[ρ/S] with α ∈ Mρ. When {α} ∪

∪
{k(ui) : i ≤ n} ⊂

Mρ,
(
[x ∈ Lα : ϕLα(x, u1, . . . , un)]

)[ρ/S]
is defined to be the RS-term [x ∈

Lα[ρ/S] : ϕ
Lα[ρ/S]](x, (u1)

[ρ/S], . . . , (un)
[ρ/S])].

2. (¬A)[ρ/S] ≡ ¬A[ρ/S]. (u ∈ v)[ρ/S] ≡
(
u[ρ/S] ∈ v[ρ/S]

)
. (A0∨· · ·∨An−1)

[ρ/S] ≡(
(A0)

[ρ/S] ∨ · · · ∨ (An−1)
[ρ/S]). (∃x ∈ uA)[ρ/S] ≡ (∃x ∈ u[ρ/S]A[ρ/S]).

(∃xA)[ρ/S] ≡ (∃x ∈ LIN [ρ]A
[ρ/S]).

The following Propositions 4.7, 4.8 and 4.9 are seen from Lemma 3.40.

Proposition 4.7 Let ρ ≺ S.

1. Let v be an RS-term with k(v) ⊂ Mρ, and α = |v|. Then v[ρ/S] is an

RS-term of level α[ρ/S],
∣∣v[ρ/S]∣∣ = α[ρ/S] and k(v[ρ/S]) = (k(v))[ρ/S].

2. Let α ≤ IN be such that α ∈ Mρ. Then (Tm(α))
[ρ/S]

:= {v[ρ/S] : v ∈
Tm(α), k(v) ⊂Mρ} = Tm(α[ρ/S]).

3. Let A be an RS-formula with k(A) ⊂ Mρ. Then A[ρ/S] is an RS-formula
such that k(A[ρ/S]) ⊂ {α[ρ/S] : α ∈ k(A)} ∪ {IN [ρ]} ∩ HS(k(A) ∪ {ρ}).

Proof. 4.7.1. We see easily that v[ρ/S] is an RS-term of level α[ρ/S].
4.7.2. We see (Tm(α))

[ρ/S] ⊂ Tm(α[ρ/S]) from Proposition 4.7.1. Conversely let
u be an RS-term with k(u) = {βi : i < n} and max{βi : i < n} = |u| < α[ρ/S].
By Lemma 3.40 there are ordinal terms γi ∈ OT (IN ) such that γi ∈ Mρ and
γi[ρ/S] = βi. Let v be an RS-term obtained from u by replacing each constant
Lβi

by Lγi . We obtain v[ρ/S] ≡ u, v ∈ Tm(α), and k(v) = {γi : i < n} ⊂ Mρ.

This means v ∈ (Tm(α))
[ρ/S]

.
4.7.3. We see readily that k(A[ρ/S]) ⊂ {α[ρ/S] : α ∈ k(A)} ∪ {IN [ρ]}. From this
and Proposition 4.11.2, k(A[ρ/S]) ⊂ HS(k(A) ∪ {ρ}) follows. 2

Proposition 4.8 For RS-formulas A, let A ≃
∨
(Aι)ι∈J and assume k(A) ⊂

Mρ with ρ ≺ S. Then A[ρ/S] ≃
∨(

(Aι)
[ρ/S])

ι∈[ρ]J
for [ρ]J = {ι ∈ J : k(ι) ⊂

Mρ}.
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Proof. This is seen from Proposition 4.7.2. 2

Proposition 4.9 Let k(ι) ⊂Mρ with ρ ≺ S. Then rk(ι[ρ/S]) = (rk(ι)) [ρ/S].

Proof. We see that rk(ι) ∈ Mρ from Proposition 4.5.3. The proposition is
seen from the facts (ωα)[ρ/S] = ω(α[ρ/S]) and (α+ 1)[ρ/S] = α[ρ/S] + 1 when
α ∈Mρ. 2

4.2 A preview of elimination procedures of stable ordinals

Let us explain briefly our elimination procedures of stable ordinals in this section
and section 5. In the previous paper [5], we analyzed an axiom LS ≺Σ1 L proof-
theoretically. The axiom is a schema ∃xB(x, v)∧ v ∈ LS → ∃x ∈ LSB(x, v) for
∆0-formulas B. The schema says that S ‘reflects’ ΠS+ -formulas in transfinite
levels for a bigger ordinal S+ > S such that L = LS+ . In order to analyze
the reflections, Mahlo classes Mhai,c(ξ) are introduced in Definition 3.8.2. π ∈
Mhai,c(ξ) reflects every fact π ∈Mhai,0(gc) =

∩
{Mhai,d(g(d)) : c > d ∈ supp(g)}

on the ordinals π ∈ Mhai,c(ξ) in lower level, down to ‘smaller’ Mahlo classes
Mhai,c(f) =

∩
{Mhai,d(f(d)) : c ≤ d ∈ supp(f)}.

This apparatus would suffice to analyze reflections in transfinite levels. We
need another for the axiom LS ≺Σ1

L, i.e., a (formal) Mostowski collapsing :
Assume that B(u, v) with v ∈ LS for a ∆0-formula B. We need to find a
substitute u′ ∈ LS for u ∈ L such that B(u′, v). For simplicity let us assume
that v = β < S and u = α are ordinals. We may assume that α ≥ S. Let ρ < S
be an ordinal, which is bigger than every ordinal< S occurring in the ‘context’
of B(α, β). This means that δ < ρ holds for every ordinal δ < S occurring in a
‘relevant’ branch of a derivation of B(α, β). Then we can define a Mostwosiki
collapsing α 7→ α[ρ/S] for ordinal terms α such that β[ρ/S] = β for each relevant
β < S and S[ρ/S] = ρ, cf. Definition 3.33. Then we see that B(α[ρ/S], β) holds.

Let Mρ denote a set of ordinal terms α such that every subterm β < S
of α is smaller than ρ. It is shown in Lemma 3.43.1 that Hγ(Mρ) ⊂ Mρ if
Hγ(ρ) ∩ S ⊂ ρ. Let Hγ [Θ] ⊢ac Γ, and assume that {γ, a, c} ∪ k(Γ) ⊂ Hγ [Θ].
Moreover let us assume that Θ ⊂ Mρ holds. Then we obtain {γ, a, c} ∪ k(Γ) ⊂
Hγ [Θ] ⊂ Hγ(Mρ) ⊂Mρ. This means that k(Γ) ⊂Mρ holds as long as Θ ⊂Mρ

holds, i.e., as long as we are concerned with branches for k(ι) ⊂ Mρ in, e.g.,
inferences (

∧
): A ≃

∧
(Aι)ι∈J

{Hγ [Θ] ⊢a0c Γ, A,Aι}ι∈J
Hγ [Θ] ⊢ac Γ, A

(
∧
)
;

{Hγ [Θ] ⊢a0c Γ, A,Aι}ι∈J, k(ι)⊂Mρ

Hγ [Θ] ⊢ac Γ, A
(
∧
)

(14)

and dually k(ι) ⊂ Mρ for a minor formula Aι of a (
∨
) with the main formula

A ≃
∨
(Aι)ι∈J , provided that Hγ(ρ) ∩ S ⊂ ρ. The proviso means that γ1 ≥ γ

when ρ = ψfS (γ1). Such a ρ is in Hγ [Θ] only when ρ ∈ Θ. Let us try to replace
the inferences for the stability of S

Hγ [Θ] ⊢ Γ, B(u) {Hγ [Θ ∪ {σ}] ⊢ Γ,¬B(u)[σ/S]}Θ⊂Mσ

Hγ [Θ] ⊢ Γ
(stbl)
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by inferences for reflection of ρ with Θ ⊂Mρ: If B(u)[ρ/S] holds, then B(u)[σ/S]

holds for some σ < ρ.

Hγ [Θ ∪ {ρ}] ⊢ Γ[ρ/S], B(u)[ρ/S] {Hγ [Θ ∪ {ρ, σ}] ⊢ Γ[ρ/S],¬B(u)[σ/S]}Θ⊂Mσ,σ<ρ

Hγ [Θ ∪ {ρ}] ⊢ Γ[ρ/S]
(rfl)

In analyzing the inferences for reflections in transfinite levels, formulas Γ[ρ/S]

are replaced by Γ[σ/S]. This means that α[σ/S] is substituted for each α[ρ/S].
Namely a composition of uncollapsing and collapsing α[ρ/S] 7→ α 7→ α[σ/S]
arises. Hence we need α ∈ Mσ ⊊ Mρ for σ < ρ. However we have σ ̸∈ Mσ

although σ ∈ Mρ, and we cannot replace [ρ/S] by [σ/S] in the upper part of
Γ[ρ/S], B(u)[ρ/S]. The schema seems to be broken.

Instead of an explicit collapsing [ρ/S], formulas could put on caps ρ, σ, . . . in
such a way that k(A(σ)) = k(A). This means that the cap σ does not ‘occur’
in a capped formula A(σ). If we choose an ordinal γ0 big enough (depending on
a given finite proof figure), every ordinal ‘occurring’ in derivations (including
the subscript γ ≤ γ0 in the operators Hγ) is in Hγ0(∅) for the ordinal γ0, while
each cap ρ exceeds the threshold γ0 in the sense that ρ ̸∈ Hγ0(ρ)∩ S ⊂ ρ. Then
every ordinal ‘occurring’ in derivations is in the domain Mρ of the Mostowski
collapsing α 7→ α[ρ/S].

The ordinal γ0 is a threshold, which means that every ordinal occurring in
derivations is in Hγ0(0) and the subscript γ ≤ γ0 in Hγ , while each ρ ∈ Q for a
finite set Q of ordinals, exceeds γ0 in such a way that p0(ρ) ≥ γ0 for the ordinal
p0(ρ) in Definition 3.30.2. This ensures us that Hγ(Mρ) ⊂ Mρ. In the end,
inferences for reflections are removed in [5] by moving outside Hγ0(0).

Now we have several (successor) stable ordinals S,T, . . . ∈ dom(Q) for a finite
collection dom(Q) of successor stable ordinals, cf. Definition 4.22.1. Inferences for
stability and their children for reflections are eliminated first for bigger S > T,
and then smaller ones T. Therefore we need an assignment dom(Q) ∋ S 7→ γQS
for thresholds so that γQS < γQT if S > T in Definition 4.36.4.

We define two derivability relations (Hγ ,Θ; Q) ⊢∗a
c Γ;Π{·} and

(Hγ ,Θ, Q) ⊢ac,d,e,β Γ in subsections 4.4 and 4.5, resp. In the former relation, c is
a bound of ranks of the inference rules for stability and of cut formulas as well as
successor stable ordinals collected in dom(Q). In each an operator Hγ together
with a finite set Θ of ordinals and a finite family Q ⊂

⨿
S ΨS controls ordinals

occurring in derivations, where dom(Q) is a finite set of successor stable ordinals
S and Q(S) is a finite set of ordinals ρ ∈ ΨS for each S ∈ dom(Q). Furthermore
in the latter relation, Q carries thresholds.

The rôle of the former calculus ⊢∗a
c is twofold: first finite proof figures are

embedded in the calculus, and second the cut rank c in ⊢∗a
c is lowered to IN .

Then the derivation is collapsed down to a β < IN using the collapsing function
ψIN (α).

The standard requirement k(Γ) ⊂ Hγ [Θ] in operator controlled derivations is
weakened to (22) and (28) in Definitions 4.23 and 4.39. These say the following:
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Assume that, e.g., (Hγ ,Θ; Q) ⊢∗a
c Γ;Π{·} holds, and an ordinal α occurs in a

formula A ∈ Γ. Then α is in the set Hγ [Θ(Q)], where Θ(Q) = Θ ∪
∪

S Q(S).
The weakened condition comes from a proof of Tautology lemma 4.24.2 as

follows. Let σ ∈ ΨS, A ≃
∨
(Aι)ι∈J and I = {ι[σ/S] : ι ∈ [σ]J}, where ι ∈ [σ]J

iff ι ∈ J and k(ι) ⊂ Mσ. Let rk(A) ≥ S. Otherwise we don’t need to collapse

the formula A. Then A[σ/S] ≃
∨
(Bν)ν∈I with Bν ≡ A

[σ/S]
ι for ν = ι[σ/S],

rk(A[σ/S]) = rk(A)[σ/S] and k(ι[σ/S]) = k(ι)[σ/S] by Proposition 4.8. A standard
proof of the tautology ¬A[σ/S], A[σ/S] runs as follows:

Hγ [k(A
[σ/S]) ∪ k(ι[σ/S])] ⊢2dι[σ/S]

0 ¬A[σ/S]
ι , A

[σ/S]
ι

Hγ [k(A
[σ/S]) ∪ k(ι[σ/S])] ⊢2dι[σ/S]+1

0 ¬A[σ/S]
ι , A[σ/S]

(
∨
)

Hγ [k(A
[σ/S]] ⊢2d[σ/S]

0 ¬A[σ/S], A[σ/S]
(
∧
)

(15)

where d = rk(A) and dι = rk(Aι) with ι ∈ [σ]J , and S ∈ dom(Q) with σ ∈ Q(S).
Here k(A[σ/S]) ̸⊂Mσ.

We obtain k(A[σ/S]) ⊂ HS[k(A)∪{σ}] and k(ι[σ/S]) ⊂ HS[k(ι)∪{σ}] by Propo-
sition 4.11. For every ordinal α[σ/S] occurring in A[σ/S], either α ∈ HS[k(A)] or
there exists a β ∈ HS[k(A)] such that α = β[σ/S]. Thus we arrive at the weak-
ened condition (22), and obtain k(A[σ/S]) ⊂ HS[k(A) ∪ Q(S)]. In Definition 4.23
of the ∗-calculus, the operator Hγ controls ordinals occurring in derivations of
(Hγ ,Θ; Q) ⊢∗a

c Γ;Π(·) using ordinals in Θ with the help of the family Q. Instead
of a standard one, we prove the tautology ¬A[σ/S], A[σ/S] as follows:

(HIN , k(A) ∪ k(ι), Q) ⊢2dι
IN ¬A[σ/S]

ι , A
[σ/S]
ι

(HIN , k(A) ∪ k(ι), Q) ⊢2dι+1
IN ¬A[σ/S]

ι , A[σ/S]
(
∨
)

(HIN , k(A), Q) ⊢2d
IN ¬A[σ/S], A[σ/S] (

∧
)

(16)

where 2d ∈ H0[k(A)] ⊂ HIN [k(A)] for (21). Observe that the derivation in (16)
is obtained from the standard one in (15) by uncollapsing α[σ/S] 7→ α.

Let B(L0) be a formula with rk(B(L0)) < S and u an RS-term such that
k(B(u)) ⊂ Mσ. We have B(u)[σ/S] ≡ B(u[σ/S]). From the derivation of the
tautology ¬B(u)[σ/S], B(u)[σ/S], the axiom ¬∃xB(x),∃x ∈ LSB(x) is derived
in Lemma 4.26 using an inference (stbl) for the stability of a successor stable
ordinal S as follows.

¬B(u), B(u) {
¬B(u)[σ/S], B(u[σ/S])

¬B(u)[σ/S],∃x ∈ LSB(x)}k(B(u))⊂Mσ

(
∨
)

¬B(u),∃x ∈ LSB(x)
(stbl)

¬∃xB(x),∃x ∈ LSB(x)
(
∧
)

where u[σ/S] ∈ Tm(S) and σ ranges over ordinals such that k(B(u)) ⊂Mσ. The
inference says that ‘if B(u), then there exists an ordinal σ such that B(u)[σ/S]’.

In Capping lemma 5.1 of subsection 4.5 the relation ⊢∗a
c is embedded in

another derivability relation ⊢ac,d,e,β by putting caps ρ on formulas. Let σ < ρ.
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Then k(B(u[σ/S])) ⊂Mρ. In the above derivation each formula puts on the cap
ρ except ¬B(u)[σ/S]. An inference (rfl) for reflection says that ‘if B(u)(ρ), then
there exists an ordinal σ such that B(u)(σ)’. Therefore the above derivation
turns to the following.

¬B(u)(ρ), B(u)(ρ) {
¬B(u)[σ/S], B(u[σ/S])(ρ)

¬B(u)[σ/S], (∃x ∈ LSB(x))(ρ)}k(B(u))⊂Mσ,σ<ρ

(
∨
)

¬B(u)(ρ), (∃x ∈ LSB(x))(ρ)
(rfl)

(¬∃xB(x))(ρ), (∃x ∈ LSB(x))(ρ)
(
∧
)

(17)

In doing so, it is better to distinguish ¬B(u)[σ/S] from B(u[σ/S]) formally.
The latter B(u[σ/S]) puts on a bigger cap ρ as B(u[σ/S])(ρ), while the former
¬B(u)[σ/S] changes to ¬B(u)(σ) with a smaller cap σ < ρ. Let us replace the col-
lapsed formula ¬B(u)[σ/S] by an uncollapsed ¬B(u){σ}, and collect uncollapsed
formulas to the right of the semicolon as ; Π{·}. This results in the ∗-calculus
(Hγ ,Θ; Q) ⊢∗a

c Γ;Π{·}, and a derivation of ¬A[σ/S];A{σ} runs as follows.

(HIN , k(A) ∪ k(ι); Q) ⊢2dι
IN ¬A[σ/S]

ι ;A
{σ}
ι

(HIN , k(A) ∪ k(ι); Q) ⊢2dι+1
IN ¬A[σ/S]

ι ;A{σ}
(
∨
)

(HIN , k(A); Q) ⊢2d
IN ¬A[σ/S];A{σ} (

∧
)

The derivation (17) turns to the following:

¬B(u)(ρ), B(u)(ρ); ∅ {
B(u[σ/S])(ρ);¬B(u)(σ)

(∃x ∈ LSB(x))(ρ);¬B(u)(σ)}k(B(u))⊂Mσ,σ<ρ

(
∨
)

¬B(u)(ρ), (∃x ∈ LSB(x))(ρ); ∅
(rfl)

(¬∃xB(x))(ρ), (∃x ∈ LSB(x))(ρ); ∅
(
∧
)

(18)

k(A) ⊂ Mρ should be satisfied for each capped formula A(ρ), and this would
follow from k(A) ⊂ Hγ [Θ(Q)] and Θ(Q) ⊂ Mρ. However ρ ̸∈ Mρ for ρ ∈
Q(S). Looking back the derivation (16) and k(A[σ/S]) ⊂ HS[k(A) ∪ Q(S)], we see
that the extra part

∪
S Q(S) in Θ(Q) is needed to capture the ordinals σ < ρ

in the derivation (18). Thus we arrive at a classification of ordinals in the
set

∪
S Q(S): The temporary part denoted by ∂Q and the fixed part by Q◦ in

Definition 4.36.2. Ordinals ρ in ∂Q are caps on which formulas B(u) put, while
the formulas ¬B(u)(σ) in derivations (18) puts on caps σ in Q◦, cf. Capping
lemma 5.1. Ordinals in

∪
S Q(S) might occur actually in derivations only when

these are in Q◦. See the conditions (27) and (28) in Definition 4.39.
(27) says that Θ(Q◦) = Θ ∪

∪
S Q

◦(S) ⊂ M∂Q =
∩
ρ∈∂QMρ, while k(Γ) ⊂

Hγ [Θ(Q◦)] is imposed in (28). One of the reasons for the constraint (27) is to
ensure the condition (12) in Definition 3.31.6, which says that every ordinal
occurring in the finite function m(ρ) has to be in Mρ. A cap ρ ∈ ∂Q of the
capped formula A(ρ) is replaced by another cap κ to A(κ) in the main lemma
of Recapping 5.4, and the rank of the reflected formulas B(u) in inferences (rfl)
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is lowered. In doing so, a new ordinal κ = ψhρ (α) ‘enters’ in derivation. Here
a finite function h = m(κ) is constructed from the function m(ρ) and some
ordinals b, d, a, where ordinals b and d are ranks of formulas in derivations, and
a the ordinal height of the derivation. Two constraints yield {b, d, a} ⊂Mρ, and
the ordinal κ is chosen so that a specified finite subset of Mρ is a subset of Mκ,
cf. Definition 4.38.

The ordinals in the temporary part Q◦ are finally removed from Θ(Q◦) in
Lemma 5.11 as follows. For this we need another constraint (29), which says
that Q(S) ⊂ HγQS+IN [Θ(Q◦ ↾S)], where Q◦ ↾S denotes the restriction of Q◦ to S.

In Lemma 5.7 we show that the largest successor stable ordinal S in dom(Q)∩
S† as well as caps ρ ∈ Q(S) can be removed from derivations in the following way:
Let rk(Ξ) < S and each cap ρ in Ξ is in Q ↾ S. If (Hγ ,Θ, Q) ⊢aS†,S†,S†,β Ξ, then

(Hγ1 ,Θ, Q↾S) ⊢ãS,S,S,β Ξ holds for an ordinal ã and γ1 = γQS + IN if S ∈ dom(Q).

This is done as follows. First Recapping 5.4 yields (Hγ ,Θ, Q) ⊢S+ωa
S†,S,S†,β Ξ, and we

obtain a derivation in which the rank of each reflected formula A in inferences
(rfl) is less than S. Then we obtain (Hγ ,Θ, Q) ⊢ãS,S,S†,β Ξ for ã = φS†(S+ωa) by
Cut-elimination 4.44. Thus we obtain a derivation in which the rank of every
formula is less than S. Then the formula A(ρ) takes off the cap ρ ∈ Q(S), and
the set Q(S) no longer helps operators Hγ . Now we have Q(S) ⊂ Hγ1 [Θ(Q◦ ↾S)]
for γ1 = γQS + IN by (29). By lifting the threshold γ0 ≤ γQS to a larger one γ1, we
obtain Q(S) ⊂ Hγ1 [Θ(Q◦ ↾S)] and Hγ [Θ(Q◦ ↾S†)] ⊂ Hγ1 [Θ(Q◦ ↾S)]. This explains
the constraint (29).

The reason of the introduction of trail and the set B0(α) of ordinals α in
Definition 4.14 are two fold. For a stable ordinal S and its next stable ordinal
S†, we see that if B0(S†) ⊂ Hγ [Θ], then S ∈ B0(S) ⊂ Hγ [Θ] since the set Hγ [Θ]
is closed under T 7→ T†. The fact is used in Lemma 5.7. On the other side, in
proving the axiom (2) in Lemma 4.26 we need the fact that if both of a limit
i-stable ordinal T and an ordinal α < T are ‘captured’ in Hγ [Θ], then so is
a successor i-stable ordinal S such that α < S < T. Or in other words, such
an S should be constructed from data included in ordinals T and α. The data
we need are trails, cf. Proposition 4.16. Then the finite sets Θ should satisfy
B(Θ) ⊂ Θ, cf. Propositions 4.15.2, 4.17.3, 4.15.6 and 4.15.9. As we said above,
the addition of ES(α) to B(α) is to construct the collapsed ordinals α[ρ/S] from
ES(α) and ρ.

Now details follow.

4.3 Sets Mρ, trails and stepping-down

In this subsection some facts on sets Mρ, ordinal terms and finite functions are
established. These facts are needed in this and next secrtion 5.

Definition 4.10 For α ∈ OT (IN ) and S ∈ SSt, a finite set ES(α) ⊂ S of
subterms of α is defined recursively as follows.

1. ES(α) = ES(SC(α)) :=
∪
{ES(β) : β ∈ SC(α)} if α ̸∈ SC(α).
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In what follows let SC(α) = {α}.

2. ES(α) = {α} if SC(α) ∋ α < S.
In what follows let SC(α) ∋ α ≥ S.

3. ES(S) = ∅.

4. ES(α) = ES({σ, a} ∪ SC(f)) =
∪
{ES(β) : β ∈ {σ, a} ∪ SC(f)} if α =

ψfσ(a).

5. ES(α) = ES(T) if α = T†i.

6. ES(α) = ES(τ) if α = IN [τ ].

7. ES(α) = ES({τ,T}) if α = T†⃗i[τ/T].

Let E(α) =
∪
{ES(α) : S ∈ SSt}.

Proposition 4.11 1. SC(α) ⊂ E(α) = E(E(α)), where E(X) =
∪
{E(β) :

β ∈ X} for stes X of ordinals.

2. Let α ∈Mρ with ρ ∈ ΨS. Then α[ρ/S] ∈ HS(ES(α)∪{ρ}) and E(α[ρ/S]) ⊂
E(α) ∪ E(ρ) ∪ SC(α[ρ/S]).

3. ∀β ∈ E(α)∃γ ∈ SC(α)(β ≤ γ).

Proof. 4.11.1. Let β ∈ ES(α). By induction on ℓα we show ET(β) ⊂ ET(α) ∪
ES(α). By IH we may assume SC(α) ∋ α < S, ES(α) = {α} and β = α. If
α < T, then ET(α) = {α} ⊂ ES(α). Let T ≤ α. Then ET(β) = ET(α). Hence
E(E(α)) ⊂ E(α).

Conversely let β ∈ SC(α) and β < S ∈ SSt. Then ES(β) = {β}, and
SC(α) ⊂ E(α). Hence E(α) = E(SC(α)) ⊂ E(E(α)).
4.11.2. By induction on ℓα. α[ρ/S] ∈ HS(ES(α) ∪ {ρ}) follows from the facts
Mρ ∩ S = ρ and α[ρ/S] < S. For each T we show ET(α[ρ/S]) ⊂ ET(α)∪ET(ρ)∪
SC(α[ρ/S]). If T ≥ S, then ET(α[ρ/S]) ⊂ SC(α[ρ/S]). Let T < S ≤ α. Then
T < α[ρ/S]. ET(α[ρ/S]) ⊂ ET(α) ∪ ET(ρ) is seen by induction on ℓα.
4.11.3. By induction on ℓα. By IH we may assume that α ∈ SC(α). Let
β ∈ ET(α). If α < T, then β = α. Let T ≤ α. Then β < T ≤ α. 2

Proposition 4.12 Let α be a strongly critical number such that Ω < α < IN .
There exists a unique sequence (αn)n≤m such that α0 = ψIN (a) for an a, αm = α

and each αn+1 is one of the forms ψfαn
(b), α†⃗i

n , IN [αn], S†⃗i[αn/S] for some f, b, i⃗
and S. The sequence (αn)n≤m is said to be the trail to α, and denoted by trail(α).

For a term αn in the trail to α, if αn < α, then αn < αk for n < k ≤ m,
and ET(αn) ⊂ ET(α) for every SSt ∋ T ≤ αn.

Furthermore α0 ≤ α, and ET(α0) ⊂ ET(α) holds for every SSt ∋ T ≤ α0.

Proof. This is seen by inspection of Definitions 3.31 and 3.33. If αn > αn+1,
then we would have αn+1 ≺ αn and α < αn by Definition 3.35. 2
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Proposition 4.13 Let ρ ∈ ΨS with a successor stable ordinal S. Assume S <
ψIN (γ), IN ≤ γ ≤ p0(ρ), α ∈ Hγ(ψIN (γ)) and ES(α) ⊂ ρ ∈ ΨS. Then α ∈
Mρ = Hp0(ρ)(ρ).

Proof. By induction on ℓα. By IH we may assume that S < α < IN . Let
α = ψIN (a). Then a ∈ Hγ(ψIN (γ)) ∩ γ and ES(α) = ES(a). IH yields a ∈ Mρ,
and α ∈Mρ by a < γ ≤ p0(ρ). 2

Definition 4.14 For α ∈ OT (IN ), a finite set B0(α) is defined recursively as
follows.

1. B0(α) = B0(SC(α)) :=
∪
{B0(β) : β ∈ SC(α)} if α ̸∈ SC(α).

2. B0(α) = {α} if SC(α) ∋ α < Ω.

3. B0(α) = {α} ∪ (trail(α) ∩ St ∩ α) if Ω < α ∈ SC(α).

Let B0(X) =
∪
{B0(β) : β ∈ X} for sets X of ordinals, and

B(α) = B0(E(α)) (19)

Proposition 4.15 1. SC(α) ⊂ B0(α) and E(α) ⊂ B(α).

2. SC(α) ⊂ B(α) and B(α) = B(SC(α)).

3. B0(B0(α)) ⊂ B0(α).

4. ∀β ∈ B0(α)∃γ ∈ SC(α)(β ≤ γ) and ∀β ∈ B(α)∃γ ∈ SC(α)(β ≤ γ).

5. E(B0(α)) ⊂ E(α) ∪ B0(α).

6. B(B(α)) = B(α).

7. Let ρ ∈ ΨS with S ∈ SSt. Then B(α[ρ/S]) ⊂ B({α, ρ, S}) ∪ SC(α[ρ/S]).

8. For α = ψfσ(a), B(α) ⊂ {α} ∪ B({σ, a} ∪ SC(f)).

9. Let B(Θ) ⊂ Θ for a finite set Θ of ordinals, and α ∈ Hγ [Θ] with γ ≥ IN .
Then B(α) ⊂ Hγ [Θ].

Proof. 4.15.1. We have SC(α) ⊂ B0(α). Hence E(α) ⊂ B0(E(α)) = B(α).
4.15.2. By Proposition 4.11.1 we have SC(α) ⊂ E(α), and hence SC(α) ⊂ B(α)
by Proposition 4.15.1.
4.15.3. This is seen by induction on ℓα using the fact that trail(S)∩S ⊂ trail(α)
for S ∈ trail(α) ∩ St ∩ α.
4.15.4. By induction on ℓα we show ∀β ∈ B0(α)∃γ ∈ SC(α)(β ≤ γ). ∀β ∈
B(α)∃γ ∈ SC(α)(β ≤ γ) follows from this and Proposition 4.11.3. By IH we
may assume that Ω < α ∈ SC(α). For β ∈ B0(α) we see β ≤ α.
4.15.5. By induction on ℓα. By IH we may assume that Ω < α ∈ SC(α). For
β ∈ B0(α), we show E(β) ⊂ E(α) ∪ B0(α). Let β ∈ trail(α) ∩ St ∩ α. Then we
obtain E(β) ⊂ E(α) by Proposition 4.12.
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4.15.6. By Propositions 4.11.1 and 4.15.1 we obtain E(α) = E(E(α)) ⊂ E(B(α)),
and B(α) = B0(E(α)) ⊂ B0(E(B(α))) = B(B(α)). Conversely we obtain
E(B0(α)) ⊂ E(α)∪B0(α) by Proposition 4.15.5. Hence E(B0(E(α))) ⊂ E(α)∪
B0(E(α)) by Proposition 4.11.1. Therefore B(B(α)) = B0(E(B0(E(α)))) ⊂
B0(E(α)) ∪ B0(B0(E(α))) ⊂ B(α) by Proposition 4.15.3.
4.15.7. By Proposition 4.11.2 we have E(α[ρ/S]) ⊂ E(α) ∪ E(ρ) ∪ SC(α[ρ/S]).
On the other side, we see B0(α[ρ/S]) ⊂ B0(α) ∪ B0(S) ∪ SC(α[ρ/S]) by induc-
tion on ℓα. When S ≤ α ∈ SC(α), we obtain trail(α[ρ/S]) ∩ St ∩ (α[ρ/S]) ⊂
trail(S) ∩ S.
4.15.8. We have E(α) ⊂ {α} ∪ E({σ, a} ∪ SC(f)), and B(α) ⊂ B0(α) ∪
B({σ, a} ∪ SC(f)). On the other hand we have B0(α) ⊂ {α} ∪ B0(σ). Hence
B(α) ⊂ {α} ∪ B({σ, a} ∪ SC(f)).
4.15.9. By induction on ℓα. 2

Proposition 4.16 Let T ∈ SSti+1 be a successor (i + 1)-stable ordinal, and
α < T an ordinal. Then there exists a successor i-stable ordinal α < S < T such
that B(S) ⊂ H0(B(α,T)) for B(α,T) = B(α) ∪ B(T).

Proof. By induction on the lengths ℓα of ordinal terms α. By IH we may
assume that Ω < α < IN and α ∈ SC(α). Let T = U†(i+1) with U ∈ St ∪ {Ω}.
Then trail(U) ⊂ trail(T) and B(U) ⊂ H0(B(T)).
Case 1. There exists a k > 0 such that α < U†i(k)

, where U†i(0) = U and

U†i(k+1)

= (U†i(k)

)†i: Pick a k > 0 such that α < S = U†i(k)

. We obtain
B(S) ⊂ H0(B(T)), and S < T is seen from T ∈ LSti.
Case 2. Otherwise: Then we see from Definition 3.35 that there exists a
ρ ∈ B0(α) such that ρ ≺ T. We obtain ρ ≤ α and trail(ρ) ⊂ trail(α). Pick a

k > 0 such that α < S = ρ†i
(k)

< T. We obtain trail(S) = {S} ∪ trail(ρ) and
B(S) ⊂ H0(B(α)). 2

Proposition 4.17 Let α ∈ OT (IN ) and ρ ∈ ΨS with S ∈ SSt.

1. If α ∈Mρ, then E(α) ⊂Mρ.

2. If α ∈Mρ, then B0(α) ⊂Mρ.

3. If α ∈Mρ, then B(α) ⊂Mρ.

Proof. Proposition 4.17.3 follows from Propositions 4.17.1 and 4.17.2, each of
which is shown by induction on ℓα. By IH we may assume that Ω < α < IN
and α ∈ SC(α). Let Mρ = Hb(ρ) with b = p0(ρ).
4.17.1. Let β ∈ ET(α). If T < S, then β < T < ρ. If α < T, then β = α. We may
assume that ρ < S ≤ T ≤ α. For example let α = ψfσ(a) ∈ Mρ = Hb(ρ). Then
ET(α) = ET({σ, a} ∪ SC(f)) and {σ, a} ∪ SC(f) ⊂Mρ. IH yields ET(α) ⊂Mρ.
Other cases are seen similarly.
4.17.2. Let (αn)n≤m be the trail to α. First let αn ∈ trail(α) ∩ α. If α < S,
then αn < α < ρ by Proposition 4.15.4. Let ρ < S ≤ αm = α ∈ Mρ. Let
k = min{k : n ≤ k ≤ m,αk ≥ ρ}. If n < k, then αn < ρ and α ∈ Mρ.
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Otherwise we obtain ρ ≤ αn < αk for every k with n < k ≤ m by Proposition
4.12. Hence αn ∈Mρ = Hb(ρ). 2

The following Definition 4.18 is needed in subsection 5.2.

Definition 4.18 Let s(f) = max({0} ∪ supp(f)) for finite function f , and
s(ρ) = s(m(ρ)).

Let Λ < IN be a strongly critical number, which is a base for θ̃-function. Let
f : Λ → φΛ(0) be a non-empty and irreducible finite function. Then f is said to
be special if there exists an ordinal α such that f(s(f)) = α+ Λ. For a special
finite function f , f ′ denotes a finite function such that supp(f ′) = supp(f),
f ′(c) = f(c) for c ̸= s(f), and f ′(s(f)) = α with f(s(f)) = α+ Λ.

A special function hb(g; a) is defined from ordinals a, b and a finite function
g as in [5].

Definition 4.19 Let Λ < IN be a strongly critical number, which is a base for
θ̃-function. Let f, g be special finite functions.

1. For ordinals a ≤ Λ, b < s(g), let us define a special finite function h =
hb(g; a) as follows. s(h) = b, and hb = gb. To define h(b), let {b = b0 <
b1 < · · · < bn = s(g)} = {b, s(g)}∪((b, s(g)) ∩ supp(g)). Define recursively
ordinals αi by αn = α+ a with g(s(g)) = α+Λ. αi = g(bi) + θ̃ci(αi+1; Λ)
for ci = bi+1 − bi. Finally let h(b) = α0 + Λ.

2. fb∗gb denotes a special function h such that supp(h) = supp(fb)∪supp(gb),
h′(c) = f ′(c) for c < b, and h′(c) = g′(c) for c ≥ b.

The following Proposition 4.20 is seen as in [5].

Proposition 4.20 Let k be a finite function, f, g special finite functions such
that fd = gd and f <d g′(d) for a d ∈ supp(g), and ρ ∈ ΨS with g = m(ρ). θ̃
denotes the function θ̃b(ξ; Λ) in Definition 3.1 with base Λ.

1. For b < d and a < Λ, fb = (hb(g; a))b and f <b (hb(g; a))′(b).

2. Let b ≤ e < d, a0 < a < Λ, and h = (he(g; a0)) ∗ fe+1. Then hb =
(hb(g; a))b and h <b (hb(g; a))′(b).

Proof. 4.20.1. Let h = hb(g; a). We have hb = gb = fb. Let b + x ∈
supp(f) ∩ d ⊂ supp(g) ∩ d. Then f(b + x) = g(b + x) < θ̃−x(h

′(b)) and
g′(d) < θ̃−(d−b)(h

′(b)). Proposition 3.6 yields the proposition.

4.20.2. Note that h = (he(g; a0))
′ ∗ fe+1. We have hb = gb = (hb(g; a))b. For

b+x ∈ supp(g)∩e, h(b+x) = (he(g; a0))(b+x) = g(b+x) < θ̃−x((h
b(g; a))′(b)),

and h(e) = (he(g; a0))(e) < θ̃−(e−b)((h
b(g; a))′(b)) by a0 < a. For e < e + x ∈

supp(f)∩d, we obtain h(e+x) = f(e+x) = g(e+x) < θ̃−(e+x−b)((h
b(g; a))′(b)).

For d+x ∈ supp(f), we obtain h(d+x) = f(d+x) < θ̃−x(g
′(d)) ≤ θ̃−(d+x−b)((h

b(g; a))′(b)).

Therefore h <b (hb(g; a))′(b). 2
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4.4 Operator controlled ∗-derivations
Let Hγ [Θ] := Hγ(Θ) and Hγ := Hγ(0). By a successor stable ordinal we mean
ordinals in SSt =

∪
0<i≤N SSti, and S† := S†1. In this section and the next

section 5 let us fix an ordinal IN ≤ γ0 ∈ H0. The ordinal γ0 depends on a given
finite proof figure in SIN , and is specified in the end of section 5.

Definition 4.21 By an uncollapsed formula we mean a pair {A, ρ} of RS-
sentence A and an ordinal ρ ≺ S for a successor stable ordinal S such that
k(A) ⊂ Mρ. Such a pair is denoted by A{ρ}. When we write Γ{ρ}, we tacitly
assume that k(Γ) ⊂Mρ.

B(α) denotes the set defined in (19) of Definition 4.14. For ordinals α,
we see B(α) ⊂ Mρ iff α ∈ Mρ from Propositions 4.15.2 and 4.17.3. Hence
B(k(ι)) ⊂ Mρ iff k(ι) ⊂ Mρ for RS-terms and RS-formulas ι. On the other
hand we have max({0} ∪ B(α)) ≤ max({0} ∪ SC(α)) by Proposition 4.15.4.

Definition 4.22 1. A finite family for an ordinal γ0 is a finite function
Q ⊂

⨿
S ΨS such that its domain dom(Q) is a finite set of successor stable or-

dinals and Q(S) is a finite set of ordinals κ in ΨS for each S ∈ dom(Q) with a
special finite function m(κ), and γ0 ≤ p0(κ), where MQ =

∩
S∈dom(Q)MQ(S)

with MQ(S) =
∩
σ∈Q(S)Mσ and M∅ = OT (IN ). Let Q(T) = ∅ for T ̸∈

dom(Q).

2. Let Θ be a finite set of ordinals and Q a finite family. Let

Θ(Q) := Θ ∪ B
(∪

{Q(S) : S ∈ dom(Q)}
)

(20)

We define a derivability relation (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π{·} where c is a bound

of ranks of the inference rules (i−stbl(S)), one of ranks of cut formulas, and
of dom(QΠ). The relation depends on an ordinal γ0, and should be written as
(Hγ ,Θ; QΠ) ⊢∗a

c,γ0 Γ;Π{·}. However the ordinal γ0 will be fixed. So let us omit
it. Note that if γ0 ≤ p0(σ) for σ ≺ S, then Hγ0(σ) ∩ S ⊂ σ by Proposition 3.42.

Definition 4.23 Let Θ be a finite set of ordinals such that B(Θ) ⊂ Θ, a, c ordi-
nals, and QΠ a finite family for γ0 such that dom(QΠ) ⊂ c. Let Π =

∪
(S,σ)∈QΠ Πσ

be a set of formulas such that Π ⊂ ∆0(LN+1), k(Πσ) ⊂Mσ for each (S, σ) ∈ QΠ.

Let Π{·} =
∪

(S,σ)∈QΠ Π
{σ}
σ .

(Hγ ,Θ; QΠ) ⊢∗a
c,γ0 Γ;Π{·} holds for a set Γ of formulas if IN ≤ γ ≤ γ0,

{γ, a, c, γ0} ∪ dom(QΠ) ⊂ Hγ [Θ] (21)

k(Γ ∪Π) ⊂ Hγ [Θ(QΠ)] (22)

and one of the following cases holds:
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(
∨
) There exist A ≃

∨
(Aι)ι∈J , ι ∈ J , and an ordinal a(ι) < a such that A ∈ Γ

and (Hγ ,Θ; QΠ) ⊢∗a(ι)
c Γ, Aι; Π

{·}.

(
∨
){·} There existA{σ} ∈ Π{·}, A ≃

∨
(Aι)ι∈J , ι ∈ [σ]J , and an ordinal a(ι) < a

such that (Hγ ,Θ; QΠ) ⊢∗a(ι)
c Γ;Π{·}, A

{σ}
ι .

(
∧
) There exist an A ≃

∧
(Aι)ι∈J such that A ∈ Γ. For each ι ∈ J , (Hγ ,Θ ∪

B(k(ι)); QΠ) ⊢∗a(ι)
c Γ, Aι; Π

{·} holds for an ordinal a(ι) < a.

(
∧
){·} There exist A{σ} ∈ Π{·} such that A ≃

∧
(Aι)ι∈J . For each ι ∈ [σ]J ,

(Hγ ,Θ ∪ B(k(ι)); QΠ ⊢∗a(ι)
c Γ;A

{σ}
ι ,Π{·} holds for an ordinal a(ι) < a.

(cut) There exist an ordinal a0 < a and a formula C such that (Hγ ,Θ; QΠ) ⊢∗a0
c

Γ,¬C; Π{·} and (Hγ ,Θ; QΠ) ⊢∗a0
c C,Γ;Π{·} with rk(C) < c.

(Σ(St)-rfl) There exist ordinals aℓ, ar < a and a formula C ∈ Σ(LN+1) such
that (Hγ ,Θ; QΠ) ⊢∗aℓ

c Γ, C; Π{·} and (Hγ ,Θ; QΠ) ⊢∗ar
c ¬∃xC(x,IN ),Γ;Π{·},

where c ≥ IN .

(Σ(Ω)-rfl) There exist ordinals aℓ, ar < a and a formula C ∈ Σ(L0 : Ω) such that
(Hγ ,Θ; QΠ) ⊢∗aℓ

c Γ, C; Π{·} and (Hγ ,Θ; QΠ) ⊢∗ar
c ¬∃x < ΩC(x,Ω),Γ;Π{·},

where c ≥ Ω.

(i−stbl(S)) Let 0 < i ≤ N . There exist an ordinal a0 < a, a successor i-stable
ordinal S ∈ SSti ∩ c, a formula B(L0) ∈ ∆0(Li) with rk(B(L0)) < S, and
a u ∈ Tm(IN ) such that S ≤ rk(B(u)) < c for which the following hold:

S ∈ Hγ [Θ] (23)

and (Hγ ,Θ; RΠ) ⊢∗a0
c Γ, B(u); Π{·} for dom(RΠ) = dom(QΠ) ∪ {S} and

RΠ(S) = QΠ(S).
For every σ ∈ ΨS such that RσΠ = RΠ∪{(S, σ)} is a finite family for γ0 and

Θ(QΠ) ⊂Mσ (24)

(Hγ ,Θ; RσΠ) ⊢∗a0
c Γ;¬B(u){σ},Π{·} holds, where dom(RσΠ) = dom(RΠ) and

(RσΠ) (S) = RΠ(S) ∪ {σ}.

(Hγ ,Θ; RΠ) ⊢∗a0
c Γ, B(u); Π{·} {(Hγ ,Θ; RσΠ) ⊢∗a0

c Γ;¬B(u){σ},Π{·}}σ
(Hγ ,Θ; QΠ) ⊢∗a

c Γ;Π{·}

Note that in (24) we have S ∈ Mσ by Proposition 3.38. Let B(Θ) ⊂ Θ. By
Propositions 4.15.6 and 4.15.9 we have B(α) ⊂ Hγ [Θ] if α ∈ Hγ [Θ]. In particular
B(k(ι)) ⊂ Hγ [Θ] holds when k(ι) ⊂ Hγ [Θ].

We will state some lemmas for the operator controlled derivations. These
can be shown as in [9].
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Lemma 4.24 (Tautology) Let d = rk(A), IN ≤ γ ≤ γ0 and {γ, γ0} ⊂ Hγ [k(A)].

1. (Hγ ,B(k(A)); ∅) ⊢∗2d
IN ,γ0 ¬A,A; ∅.

2. (Hγ ,B(k(A) ∪ {S}); {(S, σ)}) ⊢∗2d
IN ,γ0 ¬A[σ/S];A{σ} if σ ∈ ΨS, k(A) ⊂ Mσ

and A ∈ ∆0(LN+1).

Proof. Each is seen by induction on d = rk(A). Let us consider Lemma
4.24.2. Let Θ = B(k(A) ∪ {S}), QΠ = {(S, σ)} and B ≡ A[σ/S]. Then Θ(QΠ) =
B(k(A) ∪ {S, σ}). We have {γ, 2d, IN , γ0} ∪ k(A) ⊂ Hγ [Θ]. For (22), we obtain
by Proposition 4.7.3, k(A[σ/S]) ⊂ HS(k(A)∪{σ}) ⊂ Hγ [Θ(QΠ)] with S < IN ≤ γ
if B ̸≡ A, and k(A[σ/S]) ⊂ Hγ [k(A)] else. Moreover S ∈ Hγ [Θ] for (21).

Let A ≃
∨
(Aι)ι∈J . We obtain B ≃

∨
(A

[σ/S]
ι )ι∈[σ]J by Proposition 4.8.

Let Θι = Θ ∪ B(k(ι)) and ι ∈ [σ]J . For d > dι = rk(Aι) with dι ⊂ Hγ [Θι]

we obtain (Hγ ,Θι; QΠ) ⊢∗2dι
IN ¬A[σ/S]

ι ;A
{σ}
ι by IH.

(Hγ ,Θι; QΠ) ⊢∗2dι
IN ¬A[σ/S]

ι ;A
{σ}
ι

IH

{(Hγ ,Θι; QΠ) ⊢∗2dι+1
IN ¬A[σ/S]

ι ;A{σ}}ι∈[σ]J

(
∨
){·}

(Hγ ,Θ; QΠ) ⊢∗2d
IN ¬A[σ/S];A{σ} (

∧
)

and

(Hγ ,Θι; QΠ) ⊢∗2dι
IN A

[σ/S]
ι ;¬A{σ}

ι

IH

{(Hγ ,Θι; QΠ) ⊢∗2dι+1
IN A[σ/S];¬A{σ}

ι }ι∈[σ]J

(
∨
)

(Hγ ,Θ; QΠ) ⊢∗2d
IN A[σ/S];¬A{σ} (

∧
){·}

2

Lemma 4.25 (Equality) Let d = rk(A(L0)), γ ≥ IN , B(k(A, u, v)) = B(k(A))∪
B(k(u)) ∪ B(k(v)) and {γ, γ0} ⊂ Hγ [B(k(A, u, v))].

Then (Hγ ,B(k(A, u, v)); ∅) ⊢∗ω(|u|#|v|)#2d
IN ,γ0 u ̸= v,¬A(u), A(v); ∅.

Proof. This is seen by induction on d = rk(A) as in [9, 3].
First show that (Hγ ,B(k(u, v, w)); ∅) ⊢∗α

IN ,γ0 u ̸= v, u ̸∈ w, v ∈ w; ∅,
(Hγ ,B(k(u, v, w)); ∅) ⊢∗α

0,γ0 u ̸= v, u ̸= w, v = w; ∅ and
(Hγ ,B(k(u, v, w)); ∅) ⊢∗α

IN ,γ0 u ̸= v, w ̸∈ u,w ∈ v; ∅ simultaneously by induction
on the natural sum |u|#|v|#|w|, where α = ω(|u|#|v|#|w|). Then the lemma
is seen by induction on d = rk(A(L0)). 2

Lemma 4.26 (Embedding of Axioms) For each axiom A in SIN there is an
m < ω such that (HIN , ∅; ∅) ⊢

∗IN ·2+m
IN+m,γ0

A; ∅ holds.

Proof. In the proof, let us suppress the operator HIN , the second subscript γ0,
and write ⊢∗ for ⊢∗IN+m

IN+m,γ0
for an m < ω.
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We show first that the axiom (3) follows from an inference (i−stbl(S)). Let
φ(y) ≡ (∃x θ(x, y)) be a Σ1({stj}j<i)-formula such that rk(θ(L0, L0)) < ω. Also
let u,w be RS-terms, S a successor i-stable ordinal, and B(x) ≡ θ(x,w).

Let kw = k(B(L0)) = k(w), ku = k(u), and Θ := B(kw ∪ ku ∪ {S}), where
S ∈ Hγ [Θ] for (23). We show

B(kw) ∪ B(S); ∅ ⊢∗ w ̸∈ LS,¬∃xB(x),∃x ∈ LSB(x); (25)

First assume |w| < S. Then rk(B(L0)) = rk(θ(L0, w)) < S. We obtain by
Tautology 4.24.1, Θ; Q ⊢∗2d

IN ¬B(u), B(u); ∅, where d=rk(B(u)), dom(Q) = {S}
and Q(S) = ∅. We may assume that IN > d ≥ S with |u| ≥ S.

Let σ ∈ ΨS be an ordinal such that Θ ⊂ Mσ and γ0 ≤ p0(σ). Tautology
4.24.2 yields Θ; {(S, σ)} ⊢∗2d

IN B(u)[σ/S];¬B(u){σ}. Then for ∃x ∈ LSB(x) ≃∨
(B(v))v∈J we obtain u[σ/S] ∈ Tm(S) = J with B(u[σ/S]) ≡ B(u)[σ/S]. When

|w| < S, (25) is seen as follows:

Θ; Q ⊢∗2d
IN ¬B(u), B(u); {

Θ; {(S, σ)} ⊢∗2d
IN B(u[σ/S]);¬B(u){σ}

Θ; {(S, σ)} ⊢∗2d+1
IN ∃x ∈ LSB(x);¬B(u){σ}}σ

(
∨
)

Θ;⊢∗2d+1
IN ¬B(u), ∃x ∈ LSB(x);

(i−stbl(S))

B(kw) ∪ B(S);⊢∗2d+2
IN ¬∃xB(x), ∃x ∈ LSB(x);

(
∧
)

Assume |w| ≥ S, and let v ∈ Tm(S). Then |v| < S and (v∈̇LS) ≡ (v ̸∈ L0). We
obtain by (25)

B(k(v)) ∪ B(S); ∅ ⊢∗ ¬∃x θ(x, v),∃x ∈ LSθ(x, v);

We obtain

B(k(w, v)) ∪ B(S); ∅ ⊢∗ ¬(v∈̇LS), w ̸= v,¬∃x θ(x,w),∃x ∈ LSθ(x,w);

by Equality 4.25 followed by (cut)’s with |v|, |w| < IN and rk(∃x θ(x,w)) = IN+
2. Then a (

∨
) followed by a (

∧
) yields (25), where (w ̸∈ LS) ≃

∧
(¬(v∈̇LS)∨w ̸=

v)v∈Tm(S).
Let v be an RS-term with |v| ≥ S. We obtain by (25) and Equality 4.25

B(k(w, v)) ∪ B(S);⊢∗ LS ̸= v, w ̸∈ v,¬∃x θ(x,w),∃x ∈ v θ(x,w);

We have ¬sti(v) ≃
∧
(LS ̸= v)J with J = {LS : |v| ≥ S ∈ SSti}. A (

∧
) yields

the axiom (3)

B(k(w, v));⊢∗ ¬sti(v),¬φ(w), w ̸∈ v, φv(w);

Next we show the axiom (1). Let u be an RS-term and β = α†N for α = |u|.
Then β ∈ H0[k(u)]. We obtain B(k(u)); ∅ ⊢∗ u = u; ∅ and B(k(u)); ∅ ⊢∗ Lβ =
Lβ ; ∅. Hence

B(k(u)); ∅ ⊢∗ u = u; ∅
B(k(u)); ∅ ⊢∗ u ∈ Lβ ; ∅

(
∨
)

B(k(u)); ∅ ⊢∗ Lβ = Lβ ; ∅
B(k(u)); ∅ ⊢∗ stN (Lβ); ∅

(
∨
)

B(k(u)); ∅ ⊢∗ u ∈ Lβ ∧ stN (Lβ); ∅
(
∧
)

B(k(u)); ∅ ⊢∗ ∃y (u ∈ y ∧ stN (y)) ; ∅
(
∨
)

∅; ∅ ⊢∗ ∀x∃y (x ∈ y ∧ stN (y)) ; ∅
(
∧
)
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Third we show the axiom (2). Let T ∈ SSti+1 be a successor (i + 1)-stable
ordinal. We obtain B(T); ∅ ⊢∗ θ(LT) for θ(x) ≡ (sti(x) ∧ LΩ ∈ x ∧ ∀y ∈ x∀z ∈
y(z ∈ x)) with LΩ ≡M0.

For a given α < T pick a successor i-stable ordinal α < S < T such that
S ∈ H0[B(α,T)] by Proposition 4.16.

Let |v| = α < T. We obtain (LS∈̇LT) ≡ (LS ̸∈ L0), B(v); ∅ ⊢∗ v = v; ∅, and
B(k(v) ∪ {T}); ∅ ⊢∗ LS = LS; ∅. Hence B(k(v) ∪ {T}); ∅ ⊢∗ v ∈ LS ∧ sti(LS); ∅,
and B(k(v) ∪ {T}); ∅ ⊢∗ ∃z ∈ LT(v ∈ z ∧ sti(z)); ∅. Let w and u be RS-terms.
Equality 4.25 yields B(k(w) ∪ {T}); ∅ ⊢∗ w ̸∈ LT,∃z ∈ LT(w ∈ z ∧ sti(z)); ∅, and
B(k(w, u) ∪ {T}); ∅ ⊢∗ u ̸= LT, w ̸∈ u,∃z ∈ u(w ∈ z ∧ sti(z)); ∅. A (

∧
) yields

B(k(w, u)); ∅ ⊢∗ ¬sti+1(u), w ̸∈ u,∃z ∈ u(w ∈ z ∧ sti(z)); ∅.
∆0(LN+1)-Collection follows from an inference (Σ(St)−rfl), and the ∆0-

collection for the set M0 = LΩ follows from an inference (Σ(Ω)−rfl). Other
axioms in KPω, i.e., axioms for pair, union, ∆0-Separation and foundation are
seen as in [9, 3]. 2

Lemma 4.27 (Embedding) If SIN ⊢ Γ for sets Γ of sentences, there are m, k <
ω such that (HIN , ∅; ∅) ⊢

∗IN ·2+k
IN+m,γ0

Γ; ∅ holds.

Proof. This follows from Lemma 4.26 as in [9, 3]. 2

Lemma 4.28 Let (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π{·}, γ ≤ γ1 ≤ γ0 with γ1 ∈ Hγ1 [Θ1] and

Θ ⊂ B(Θ1) ⊂ Θ1. Then (Hγ1 ,Θ1; QΠ) ⊢∗a
c Γ;Π{·} holds.

Proof. By induction on a. We need to prune some branches at inferences
(i−stbl(S)) for (24) with Θ(QΠ) ⊂ Θ1(QΠ). 2

Lemma 4.29 Let (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π{·}, and S < IN ≤ c be a successor stable

ordinal and σ ∈ ΨS. Assume P = QΠ ∪ {(S, σ)} is a finite family for γ0, and
S ∈ Hγ [Θ]. Then (Hγ ,Θ; P) ⊢∗a

c Γ;Π{·} holds.

Proof. By induction on a. By the assumption (21) is enjoyed in (Hγ ,Θ; P) ⊢∗a
c

Γ;Π{·}. We need to prune some branches at inferences (i−stbl(S)) for (24) with
Θ(QΠ) ⊂ Θ(P). 2

Lemma 4.30 (Inversion) Let (Hγ ,Θ; QΠ) ⊢∗a
c Γ;Π{·} with A ≃

∧
(Aι)ι∈J , A ∈

Γ, and ι ∈ J .
Then (Hγ ,Θι; QΠ) ⊢∗a

c Γ, Aι; Π
{·} holds for Θι = Θ ∪ B(k(ι)).

Proof. By induction on a. We obtain (Hγ ,Θι; QΠ) ⊢∗a
c Γ;Π{·} by Lemma 4.28.

2

Lemma 4.31 (Reduction) Let C ≃
∨
(Cι)ι∈J and ¬(Ω ≤ c < IN ) with rk(C) ≤

c. Assume (Hγ ,Θ; QΠ) ⊢∗a
c Γ0,¬C; Π{·} and (Hγ ,Θ; QΠ) ⊢∗b

c C,Γ1; Π
{·}. Then

(Hγ ,Θ; QΠ) ⊢∗a+b
c Γ0,Γ1; Π

{·}.
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Proof. By induction on b.
Case 1. Consider first the case when (Hγ ,Θ; QΠ) ⊢∗b

c C,Γ1; Π
{·} follows from a

(
∨
) with its major formula C. We have (Hγ ,Θ; QΠ) ⊢∗b(ι)

c Cι, C,Γ1; Π
{·} for an

ι ∈ J . IH yields (Hγ ,Θ; QΠ) ⊢∗a+b(ι)
c Cι,Γ0,Γ1; Π

{·}.
Let Θι = Θ ∪ B(k(ι)). We obtain (Hγ ,Θι; QΠ) ⊢∗a

c Γ0,¬Cι; Π{·} by In-
version 4.30. On the other hand we have B(k(Cι)) ⊂ Hγ [Θ(QΠ)] by (22) and
Propositions 4.15.6 and 4.15.9. Hγ [(Θι)(QΠ)] = Hγ [Θ(QΠ)] follows provided
that k(ι) ⊂ k(Cι). Hence (Hγ ,Θ; QΠ) ⊢∗a

c Γ0,¬Cι; Π{·}.
A (cut) with the cut formula Cι yields (Hγ ,Θ; QΠ) ⊢∗a+b

c Γ0,Γ1; Π
{·} for

rk(Cι) < rk(C) ≤ c.
Case 2. Second assume that (Hγ ,Θ; QΠ) ⊢∗b

c C,Γ1; Π
{·} follows from an (i−stbl(S)).

We have an ordinal b0 < b and a formula B(u) such that for dom(RΠ) =
dom(QΠ) ∪ {S} and RσΠ = RΠ ∪ {(S, σ)}

(Hγ ,Θ; RΠ) ⊢∗b0
c C,Γ1, B(u); Π{·} {(Hγ ,Θ; RσΠ) ⊢∗b0

c C,Γ1;¬B(u){σ},Π{·}}σ
(Hγ ,Θ; QΠ) ⊢∗b

c C,Γ1; Π
{·}

where S ∈ Hγ [Θ] and Θ(QΠ) ⊂ Mσ by (24). By Lemma 4.29 we obtain
(Hγ ,Θ; RσΠ) ⊢∗a

c Γ0,¬C; Π{·} for each σ. IH followed by an (i−stbl(S)) yields

(Hγ ,Θ; RΠ) ⊢∗a+b0
c Γ0,Γ1, B(u); Π{·} {(Hγ ,Θ; RσΠ) ⊢∗a+b0

c Γ0,Γ1;¬B(u){σ},Π{·}}σ
(Hγ ,Θ; QΠ) ⊢∗a+b

c Γ0,Γ1; Π
{·}

Other cases are seen from IH. 2

Lemma 4.32 (Cut-elimination) Let c ∈ Hγ [Θ] and (Hγ ,Θ; QΠ) ⊢∗a
c+b Γ;Π{·},

where either c ≥ IN or ¬(c < Ω < c+ b). Then (Hγ ,Θ; QΠ) ⊢∗φb(a)
c Γ;Π{·}.

Proof. By main induction on b with subsidiary induction on a using Reduction
4.31. 2

Lemma 4.33 (Σ-persistency) Let A ∈ Σ(LN+1) with rk(A) ≤ IN , dom(QΠ) ⊂
α < β, β ∈ Hγ [Θ] ∩ IN , and (Hγ ,Θ; QΠ) ⊢∗a

c Γ, A(α,IN ); Π{·}.
Then (Hγ ,Θ; QΠ) ⊢∗a

c Γ, A(β,IN ); Π{·}.

Proof. This is seen by induction on a. (22) follows from β ∈ Hγ [Θ]. 2

Lemma 4.34 (Collapsing) Assume (Hγ ,Θ; QΠ) ⊢∗a
IN ,γ0 Γ;Π{·} for Γ ⊂ Σ(LN+1).

Assume Θ ⊂ Hγ(ψIN (γ)) and â := γ + ωa < γ0.

Then (Hâ+1,Θ; QΠ) ⊢∗β
β,γ0

Γ(β,IN ); Π{·} holds for β = ψIN (â).

Proof. By induction on a as in [9]. Let us omit the second subscript γ0 in the
proof.

We have {γ, a} ∪ dom(QΠ) ⊂ Hγ [Θ] by (21). We obtain β ∈ Hâ+1[Θ],
and dom(QΠ) ⊂ Hγ(ψIN (γ)) ∩ IN = ψIN (γ) ⊂ β by the assumption. This
yields QΠ(S) ⊂ S ⊂ ψIN (γ) for every S ∈ dom(QΠ), and Θ(QΠ) ⊂ Hγ(ψIN (γ)).
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β = ψIN (â) needs to be in LStN due to the axiom (1). On the other hand we
have k(Γ ∪Π) ⊂ Hγ [Θ(QΠ)] by (22). We obtain

k(Γ ∪Π) ⊂ ψIN (γ) ⊂ β (26)

Case 1. The last inference is an (i − stbl(S)): We have S ∈ Hγ [Θ]. Let
B(L0) ∈ ∆0(LN+1) be a

∧
-formula with rk(B(L0)) < S and a term u ∈ Tm(IN )

such that (Hγ ,Θ; RΠ) ⊢∗a0
IN Γ, B(u); Π{·} for an ordinal a0 ∈ Hγ [Θ] ∩ a and

dom(RΠ) = dom(QΠ) ∪ {S}. (Hâ+1,Θ; RΠ) ⊢∗β0

IN Γ(β,IN ), B(u); Π{·} follows from
IH with Σ-persistency 4.33, where β0 = ψIN (â0) with â0 = γ + ωa0 .

We obtain k(B(u)) ⊂ Hγ(β) by (26), and rk(B(u)) < β for rk(B(u)) < IN
by Proposition 4.5.3.

On the other hand we have (Hγ ,Θ; RσΠ) ⊢
∗a0
IN Γ;¬B(u){σ},Π{·} for every σ ∈

ΨS such that Θ(QΠ) ⊂Mσ. IH with Σ-persistency 4.33 yields (Hâ+1,Θ; RσΠ) ⊢
∗β0

IN
Γ(β,IN );¬B(u){σ},Π{·}. (Hâ+1,Θ; QΠ) ⊢∗β

β,γ0
Γ(β,IN ); Π{·}. follows from an (i −

stbl(S)).
Case 2. The case when the last inference is a (Σ(St)-rfl) on IN : We have
ordinals aℓ, ar < a and a formula C ∈ Σ(LN+1) such that (Hγ ,Θ; QΠ) ⊢∗aℓ

IN
Γ, C; Π{·} and (Hγ ,Θ; QΠ) ⊢∗ar

IN ¬∃xC(x,IN ),Γ;Π{·}.
Let βℓ = ψIN (âℓ) ∈ Hâ+1[Θ(QΠ)]∩β with âℓ = γ+ωaℓ . βℓ < β follows from

aℓ ∈ Hγ [Θ(QΠ)] ⊂ Hγ(β) and Proposition 3.17.1. IH with Σ-persistency 4.33

yields (Hâ+1,Θ; QΠ) ⊢∗βℓ

β Γ(β,IN ), C(βℓ,IN ); Π{·}.

Inversion 4.30 yields (Hâℓ+1,Θ; QΠ) ⊢∗ar
IN ¬C(βℓ,IN ),Γ;Π{·}.

For βr = ψIN (âr) ∈ Hâ+1[Θ(QΠ)] ∩ β with âr = âℓ + 1 + ωar , we obtain
âr < â by aℓ, ar < a, and βr < β follows from {aℓ, ar} ⊂ Hγ [Θ(QΠ)] ⊂ Hγ(β)

and Proposition 3.17.1. IH with Σ-persistency 4.33 yields (Hâ+1,Θ; QΠ) ⊢∗βr

β

¬C(βℓ,IN ),Γ(β,IN ); Π{·}. We obtain (Hâ+1,Θ; QΠ) ⊢∗β
β Γ(β,IN ); Π{·} by a (cut).

Case 3. The last inference is a (
∧
): We have an A ≃

∧
(Aι)ι∈J such that

A ∈ Γ ⊂ Σ(LN+1) and (Hγ ,Θι; QΠ) ⊢∗a(ι)
IN Γ, Aι; Π

{·} with a(ι) < a and Θι =
Θ ∪ B(k(ι)) for each ι ∈ J .

We obtain k(A) ⊂ ψIN (γ) by (26). Let ι ∈ J . Since A ∈ Σ(LN+1), we obtain
k(ι) ⊂ ψIN (γ), and B(k(ι)) ⊂ ψIN (γ) by Proposition 4.15.4. Let âι = γ+ωa(ι) <
â by a(ι) < a. Then a(ι) ∈ Hγ [(Θι)(QΠ)] ⊂ Hγ(β) and βι = ψIN (âι) < β.

IH with Σ-persistency 4.33 yields (Hâ+1,Θι; QΠ) ⊢∗βι

β Γ(β,IN ), (Aι)
(β,IN ); Π{·}.

(Hâ+1,Θ; QΠ) ⊢∗β
β Γ(β,IN ); Π{·} follows by a (

∧
).

Case 4. The last inference is a (
∨
): We have an A ≃

∨
(Aι)ι∈J such that

A ∈ Γ and (Hγ ,Θ; QΠ) ⊢∗a(ι)
IN Γ, Aι; Π

{·} with a(ι) < a and an ι ∈ J . Assuming
k(ι) ⊂ k(Aι), we obtain k(ι) ⊂ β by (26). IH followed by a (

∨
) yields the lemma.

Other cases are seen from IH as in [9]. 2

Lemma 4.35 Let Γ ⊂ Σ(L0 : Ω) be a set of formulas. Suppose Θ ⊂ Hγ(ψΩ(γ))
and (Hγ ,Θ; ∅) ⊢∗a

Ω,γ1
Γ; ∅. Let β = ψΩ(â) with â = γ + ωa < γ1. Then

(Hâ+1,Θ; ∅) ⊢∗β
β,γ1

Γ(β,Ω); ∅ holds.

Proof. By induction on a as in [9]. 2
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4.5 Operator controlled derivations with caps

Let β be the ordinal in Collapsing 4.34, and Λ := Γ(β). Λ is the base of the
θ̃-function θ̃b(ξ) = θ̃b(ξ; Λ) in Definition 3.1. Definitions 4.36.4, 4.38 and 4.39
depend on the ordinals γ0,Λ.

Definition 4.36 1. For a finite set Γ of formulas let rk(Γ) = max({0} ∪
{rk(A) : A ∈ Γ}) and rk(

∨
Γ) = max({0} ∪ {rk(A) + 1 : A ∈ Γ}).

2. For a finite family Q ⊂
⨿

S ΨS in the sense of Definition 4.22.1 let

∂Q := {(S,max(Q(S))) : S ∈ dom(Q), Q(S) ̸= ∅}

and
Q◦ := Q \ ∂Q = {(S, σ) ∈ Q : σ < max(Q(S))}.

Let M∂Q :=
∩

(S,ρ)∈∂QMρ, and ι ∈ [∂Q]J :⇔ k(ι) ⊂M∂Q for ι ∈ J .

3. By a capped formula we mean a pair (A, ρ) of RS-sentence A and an
ordinal ρ ≺ S with a successor stable ordinal S such that k(A) ⊂ Mρ.
Such a pair is denoted by A(ρ). It is convenient for us to regard uncapped
formulas A as capped formulas A(u) with its cap u, where [u]J = J with
Mu = OT (IN ) ∩ IN .

A sequent is a finite set of capped or uncapped formulas, denoted by

Γ
(ρ0)
0 , . . . ,Γ

(ρn)
n ,Π(u), where each formula in the set Γ

(ρi)
i puts on the cap

ρi. When we write Γ(ρ), we tacitly assume that k(Γ) ⊂Mρ.

A capped formula A(ρ) is said to be a Σ(Li : π)-formula if A ∈ Σ(Li : π).
Let k(A(ρ)) := k(A).

4. A pair Q = ((Q)0, γ
Q
· ) is said to be a finite family for γ0 with thresholds

if (Q)0 is a finite family in the sense of Definition 4.22 and the following
conditions are met. Let dom(Q) = dom((Q)0), Q(S) = (Q)0(S), and

∪
Q =∪

{Q(S) : S ∈ dom(Q)}.

(a) γQ· is a map dom(Q) ∋ S 7→ γQS such that γ0 + (IN )2 > γQS ≥ γ0 + IN ,
γQS ≥ γQT + IN for {S < T} ⊂ dom(Q).

Q is said to have gaps η if γQS ≥ γQT+IN ·η holds for {S < T} ⊂ dom(Q),
and γQS ≥ γ0 + IN · η for S ∈ dom(Q).

(b) For each ρ ∈ Q(S), m(ρ) : Λ → φΛ(0) is special, and γ
Q
S ≤ p0(ρ).

The thresholds function γQ· is uniquely extended for S ∈ {Ω} ∪ St by
γQS := γQT for T = min{T ∈ dom(Q) : T ≥ S} if such a T exists. Otherwise
let γQS = γ0.

For an ordinal e, let Q↾e denote the restriction of Q to e. Namely dom(Q↾
e) = {S ∈ dom(Q) : S < e} and γQ↾eS = γQS for every S ∈ dom(Q↾e).
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5. For a finite family Q for γ0 with thresholds and a pair (S, ρ) such that
(Q)0∪{(S, ρ)} is a finite family for γ0, Q∪{(S, ρ)} = R = ((R)0, γ

R
· ) denotes

a finite family for γ0 with thresholds enjoying the following:

(a) dom(R) = dom(Q)∪{S}, R(T) = Q(T) for T ̸= S and R(S) = Q(S)∪{ρ}.
(b) γR· extends γ

Q
· in such a way that γRT = γQT for T ∈ dom(Q), γRS ≥ γQT+IN

for every S < T ∈ dom(Q), γQU ≥ γRS + IN for every S > U ∈ dom(Q),
and γRS ≥ γ0 + IN .

A pair Q = ((Q)0, γ
Q
· ) is simply denoted by Q when γQ· is irrelevant.

Lemma 4.37 Let ρ ∈ ∂Q(S) for a finite family Q for γ0 with thresholds function

γQ· . Assume Θ ∪ dom(Q) ⊂ Mρ and ∀T ∈ dom(Q)
(
Q◦(T) ⊂ HγQS+IN [Θ(Q◦ ↾T)]

)
for a finite set Θ of ordinals, cf. (29). Then

∪
T∈dom(Q) Q

◦(T) ⊂Mρ holds.

Proof. Let S,T ∈ dom(Q) with ρ ∈ ∂Q(S). We show Q◦(T) ⊂ Mρ by induction
on the cardinality of the finite set {U ∈ dom(Q) : U < T}. First let S ≥ T
and σ ∈ Q◦(T). If S > T, then σ < T < ρ ∈ ΨS. σ ∈ Mρ follows. Otherwise
σ ∈ Q◦(S) ⊂ ρ follows from ρ ∈ ∂Q(S). Next let S < T. We have Θ ⊂ Mρ and
Q◦(T) ⊂ HγQT+IN [Θ(Q◦ ↾ T)] by the assumption. For dom(Q) ∋ U < T we have

Q◦(U) ⊂ Mρ by IH, and hence Θ(Q◦ ↾ T) ⊂ Mρ. On the other hand we have
γQT + IN < γQS ≤ p0(ρ). Lemma 3.43.1 yields Q◦(T) ⊂ Hp0(ρ)(Mρ) ⊂Mρ. 2

Definition 4.38 Let ρ ∈ ΨS and Θ,Θ1 be finite sets of ordinals.

1. κ ∈ LQ
ρ(Θ,Θ1) iff κ ∈ ΨS ∩ ρ, Θ∪Θ1 ∪ {p0(ρ)} ∪SC(m(ρ))∪ Q◦(S) ⊂Mκ,

γQS ≤ p0(κ) ≤ p0(ρ), κ ∈ HγQS+IN [Θ(Q◦ ↾S)], and m(κ) is special.

2. HQ
ρ(f,Θ,Θ1) denotes the resolvent class defined by κ ∈ HQ

ρ(f,Θ,Θ1) iff
κ ∈ LQ

ρ(Θ,Θ1) and f ≤ m(κ), where f ≤ g :⇔ ∀i(f ′(i) ≤ g′(i)) for special
finite functions f, g.

Let Γ be a sequent, Θ a finite set of ordinals< IN , {γ, a, c, d, e} ⊂ OT (IN ),
and Q a finite family for γ0 with thresholds.

We define another derivability relation (Hγ ,Θ, Q) ⊢ac,d,e,γ0 Γ, where c is a
bound of ranks of cut formulas, d a bound of ranks in the inference rules
(i−rflS(ρ, f,Θ1)), and e a bound of ordinals S. The relation depends on or-
dinals β, γ0, and should be written as (Hγ ,Θ; Q) ⊢ac,d,e,β,γ0 Γ. However the
ordinals β, γ0 will be fixed. So let us omit it.

Definition 4.39 Let Q = ((Q)0, γ
Q
· ) be a finite family for γ0 with thresholds,

Θ a finite set of ordinals such that B(Θ) ⊂ Θ, and a, c, d, e ordinals such that
dom(Q) ⊂ e. Let β < ψIN (γ0) be a fixed ordinal in Collapsing 4.34 and Λ = Γ(β).

Let Γ =
∪
{Γ(ρ)

ρ : ρ ∈ {u} ∪
∪
Q} be a set of formulas such that k(Γρ) ⊂

Mρ ∩M∂Q for each cap ρ ∈ {u} ∪
∪
Q.
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(Hγ ,Θ, Q) ⊢ac,d,e Γ holds if γ0 ≤ γ, each of the following (27), (28) and (29)
holds, cf. (21) and (22), and one of the following cases (

∨
), (

∧
), (cut), (Σ(Ω)-rfl)

and (i−rflS(ρ, f,Θ1)) holds:

Θ(Q◦) ⊂M∂Q (27)

{S, γQS : S ∈ dom(Q)} ∪ {γ, a, c, d, e, β, γ0} ∪ k(Γ) ⊂ Hγ [Θ(Q◦)] (28)

∀S ∈ dom(Q)
(
Q(S) ⊂ HγQS+IN [Θ(Q◦ ↾S)]

)
(29)

(
∨
) There exist an A ≃

∨
(Aι)ι∈J , a cap ρ ∈ {u}∪

∪
Q, ι ∈ [ρ]J , and an ordinal

a(ι) < a such that A(ρ) ∈ Γ and (Hγ ,Θ, Q) ⊢a(ι)c,d,e Γ, (Aι)
(ρ)

.

(
∧
) There exist an A ≃

∧
(Aι)ι∈J and a cap ρ ∈ {u} ∪

∪
Q such that A(ρ) ∈ Γ.

For ι ∈ [ρ]J∩[∂Q]J , there is an ordinal a(ι) < a such that (Hγ ,Θι, Q) ⊢a(ι)c,d,e

Γ, (Aι)
(ρ)

holds for Θι = Θ ∪ B(k(ι)).

(cut) There exist ρ ∈ {u} ∪
∪
Q an ordinal a0 < a, and a formula C with

rk(C) < c, for which (Hγ ,Θ, Q) ⊢a0c,d,e Γ,¬C(ρ) and (Hγ ,Θ, Q) ⊢a0c,d,e C(ρ),Γ
hold.

(Σ(Ω)-rfl) There exist ordinals aℓ, ar < a and an uncapped formula C ∈ Σ(L0 :
Ω) such that c ≥ Ω, (Hγ ,Θ, Q) ⊢aℓc,d,e Γ, C and (Hγ ,Θ, Q) ⊢arc,d,e ¬∃x <

π C(x,Ω),Γ.

(i−rflS(ρ, f,Θ1)) There exists a successor i-stable ordinal S < e such that

S ∈ Hγ [Θ(Q◦)] (30)

ρ ∈ ΨS is an ordinal such that ρ = max(Qρ(S)), i.e., ρ ∈ ∂Qρ(S) and

Θ ⊂Mρ&SC(ρ) ∪ {p0(ρ)} ⊂M∂Q& ρ ∈ HγQ
ρ

S +IN [Θ(Q◦ ↾S)] (31)

where Qρ = Q∪{(S, ρ)}, cf. (27) and (29), and s ∈ supp(m(ρ)) is an ordinal,
f is a special function, a0 < a is an ordinal, D is an Li-formula, which is a
finite conjunction with D ≡

∧
(Dn)n<m, and Θ1 is a finite set of ordinals

such that Θ1 ⊂M∂Qρ enjoying the following conditions (r1), (r2), (r3) and
(r4).

(r1) rk(D) < min{s, d}.
(r2) For g = m(ρ), SC(f) ⊂ Hγ [Θ(Q◦)] and fs = gs& fs <sΛ g′(s),

cf. Definition 3.31.6.

(r3) For each n < m, (Hγ ,Θ, Q
ρ) ⊢a0c,d,e Γ, D

(ρ)
n holds.

(r4) (Hγ ,Θ, Q
ρσ) ⊢a0c,d,e Γ,¬D(σ) holds for every σ ∈ HQρ

ρ (f,Θ,Θ1), where

(Qρσ)0 = (Qρ)0 ∪ {(S, σ)} and γQ
ρσ

· = γQ
ρ

· .
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In this subsection the ordinals β and γ0 will be fixed, and we write ⊢ac,d,e for
⊢ac,d,e,β,γ0 . Note that Q(S) ⊂ Hγ [Θ] need not to hold.

Lemma 4.40 (Tautology) Let Q be a finite family for γ0 with thresholds γQ· ,
b, e, γ be ordinals, and ρ ∈ {u} ∪

∪
Q such that k(A) ⊂Mρ for a formula A.

Assume that B(Θ) ⊂ Θ, and Θ, Q, b, e, β, γ0, γ, γ
Q
· and A enjoy (27), (28),

and (29).
Then (Hγ ,Θ, Q) ⊢2d

0,b,e,β,γ0
¬A(ρ), A(ρ) holds for d = rk(A).

Proof. By induction on d = rk(A). By (28) we have k(A) ⊂ Hγ [Θ(Q◦)]. Let
A ≃

∨
(Aι)ι∈J and ι ∈ [∂Q]J ∩ [ρ]J . Then k(ι) ⊂ M∂Q ∩Mρ for (27). On the

other hand we have dι = rk(Aι) < rk(A) = d and dι ∈ H0[k(Aι)[⊂ H0[k(A, ι)] ⊂
Hγ [Θι(Q

◦)] for Θι = Θ ∪ B(k(ι)). Hence (28) is enjoyed in (Hγ ,Θ, Q) ⊢2dι
0,b,e,β,γ0

¬A(ρ)
ι , A

(ρ)
ι . 2

Lemma 4.41 Let (Hγ ,Θ, Q) ⊢ac,d,e Γ. Let ρ ∈ ΨS be an ordinal such that

R = Q ∪ {(S, ρ)} is a finite family for γ0 with thresholds, {S, γRS} ⊂ Hγ [Θ(Q◦)],
Θ ∪ dom(Q) ⊂Mρ, SC(ρ) ∪ {p0(ρ)} ⊂M∂Q and ρ ∈ HγRS+IN [Θ(Q◦ ↾S)], cf. (31).

Then (Hγ ,Θ, R) ⊢ac,d,e Γ holds.

Proof. By induction on a as in Lemma 4.29. Let ρ ∈ ∂R(S). By Θ ⊂ Mρ and
Lemma 4.37, (27) holds in (Hγ ,Θ, R) ⊢ac,d,e Γ. Also we have Q◦ ⊂ R◦ for (28).

2

Lemma 4.42 (Reduction) Let C ≃
∨
(Cι)ι∈J , and rk(C) ≤ c with Ω ≤ c < IN .

Assume (Hγ ,Θ, Q) ⊢ac,d,e,β,γ0 Γ0,¬C(τ) and (Hγ ,Θ, Q) ⊢bc,d,e,β,γ0 C
(τ),Γ1.

Then (Hγ ,Θ, Q) ⊢a#bc,d,e,β Γ0,Γ1 holds for the natural sum a#b of ordinals a
and b.

Proof. By induction on a#b. In the proof let us write ⊢ac for ⊢ac,d,e,β,γ0 .
Case 1. The last inference in (Hγ ,Θ, Q) ⊢ac Γ0,¬C(τ) is a (

∧
) with its major

formula ¬C(τ), and one in (Hγ ,Θ, Q) ⊢bc C(τ),Γ1 is a (
∨
) with its major formula

C(τ): We have (Hγ ,Θ, Q) ⊢b(ι)c (Cι)
(τ)
, C(τ),Γ1 for an ι ∈ [τ ]J and a b(ι) < b.

We obtain (Hγ ,Θ, Q) ⊢a#b(ι)c (Cι)
(τ)
,Γ0,Γ1 by IH.

We obtain k(Cι) ⊂ Hγ [Θ(Q◦)] by (28). On the other hand we have Θ(Q◦) ⊂
M∂Q by (27). Hence k(ι) ⊂ M∂Q, i.e., ι ∈ [∂Q]J provided that k(ι) ⊂ k(Cι).
Hγ [Θι(Q

◦)] = Hγ [Θ(Q◦)] follows by Propositions 4.15.6 and 4.15.9 for Θι =
Θ ∪ B(k(ι)). Moreover Q(S) ⊂ HγQS+IN [Θ(Q◦↾S)] for every S ∈ dom(Q) by (29).

On the other hand we have (Hγ ,Θι, Q) ⊢a(ι)c Γ0,¬C(τ),¬(Cι)(τ) for an a(ι) <

a. (Hγ ,Θ, Q) ⊢a(ι)c Γ0,¬C(τ),¬(Cι)(τ) follows. IH yields (Hγ ,Θ, Q) ⊢a(ι)#bc

Γ0,Γ1,¬(Cι)(τ). We obtain (Hγ ,Θ, Q) ⊢a#bc Γ0,Γ1 by a (cut) with rk(Cι) <
rk(C) = c. Suppressing the part (Hγ ,Θ, Q), let us depict it as follows.

⊢a(ι)
c Γ0,¬C(τ),¬(Cι)

(τ) ⊢b
c C(τ),Γ1

⊢a(ι)#b
c Γ0,Γ1,¬(Cι)

(τ)
IH

⊢a
c Γ0,¬C(τ) ⊢b(ι)

c (Cι)
(τ) , C(τ),Γ1

⊢a#b(ι)
c (Cι)

(τ) ,Γ0,Γ1

IH

(Hγ ,Θ, Q) ⊢a#b
c Γ0,Γ1

(cut)
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Case 2. One of (Hγ ,Θ, Q) ⊢ac Γ0,¬C(τ) and (Hγ ,Θ, Q) ⊢bc C(τ),Γ1 follows from
a (cut): For example let for rk(D) < c and b0 < b

(Hγ ,Θ, Q) ⊢b0c C(τ),Γ1,¬D(ρ) (Hγ ,Θ, Q) ⊢b0c C(τ),Γ1, D
(ρ)

(Hγ ,Θ, Q) ⊢bc C(τ),Γ1

(cut)

We obtain (Hγ ,Θ, Q) ⊢a#b0c Γ0,Γ1,¬D(ρ) and (Hγ ,Θ, Q) ⊢a#b0c Γ0,Γ1, D
(ρ) by

IH. (Hγ ,Θ, Q) ⊢a#bc Γ0,Γ1 follows by a (cut).
Case 3. Otherwise: Consider the case when the last inference in (Hγ ,Θ, Q) ⊢ac
Γ0,¬C(τ) is an (i − rflS(ρ, f,Θ1)) with an ordinal S < e. We have Θ ⊂ Mρ

by (31) and D is a finite conjunction D ≃
∧
(Dn)n<m. For n < m and each

σ ∈ HQρ

ρ (f,Θ,Θ1) we have

(Hγ ,Θ, Q
ρ) ⊢a0c Γ0,¬C(τ), D(ρ)

n

and
(Hγ ,Θ, Q

ρσ) ⊢a0c Γ0,¬C(τ),¬D(σ)

Lemma 4.41 yields (Hγ ,Θ, Q
ρ) ⊢bc C(τ),Γ1 and (Hγ ,Θ, Q

ρσ) ⊢bc C(τ),Γ1. By IH

we obtain (Hγ ,Θ, Q
ρ) ⊢a0#bc Γ0,Γ1, D

(ρ)
n , and (Hγ ,Θ, Q

ρσ) ⊢a0#bc Γ0,Γ1,¬D(σ)

for each σ. An (i− rflS(ρ, f,Θ1)) yields (Hγ ,Θ, Q) ⊢a#bc Γ0,Γ1.
Other cases are seen similarly. 2

Remark 4.43 In theCase 3 of the proof of Reduction 4.42, e.g., when (Hγ ,Θ, Q
ρσ) ⊢a0c,d,e,β

Γ0,¬C(τ),¬D(σ) is derived from a (
∧
) with Θ2 ⊃ Θ

{(Hγ ,Θι, Q
ρσ) ⊢a0(k,ι)c,d,e,β Γ0,¬C(τ),¬(Cι)(τ),¬D(σ)}ι∈[∂Qρσ ]J∩[τ ]J

(Hγ ,Θ, Q
ρσ) ⊢a0c,d,e,β Γ0,¬C(τ),¬D(σ)

(
∧
)

it is not possible to exchange the inference (
∧
) with (i − rflS(ρ, f,Θ1)) since

there may exist a σ ∈ HQρ

ρ (f,Θι,Θ1) such that σ ̸∈ HQρ

ρ (f,Θ,Θ1). Specifically
HγQ

ρ

S +IN [Θ(Q◦ ↾ S)] ⊊ HγQ
ρ

S +IN [Θι(Q
◦ ↾ S)], cf. Definition 4.38. This means that

an Inversion lemma does not hold for the derivability relation ⊢.

Lemma 4.44 (Cut-elimination) If (Hγ ,Θ, Q) ⊢ac+c1,d,e,β,γ0 Γ with Ω ≤ c ∈
Hγ [Θ(Q◦)] and c+ c1 < IN , then (Hγ ,Θ, Q) ⊢

φc1
(a)

c,d,e,β,γ0
Γ.

Proof. By main induction on c1 with subsidiary induction on a using Reduction
4.42. 2

5 Elimination of stable ordinals

5.1 Capping and recapping

In this subsection the relation ⊢∗ is embedded in ⊢ by putting caps on formulas,
and then caps are changed to smaller caps.
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Lemma 5.1 (Capping) Let Γ ∪ Π ⊂ ∆0(LN+1) be a set of uncapped formulas
with rk(Γ ∪ Π) < β, where β < ψIN (γ0) is a fixed limit ordinal in Collapsing
4.34 such that a, β < IN and dom(QΠ) ⊂ β. Let (Hγ ,Θ; QΠ) ⊢∗a

β,γ0
Γ;Π{·},

where IN ≤ γ ≤ γ0, Γ = Γu ∪
∪

S∈dom(QΠ) ΓS, and Π{·} =
∪

(S,σ)∈QΠ Π
{σ}
σ . Let

Λ = Γ(β).
For each S ∈ dom(QΠ), let ρS = ψgSS (δS) be an ordinal with a δS and a

special finite function gS = m(ρS) : Λ → φΛ(0) such that supp(gS) = {β} with
gS(β) = αS + Λ, Λ(2a + 1) ≤ αS + Λ, SC(gS) = SC(β, αS) ⊂ H0(SC(δS)),
cf. (11), and {αS, δS} ⊂ Hγ [Θ].

Let Q = ((Q)0, γ
Q
· ) be a finite family for γ0 with thresholds such that the

following holds.

1. The thresholds function γQ· enjoys γQS ≤ δS < γQS + IN for each S ∈ dom(Q).

2. Q(S) = QΠ(S) ∪ {ρS} for S ∈ dom(Q) = dom(QΠ).

Let Γ̂ = Γu ∪
∪

S∈dom(QΠ){A(ρS) : A ∈ ΓS}, and Π(·) =
∪

(S,σ)∈QΠ Π
(σ)
σ .

Assume the following:

1. Θ ⊂ Hγ0(ψIN (γ0)).

2. γQS ∈ Hγ [Θ], Θ ∪ QΠ(S) ⊂ MρS and QΠ(S) ⊂ HγQS+IN [Θ(QΠ ↾ S)] for every

S ∈ dom(QΠ).

3. p0(σ) ≤ p0(ρS) = δS for each (S, σ) ∈ QΠ.

4. Q has gaps (φβ+1(β) + 1) · 2a.

Then (Hγ0 ,Θ, Q) ⊢2a
β,β,β,β,γ0

Γ̂,Π(·) holds.

Remark 5.2 We have {γ0, a, β} ⊂ Hγ [Θ] by (21). Let γQS = γ0+IN ·(φβ+1(β)+
1) · 2a · k for k = #{T ∈ dom(Q) : T ≥ S}. Then γQS ∈ Hγ [Θ] for (28). γQ· is a
threshold function in Definition 4.36.4a.

For the gap φβ+1(β) + 1, see Lemma 5.11.

Proof of Lemma 5.1. This is seen by induction on a. Let us write ⊢aβ for
⊢aβ,β,β,β,γ0 in the proof.

We have dom(QΠ) ⊂ β, {γ, a, β, γ0} ∪ dom(QΠ) ⊂ Hγ [Θ] by (21), and for
each A ∈ Γ ∪Π, k(A) ⊂ Hγ [Θ(QΠ)] by (22).

The assumption QΠ(S) ⊂ MρS means that ρS = max(Q(S)) and ρS ∈ ∂Q(S).
Hence Q◦ = QΠ. We have ∀S ∈ dom(QΠ)(γ

Q
S ∈ Hγ [Θ]) by the assumption.

On the other hand we have ∀S ∈ dom(QΠ)(QΠ(S) ⊂ HγQS+IN [Θ(Q◦ ↾ S)]) by

the assumption, and {S, β, αS, δS} ⊂ Hγ [Θ] with δS < γQS + IN by (21) and the
assumptions. Hence by Proposition 4.15.8 we obtain ρS ∈ HγQS+IN [Θ], and (29)

is enjoyed. Therefore (28) and (29) are enjoyed in (Hγ0 ,Θ, Q) ⊢2a
β,β,β,β,γ0

Γ̂,Π(·).
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We have Θ(Q◦) = Θ(QΠ) = Θ ∪ B (
∪
{QΠ(T) : T ∈ dom(QΠ)}) with QΠ(T) =

Q◦(T) and M∂Q =
∩

S∈dom(Q)MρS . We obtain Θ ⊂ MρS and for T ∈ dom(Q),

QΠ(T) ⊂ HγQT+IN [Θ(Q◦ ↾T)] by the assumption. Hence Lemma 4.37 yields

Θ(Q◦) ⊂M∂Q (32)

and (27) is enjoyed.
We obtain k(Γ ∪ Π) ⊂ M∂Q. Furthermore when A ∈ Πσ, k(A) ⊂ Mσ is

assumed. We obtain k(Π) ⊂M∂Q ∩Mσ.
Case 1. First consider the case when the last inference is an (i−stbl(S)): We
have a successor i-stable ordinal S such that S ∈ Hγ [Θ] by (23), a formula
B(0) ∈ ∆0(Li) with rk(B(0)) < S, an ordinal a0 < a, and a term u ∈ Tm(IN )
with S ≤ rk(B(u)) < β.

For every ordinal σ ∈ ΨS such that Θ(QΠ) ⊂ Mσ and p0(σ) ≥ γ0, the
following holds for dom(RΠ) = dom(QΠ) ∪ {S} and RσΠ = RΠ ∪ {(S, σ)}.

(Hγ ,Θ; RΠ) ⊢∗a0
β Γ, B(u); Π{·} {(Hγ ,Θ; RσΠ) ⊢

∗a0
β Γ;¬B(u){σ},Π{·}}σ

(Hγ ,Θ; QΠ) ⊢∗a
β Γ;Π{·}

When S ̸∈ dom(QΠ), let R = Q∪ {(S, ρS)}, and ordinals γRS and ρS are defined as
follows. First let γRT = γQT for T ∈ dom(Q). If there is no S > T ∈ dom(Q), then
γRS = γ0 + IN · (φβ+1(β) + 1) · 2a0 . Assume there is a largest S > T ∈ dom(Q).
Then let γRS = γQT+IN ·(φβ+1(β)+1) ·2a0 . In each case we obtain γRS ∈ Hγ [Θ] by
{γ0, β, γQT, a0} ⊂ Hγ [Θ]. Suppose that there is a least S < U ∈ dom(Q). Since Q is
assumed to have gaps (φβ+1(β)+1)·2a, we obtain γ0+IN ·(φβ+1(β)+1)·2a ≤ γQU
and γQT + IN · (φβ+1(β) + 1) · 2a ≤ γQU. We see from a0 < a that R has gaps
(φβ+1(β) + 1) · 2a0 .

Let αS = Λ(2a) > Λ(2a0) and δS = γRS#a#β#b for b = max({0} ∪ ES(Θ))
with the set ES(α) in Definition 4.10. We obtain αS < IN ≤ γ ≤ γ0 ≤ γRS and
{αS, δS} ⊂ H0[{a, β, γRS}∪ES(Θ)] ⊂ Hγ [Θ]. Also δS < γRS+IN by max{a, β, S} <
IN . Moreover {a, β} ⊂ H0(SC(δS)). Hence (11) is enjoyed for ρS = ψgSS (δS),
cf. Proposition 6.6.2.

Next we show Θ ∪ QΠ(S) ⊂ MρS . We have QΠ(S) = ∅. We obtain b =
max({0} ∪ ES(Θ)) ∈ HδS(ρS) ∩ S = ρS by (7), and hence ES(Θ) ⊂ ρS. On the
other hand we have Θ ⊂ Hγ0(ψIN (γ0)) by the assumption. Also γ0 ≤ γRS ≤ δS =
p0(ρS). Proposition 4.13 yields Θ ⊂ Hp0(ρS)(ρS) =MρS .

Let h be a special finite function such that supp(h) = {β} and h(β) =

Λ(2a0 + 1). Then hβ = (gS)β = ∅ and hβ <βΛ (gS)
′(β) by h(β) = Λ(2a0 +

1) < Λ(2a) ≤ αS = (gS)
′(β). Let σ ∈ HR

ρS
(h,Θ, ∅). We have Θ ⊂ Mσ and

σ ∈ HγRS+IN [Θ(R◦ ↾S)] by Definition 4.38.

For example let σ = ψhρS(δS+b+1). We obtain, cf. (12), SC(h)∪{p0(σ)}∪Θ∪
{p0(ρS)}∪SC(m(ρS)) = SC({a0, a, β})∪Θ∪{δS, αS} ⊂ Hγ [Θ] ⊂ HδS(σ) =Mσ

and p0(σ) = p0(ρS). We see σ ∈ H0[{ρS, β, a0, δS} ∪ Θ] ⊂ HγRS+IN [Θ] from

Proposition 4.15.8. Therefore σ ∈ HR
ρS
(h,Θ, ∅).

Since Q is assumed to have gaps (φβ+1(β) + 1) · 2a, we may assume that R
as well as Rσ has gaps (φβ+1(β) + 1) · 2a0 .
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We obtain by IH for ρS > σ ∈MρS and rk(B(u)) < β for (r1), (Hγ0 ,Θ, R) ⊢
2a0
β

Γ̂, B(u)(ρS),Π(·), and (Hγ0 ,Θ, R
σ) ⊢2a0

β Γ̂,Π(·),¬B(u)(σ).

Let D ≡
∧
(B(u)) with D ≃

∧
(Dn)n<1 and D0 ≡ B(u). We obtain rk(D) =

rk(B(u)) + 1 < β and (Hγ0 ,Θ, R) ⊢2a0
β Γ̂, D

(ρS)
0 ,Π(·) and (Hγ0 ,Θ, R

σ) ⊢2a0+1
β

Γ̂,Π(·),¬D(σ) by a (
∨
). An (i−rflS(ρS, h, ∅)) yields (Hγ0 ,Θ, Q) ⊢2a

β Γ̂,Π(·).

(Hγ0 ,Θ, R) ⊢2a0
β Γ̂, D

(ρS)
0 ,Π(·) (Hγ0 ,Θ, Rσ) ⊢2a0+1

β Γ̂,Π(·),¬D(σ)

(Hγ0 ,Θ, Q) ⊢2a
β Γ̂,Π(·)

(i−rflS(ρS, h, ∅))

Case 2. When the last inference is a (cut): There exist a0 < a and C such
that rk(C) < β, (Hγ ,Θ; QΠ) ⊢∗a0

β Γ,¬C; Π{·} and (Hγ ,Θ; QΠ) ⊢∗a0
β Γ, C; Π{·}.

IH followed by a (cut) with an uncapped cut formula C(u) yields the lemma.
Case 3. Third the last inference introduces a

∨
-formula A.

Case 3.1. First let A ∈ ΓS be introduced by a (
∨
), and A ≃

∨
(Aι)ι∈J .

Then A(ρS) ∈ Γ(ρS). There are an ι ∈ J and an ordinal a(ι) < a such that

(Hγ ,Θ; QΠ) ⊢∗a(ι)
β Γ, Aι; Π

{·}. We obtain k(ι) ⊂ Hγ [Θ(Q◦)] ⊂ M∂Q by (22)
and (32) provided that k(ι) ⊂ k(Aι). Hence ι ∈ [∂Q]J ⊂ [ρS]J . IH yields

(Hγ0 ,Θ, Q) ⊢
2a(ι)
β Γ̂, (Aι)

(ρS),Π(·). (Hγ0 ,Θ, Q) ⊢2a
β Γ̂,Π(·) follows from a (

∨
).

Case 3.2. Second A{σ} ∈ Π
{σ}
σ is introduced by a (

∨
){·} with A ≃

∨
(Aι)ι∈J .

Then A(σ) ∈ Π(·). There are an ι ∈ [σ]J and an ordinal a(ι) < a such that

(Hγ ,Θ; QΠ) ⊢∗a(ι)
β Γ;A

{σ}
ι ,Π{·}. IH yields (Hγ0 ,Θ, Q) ⊢

2a(ι)
β Γ̂, (Aι)

(σ)
,Π(·). We

obtain (Hγ0 ,Θ, Q) ⊢2a
β Γ̂,Π(·) with A(σ) ∈ Π(·) by a (

∨
).

Case 3.3. Third the case when A ∈ Γu is introduced by a (
∨
) is seen from IH.

Case 4. Fourth the last inference introduces a
∧
-formula A.

Case 4.1. First let A ∈ ΓS be introduced by a (
∧
), and A ≃

∧
(Aι)ι∈J . For

every ι ∈ J , (Hγ ,Θι; QΠ) ⊢∗a(ι)
β Γ, Aι; Π

{·} holds for an a(ι) < a and Θι =
Θ ∪ B(k(ι)). Let ι ∈ [∂Q]J . We obtain Θι ⊂ M∂Q ⊂ MρS for every S ∈ dom(Q).
On the other hand we have rk(A) < β < ψIN (γ0). Hence Θι ⊂ Hγ0(ψIN (γ0)).

IH yields (Hγ0 ,Θι, Q) ⊢
2a(ι)
β Γ̂, (Aι)

(ρS) ,Π(·). (Hγ0 ,Θ, Q) ⊢2a
β Γ̂,Π(·) follows by a

(
∧
).

Case 4.2. Second A{σ} ∈ Π{·} is introduced by a (
∧
){·} with (S, σ) ∈ QΠ.

Let A ≃
∧
(Aι)ι∈J . For each ι ∈ [σ]J there is an ordinal a(ι) < a such that

(Hγ ,Θι; QΠ) ⊢∗a(ι)
β Γ;A

{σ}
ι ,Π{·}.

For each ι ∈ [σ]J ∩ [∂Q]J , IH yields (Hγ0 ,Θι, Q) ⊢2a(k,ι)
β Γ̂, (Aι)

(σ)
,Π(·).

(Hγ0 ,Θ, Q) ⊢2a
β Γ̂,Π(·) follows from a (

∧
) with A(σ) ∈ Π(·).

Case 4.3. Third the case when A ∈ Γu is introduced by a (
∧
) is seen from IH.

The lemma follows from IH when the last inference is a (Σ(Ω)-rfl). 2

Definition 5.3 For a finite family Q = ((Q)0, γ
Q
· ) for γ0 with thresholds, let

κi ∈ LQ
ρi(Θ, ∅) with a (Ti, ρi) ∈ Q for each i.

Q[κ/ρ] = ((Q[κ/ρ])0, γ
Q
· ) denotes a finite family for γ0 with thresholds defined

as follows. dom(Q[κ/ρ]) = dom(Q), and Q[κ/ρ](T) = {κi : Ti = T} ∪ {µ ∈ Q(T) :
µ ̸∈ {ρi : Ti = T}}.
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Lemma 5.4 (Recapping) Let Q be a finite family for γ0 with thresholds, b and d

ordinals, and T ≤ b a stable ordinal such that b ∈ Hγ [Θ(Q◦)]. Let Ξ =
∪
{Ξ(τj)

j }j
be a set of formulas, Γ =

∪
{Γ(ρi)

i }i a set of formulas such that rk(
∨

Γi) < b <

s(ρi) for each i, and Π =
∪
{Π(λk)

k }k a set of formulas such that rk(Πk) < d for
each k.

Suppose {ρi}i ∪ {λk}k ⊂
∪
∂Q, max{a, b, d} < Λ, d > b and

(Hγ ,Θ, Q) ⊢ad,d,T†,β,γ0
Ξ,Π,Γ (33)

For each i, let κi ∈ HQ
ρi(h

b(gi; 2b + ωa),Θ, ∅) ⊂ LQ
ρi(Θ, ∅) with gi = m(ρi),

and σk ∈ LQ
λk
(Θ, ∅) for each k. Let Γ1 =

∪
{Γ(κi)

i }i and Π1 =
∪
{Π(σk)

k }k. Q1
denotes a finite family obtained from Q by replacing ρi by κi, and λk by σk,
cf. Definition 5.3. Then

(Hγ ,Θ, Q1) ⊢2b+ωa
d,b,T†,β,γ0

Ξ,Π1,Γ1 (34)

holds.

Proof. By induction on a. The third, fourth and fifth subscripts T†, β and
γ0 are fixed, and omitted in the proof. We write ⊢ac,d for ⊢ac,d,T†,β,γ0

. A special

finite function hb(g; a) is defined from ordinals a, b and a function g in Definition
4.19. Note that [κi]J ⊂ [ρi]J holds by κi < ρi.

Let κ = κi ∈ LQ
ρ(Θ, ∅) with g = m(ρ), ρ = ρi ∈ ∂Q(S) and T† > S ∈ dom(Q).

By Definitions 4.22 and 4.38 we obtain Θ ∪ {p0(ρ)} ∪ SC(m(ρ)) ∪ Q◦(S) ⊂Mκ,
κ ∈ HγQS+IN [Θ(Q◦ ↾S)] and γQS ≤ p0(κ). Then κ ∈ ∂Q1(S) and Θ ⊂M∂Q1 . On the

other hand we have {a, b, d} ⊂ Hγ [Θ(Q◦)] by the assumption, where Q◦ = Q◦1.
Moreover we have SC(m(κ)) ∪ {p0(κ)} ⊂ Mκ by Proposition 3.38. Hence (27)
and (28) are enjoyed in (Hγ ,Θ, Q1) ⊢2b+ωa

d,b,T†,β,γ0
Ξ,Π1,Γ1.

We have Q(S) ∪ {κ} ⊂ HγQS+IN [Θ(Q◦ ↾ S)] by (29) and κ ∈ LQ
ρ(Θ, ∅). This

together with Q◦ = Q◦1 yields Q1(S) ⊂ HγQS+IN [Θ(Q◦1 ↾S)]. Hence (29) is enjoyed

for Q1.
By Lemma 4.37, (29) and Θ ⊂ Mκ we obtain Θ(Q◦) ⊂ Mκ for κ ∈ ∂Q1(S).

From {a, b} ⊂ Hγ [Θ(Q◦)] and Θ∪SC(m(ρ)) ⊂Mκ we see SC(hb(g; 2b+ωa)) ⊂
Mκ by Lemma 3.43.1 and γ ≤ γQS ≤ p0(κ). Also p0(ρ) ∈ Mκ by κ ∈ LQ

ρ(Θ, ∅),
cf. (12).
Case 1. First consider the case when the last inference is an (i−rflS(ρ, f,Θ1))
for an S ≤ T: We have {S,T} ⊂ Hγ [Θ(Q◦)] by (30) and (28). We have Θ ⊂Mρ

by (31). Let Γρ = Γ
(ρi)
i if ρ = ρi, and Γρ = ∅ else.

Let g = m(ρ) and s ∈ supp(g). D is a finite conjunction with D ≃∧
(Dn)n<m and rk(D) < min{s, d} by (r1) with s ≤ s(ρ), and a0 < a is an

ordinal such that for R = Q ∪ {(S, ρ)} and each n < m

(Hγ ,Θ, R) ⊢a0d,d Ξ,Π,Γ, D
(ρ)
n (35)

where ρ ∈ ∂R(S).
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On the other side for each σ ∈ HR
ρ(f,Θ,Θ1) we have

(Hγ ,Θ, R
σ) ⊢a0d,d ¬D

(σ),Ξ,Π,Γ

f is a special finite function such that fs = gs, f
s <s g′(s) and SC(f) ⊂

Hγ [Θ(Q◦)]. We obtain by IH

(Hγ ,Θ, R
σ
1 ) ⊢

2b+ωa0
d,b ¬D(σ),Ξ,Π1,Γ1 (36)

Let c = rk(D) < d. Then c ∈ Hγ [Θ(Q◦)] by (28).
Case 1.1. c < b: Then rk(Dn) + 1 < rk(D) + 1 ≤ c + 1 ≤ b and rk(

∨
(Γρ ∪

{Dn})) < b. If b ≥ s(ρ), then let κ = ρ. If b < s(ρ), then let Θ+ = Θ1 ∪
SC(m(ρ)) ∪ {p0(ρ)} and κ ∈ HR

ρ(h
b(g; 2b+ ωa),Θ, ∅) for g = m(ρ).

IH with (35) yields for n < m

(Hγ ,Θ, R1) ⊢2b+ωa0
d,b Ξ,Π1,Γ1, D

(κ)
n (37)

Case 1.1.1. b ≥ s(ρ): Then ρ ̸= ρi for every i, and Γρ = ∅. By (36) and (37)
an (i−rflS(κ, f,Θ1)) yields (34) with κ = ρ and rk(D) < min{s, b}.
Case 1.1.2. b < s(ρ): We claim for the special finite function h = hb(g; 2b +
ωa) ≤ m(κ) and s1 = min{b, s} that if b < s(ρ)

fs1 = hs1 & fs1 <s1 h′(s1) (38)

If s1 = s ≤ b, then hs = gs = fs and g′(s) = g(s) ≤ h′(s). Proposition 3.6
yields the claim. If s1 = b < s, then Proposition 4.20.1 yields the claim.

Let σ ∈ HR1
κ (f,Θ,Θ+). Then Θ∪Θ+ = Θ∪Θ1∪SC(m(ρ))∪{p0(ρ)} ⊂Mσ.

Therefore σ ∈ HR
ρ(f,Θ,Θ1).

By (38), (37) and (36), an (i−rflS(κ, f,Θ
+)) yields (34), where rk(D) < s1 ≤

b, c < b and s1 ∈ supp(m(κ)).
Case 1.2. b ≤ c: Let σ ∈ L := HR1

κ (h,Θ,Θ+) for Θ+ = Θ1 ∪ SC(m(ρ)) ∪
{p0(ρ)} ⊂ Mσ and h = (hc(g; 2b + ωa0)) ∗ f c+1. We obtain L ⊂ LR

ρ(Θ, ∅) ∩
HR
ρ(f,Θ,Θ1) and SC(h) ⊂ Hγ [Θ(Q◦)].

IH with (35) for σ ∈ L ⊂ LR
ρ(Θ, ∅) and rk({D(ρ)

n } ∪ Γρ) < c < d yields

(Hγ ,Θ, R2) ⊢2b+ωa0
d,b Ξ,Π1,Γ

(σ)
ρ , D

(σ)
n , (Γ\Γρ)1 for each n < m, where Ξ,Π,Γ, D

(ρ)
n =

Ξ,Π∪ {D(ρ)
n } ∪Γρ, (Γ \Γρ), and each A(ρ) ∈ Γρ is replaced by A(σ) in R2, while

B(ρi) ∈ (Γ \ Γρ) by B(κi) in (Γ \ Γρ)1. A (
∧
) with Lemma 4.41 yields

(Hγ ,Θ, (R1)
σ) ⊢2b+ωa0+1

d,b Ξ,Π1,Γ
(σ)
ρ , D(σ), (Γ \ Γρ)1 (39)

where (R1)
σ
= R1 ∪ {(S, σ)} = R2 ∪ {(S, κ)}.

On the other side, IH with σ ∈ L ⊂ HR
ρ(f,Θ,Θ1) yields (36).

A (cut) with rk(D) < d, (39) and (36) yields

(Hγ ,Θ, (R1)
σ) ⊢a1d,b Ξ,Π1,Γ1,Γ

(σ)
ρ

for 2b ≤ a1 = 2b+ ωa0 + 2 < 2b+ ωa. Several (
∨
)’s yield for a p < ω

∀σ ∈ L
[
(Hγ ,Θ, (R1)

σ) ⊢a1+pd,b Ξ,Π1,Γ1,
∨

Γ(σ)
ρ

]
(40)
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where
∨

Γρ ≡ (A0 ∨ · · · ∨An−1) with n = 0 when Γρ = ∅.
On the other, Tautology 4.40 yields (Hγ ,Θ, R1) ⊢2b

0,b Γ1,¬θ(κ) for each θ(ρ) ∈
Γρ. We obtain

(Hγ ,Θ, R1) ⊢2b+p
0,b Γ1,¬

∨
Γ(κ)
ρ (41)

Let k = hb(g; 2b + ωa). Then hb = gb = kb and h <b k′(b) for h = (hc(g; 2b +
ωa0)) ∗ f c+1 by Proposition 4.20.2.

By (41), (40) with max{2b, a1} + p < 2b + ωa, rk(
∨

Γρ) < b, (34) follows
from an (i−rflS(κ, h,Θ

+)) with the resolvent class L = HR1
κ (h,Θ,Θ+).

Case 2. Second consider the case when the last inference introduces a formula
B(ρ) ∈ Γ: For example let B ≃

∧
(Bι)ι∈J . For each ι ∈ [κ]J ⊂ [ρ]J , we obtain

rk(
∨
(Γ ∪ {Bι})) = rk(

∨
Γ). IH followed by a (

∧
) yields (34).

Case 3. Third consider the case when the last inference is a (cut) with a cut
formula C(ρ): We have rk(C) < d, and IH followed by a (cut) with the cut
formula C(κ) yields (34).

Other cases are seen from IH. 2

5.2 Eliminations of inferences (rfl)

In this subsection, inferences (i−rflS(ρ, f,Θ1)) are removed from operator con-
trolled derivations of sequents of formulas in Σ(Ω) ∪Π(Ω).

Definition 5.5 We define the S-rank srk(A(ρ)) of a capped formula A(ρ) as
follows. Let srk(ρ) = S ∈ SSt for ρ ∈ ΨS, and srk(u) = 0. srk(A(ρ)) = srk(ρ).
srk(Γ) = max{srk(A(ρ)) : A(ρ) ∈ Γ}.

Proposition 5.6 Let (Hγ ,Θ, Q) ⊢aS,S,S†,β,γ0 Ξ,Γ(·) with a finite family Q for γ0

with thresholds, where Γ(·) =
∪
{Γ(σ)

σ : (S, σ) ∈ Q} for Γ =
∪
{Γσ : (S, σ) ∈ Q}.

Assume that max{srk(Ξ), rk(Ξ ∪ Γ(·))} < S. Let γ1 = γQS + IN if S ∈ dom(Q),
and γ1 = γ else. Then (Hγ1 ,Θ, R) ⊢2a

S,S,S,β,γ0 Ξ,Γ(u) holds for R = Q ↾ S and

Γ(u) = {C(u) : C ∈ Γ}.

Proof. By induction on a. The fourth and fifth subscripts β, γ0 are omitted
in the proof. If S ∈ dom(Q), then we have Q◦(S) ⊂ Hγ1 [Θ(R◦)] by (29), where
R◦ = Q◦ ↾S. Hence (28) is enjoyed in (Hγ1 ,Θ, R) ⊢2a

S,S,S,β,γ0 Ξ,Γ(u).
Case 1. First consider the case when the last inference is a (

∧
) with its ma-

jor formula C(σ) ∈ Ξ ∪ Γ(·) with C ≃
∧
(Cι)ι∈J : We have (Hγ ,Θι, Q) ⊢a(ι)S,S,S†

Ξ,Γ(·), C
(σ)
ι for each ι ∈ [∂Q]J ∩ [σ]J . IH yields (Hγ1 ,Θι, R) ⊢

2a(ι)
S,S,S Ξ,Γ(u), C

(u)
ι .

Let σ0 = σ if srk(σ) < S, and σ0 = u else. We claim that ι ∈ [∂Q]J ∩ [σ]J
iff ι ∈ [∂R]J ∩ [σ0]J for each ι ∈ J . We may assume that k(ι) ⊂ k(Cι). By the
assumption and Proposition 4.5.6 we have rk(Cι) < rk(C) < S for each ι ∈ J .

Let ρ ∈ ∂Q(S) and ι ∈ [∂R]J ∩ [σ0]J . First let C(σ) ∈ Γ(·). We show ι ∈
[σ]J∩ [ρ]J . We obtain k(C) ⊂Mσ∩S = σ ≤ ρ, and hence k(ι) ⊂ σ ⊂Mσ ⊂Mρ.
Next let C(σ) ∈ Ξ. We show ι ∈ [ρ]J . We obtain k(C) ⊂Mρ ∩ S = ρ, and hence
k(ι) ⊂ ρ ⊂Mρ. The claim is shown.
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A (
∧
) yields (Hγ1 ,Θ, R) ⊢2a

S,S,S Ξ,Γ(u) with C(u) ∈ Γ(u)..
Case 2. Second consider the case when the last inference is an (i−rflS(ρ, f,Θ1)):
We have a finite conjunction D ≡

∧
(Dn)n<m and an ordinal a0 < a such that

rk(D) < srk(ρ) = srk(σ) = S by (r1), and

{(Hγ ,Θ, Q
ρ) ⊢a0S,S,S† Ξ,Γ(·), D

(ρ)
n }n<m {(Hγ ,Θ, Q

ρσ) ⊢a0S,S,S† Ξ,Γ(·),¬D(σ)}σ
(Hγ ,Θ, Q) ⊢aS,S,S† Ξ,Γ(·)

We have X = Θ ∪ Θ1 ∪ {p0(ρ)} ∪ SC(m(ρ)) ∪ Q◦(S) ⊂ Mρ for ρ ∈ ∂Qρ(S).
Pick a σ ∈ HQρ

ρ (f,Θ,Θ1). For example σ = ψfρ (α + η) for ρ = ψgκ(α) and
η = max({1} ∪ ES(X)). IH yields

{(Hγ1 ,Θ, R) ⊢
2a0
S,S,S Ξ,Γ(u), D

(u)
n }n<m

(Hγ1 ,Θ, R) ⊢
2a0+1
S,S,S Ξ,Γ(u), D(u)

(
∧
)

(Hγ1 ,Θ, R) ⊢
2a0
S,S,S Ξ,Γ(u),¬D(u)

(Hγ1 ,Θ, R) ⊢2a
S,S,S Ξ,Γ(u)

(cut)

where Qρ ↾S = Qρσ ↾S = Q↾S = R.
Case 3. Third the last inference is a (cut) with a cut formula C(σ) with srk(σ) =
S: Then rk(C) < S = srk(σ) for the cut formula C(σ). IH followed by a (cut)
with the cut formula C(u) yields the proposition.

Other case are seen from IH. 2

Lemma 5.7 (Elimination of one stable ordinal)
Suppose (Hγ ,Θ, Q) ⊢aS†,S†,S†,β,γ0 Ξ with a finite family Q = ((Q)0, γ

Q
· ) for γ0,

where S ∈ St, and max{rk(Ξ), srk(Ξ)} < S.
Let γ1 = γQS + IN if S ∈ dom(Q), and γ1 = γ else.
Then (Hγ1 ,Θ, R) ⊢ãS,S,S,β,γ0 Ξ holds for ã = φS†(S+ ωa) and R = Q↾S.

Proof. We have B({S†, a}) ⊂ Hγ [Θ(Q◦)] by (28) and Propositions 4.15.6 and
4.15.9 with B(Θ(Q◦)) ⊂ Θ(Q◦). We see E(S) ⊂ {S} ∪ E(S†) and B0(S) ⊂ {S} ∪
B0(S†) with S ∈ trail(S†). Hence B(S) ⊂ B(S†), and B({S, ã}) ⊂ Hγ [Θ(Q◦)]. On
the other hand we have Q◦(S) ⊂ Hγ1 [Θ(R◦)] by (29) when S ∈ dom(Q), where
R◦ = Q◦ ↾S. Therefore {S, ã} ⊂ Hγ1 [Θ(R◦)].

(Hγ ,Θ, Q) ⊢S+ωa
S†,S,S†,β,γ0 Ξ follows from Recapping 5.4 for S = 2S. Cut-

elimination 4.44 yields (Hγ ,Θ, Q) ⊢ãS,S,S†,β,γ0 Ξ. We obtain (Hγ1 ,Θ, R) ⊢ãS,S,S,β,γ0
Ξ by Proposition 5.6 with 2ã = ã. 2

Definition 5.8 Let Q be a finite family for γ0 with thresholds γQS , and γ an
ordinal. Let

s(γ, Q) := min{S ∈ SSt : γ ≥ γQS + IN}
if there exists an S ∈ SSt such that γ ≥ γQS + IN . Otherwise s(γ, Q) := β for the
fixed ordinal β.

We say that a non-zero ordinal γ is a multiple of IN if γ = IN · α for an
α ̸= 0. For a multiple γ of IN we obtain for s = s(γ, Q)

∀S ∈ dom(Q)(S < s ⇒ γ ≤ γQS)& ∀T ∈ dom(Q)(s ≤ T ⇒ γQT + IN ≤ γ) (42)
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Definition 5.9 Let Q = ((Q)0, γ
Q
· ) be a finite family for γ0 with thresholds

function γQ· , W a successor stable ordinal, and γ an ordinal. Let W < e and
s = s(γ, Q). δQW(γ) denotes an ordinal defined as follows. If [W, s)∩dom(Q) = ∅,
then δQW(γ) = γ. Otherwise δQW(γ) = γQU = γQW for the least U ∈ [W, s)∩ dom(Q).

Proposition 5.10 Let Q = ((Q)0, γ
Q
· ) be a finite family for γ0 with thresholds

function γQ· , and W < S < e successor stable ordinals. Then γ ≤ δQS(γ) ≤ δQW(γ)
for a multiple γ of IN .

Proof. Let s = s(γ, Q). If [W, s) ∩ dom(Q) = ∅, then δQW(γ) = δQS(γ) = γ.
Otherwise δQW(γ) = γQU = γQW for the least U ∈ [W, s) ∩ dom(Q). By (42) we
obtain γQU ≥ γ. If S ≤ U, then δQS(γ) = γQU. Assume U < S. If [S, s)∩dom(Q) = ∅,
then δQS(γ) = γ ≤ γQU. Otherwise let δQS(γ) = γQT for the least T ∈ [S, s)∩dom(Q).
Then U < T, and γ ≤ γQT < γQU by Definition 4.36.4a. 2

Lemma 5.11 (Elimination of stable ordinals)
Let Q = ((Q)0, γ

Q
· ) be a finite family for γ0, and f(e, a) = φe+1(a). Suppose

(Hγ ,Θ, Q) ⊢ae,e,e,β,γ0 Ξ for a multiple γ of IN , and max{rk(Ξ), srk(Ξ)} <W < e,
where e is a stable ordinal, a, e < Λ < IN , W is a successor stable ordinal such
that W ∈ HδQW(γ)+IN [Θ(Q◦ ↾W)].

Assume that Q has gaps f(e, a) + 1. Then (HγW ,Θ, QW) ⊢f(e,a)W,W,W,β,γ0 Ξ holds

for γW = δQW(γ) + IN · (f(e, a)) < γ0 + (IN )2 and QW = Q↾W.

Proof. By main induction on e with subsidiary induction on a. In the proof
let us omit the fourth and fifth subscripts β, γ0.

Let W ≤ S ∈ dom(Q). We have Q(S) ⊂ HγQS+IN [Θ(Q◦ ↾ S)] by (29). We see

γQS ≤ δQW(γ) from Definition 4.36.4a and (42). Hence Q(S) ⊂ HδQW(γ)+IN [Θ(Q◦W)],

and Hγ [Θ(Q◦)] ⊂ HδQW(γ)+IN [Θ(Q◦W)], where Q◦W = Q◦ ↾W.

By the assumption and (28), {W, f(e, a), γW} ⊂ HδQW(γ)+IN [Θ(Q◦W)] follows,

and (28) is enjoyed in (HγW ,Θ, QW) ⊢f(e,a)W,W,W,β,γ0 Ξ.

We see γW ≤ γQS for every S ∈ dom(Q) ∩W from the assumption that Q has
gaps f(e, a) + 1 as follows. If δQW(γ) = γ0 = γ, then γW = γ0 + IN · (f(e, a)) <
γ0+ IN · (f(e, a)+1) ≤ γQS . Otherwise let δQW(γ) = γQU for S <W ≤ U ∈ dom(Q).
Then γW = γQU + IN · (f(e, a)) < γQU + IN (f(e, a) + 1) ≤ γQS .
Case 1. Consider the case when the last inference is an (i−rflS(ρ, f,Θ1)) for a
successor i-stable ordinal S < e such that S ∈ Hγ [Θ(Q◦)] by (30).

Let R = Q ∪ {(S, ρ)}. a0 < a is an ordinal, and D ≡
∧
(Dn)n<m is a

finite conjunction such that (Hγ ,Θ, R) ⊢a0e,e,e Ξ, D
(ρ)
n for each n < m, and

(Hγ ,Θ, R
σ) ⊢a0e,e,e Ξ,¬D(σ) for every σ ∈ L = HR

ρ(f,Θ,Θ1) and rk(D) <
min{s, e}. Since (f(e, a0)+1) ·2 < f(e, a), we may assume that the finite family
R for γ0 has gaps f(e, a0)+1. We have srk(D(ρ)) = srk(D(σ)) = S < S† ≤ e ∈ St.

Let U† = max{W, rk(D)†,S†}. We obtain U† ≤ e. We claim that U† ∈
HδQ

U†
(γ)+IN [Θ(Q◦U†)], where δQU†(γ) = δRU†(γ) = δR

σ

U†(γ) by U† > S. We may

assume that U† ̸= W by the assumption. First let U† = S†. We see E(S†) ⊂
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{S†}∪E(S) with ES(S†) = ∅. Moreover B0(S†) ⊂ {S†}∪B0(S) since trail(S†) ⊂
trail(S) ∪ {S†}. Hence B(S†) ⊂ {S†} ∪ B(S). Therefore S† ∈ HδQ

S†
(γ)+IN [Θ(Q◦S†)]

by S ∈ B(S) ⊂ Hγ [Θ(Q◦)] and γ ≤ δQS†(γ). Next let U
† = rk(D)† > max{W,S†}.

Then δQU†(γ) = γQV for V = min{V ∈ dom(Q) : rk(D) < V < s(γ, Q)} if such a V
exists. Otherwise δQU†(γ) = γ.

By (28) we obtain k(D) ⊂ Hγ [Θ(Q◦)], and k(D) ⊂ HδQ
U†

(γ)+IN [Θ(Q◦U†)].

Hence rk(D)† ∈ HδQ
U†

(γ)+IN [Θ(Q◦U†)] follows from Proposition 4.5.3. Thus the

claim is shown.
Let a1 = f(e, a0) and γU† = δQU†(γ) + IN · (f(e, a0)). For each n < m, SIH

yields (HγU†
,Θ, QU†) ⊢a1U†,U†,U† Ξ, D

(ρ)
n , and (HγU†

,Θ, QU†) ⊢a1U†,U†,U† Ξ,¬D(σ) for

each σ ∈ L. We obtain by an (i−rflS(ρ, f,Θ1)), (HγU†
,Θ, QU†) ⊢a1+1

U†,U†,U† Ξ. If

U† = W, then S <W. We are done. Assume W < U†. Then W ≤ U ∈ St.
Let a2 = φU†(U+ω(a1+1)) < f(e, a). Lemma 5.7 yields (Hγ1 ,Θ, QU) ⊢

a2
U,U,U

Ξ, where γ1 = γQU + IN if U ∈ dom(Q), and γ1 = γU† else. In each case γ1 is a
multiple of IN .

Claim 5.12 γ2 = δQUW (γ1) + IN · f(U, a2) ≤ δQW(γ) + IN · f(e, a) = γW.

Proof of Claim 5.12. Let s = s(γ, Q), δ = δQW(γ), s1 = s(γ1, QU) and δ1 =
δQUW (γ1).
Case 1. U ∈ dom(Q): Then γ1 = γQU + IN and s1 ≤ U.
Case 1.1. s ≤ U: Then γ1 ≤ γ. First let [W, s) ∩ dom(Q) = ∅. In this case
we show that δ1 ≤ γ = δ, which yields the claim by f(U, a2) < f(e, a). If
[W, s1) ∩ dom(QU) = ∅, then δ1 = γ1 ≤ γ. Otherwise let V ∈ [W, s1) ∩ dom(QU)
be the least one. Then s ≤ V, and δ1 = γQV < γQV + IN ≤ γ.

Second let δ = γQV for the least V ∈ [W, s) ∩ dom(Q). From γ1 ≤ γ we see
s1 ≥ s. Hence V ∈ [W, s1) ∩ dom(QU) and δ1 = γQV. The claim follows from
f(U, a2) < f(e, a).
Case 1.2. U < s: Then U ∈ [W, s)∩dom(Q) and δ = γQV with V ≤ U. If V < s1,
then δ1 = γQV = δ. The claim follows from f(U, a2) < f(e, a). Let s1 ≤ V ≤ U.
Then δ1 = γ1 = γQU + IN and γQU ≤ γQV. 1 + f(U, a2) < f(e, a) yields the claim.
Case 2. U ̸∈ dom(Q): Then γ1 = γU† = δQU†(γ) + IN · f(e, a0).
Case 2.1. [W, s) ∩ dom(Q) = ∅: Then δ = γ = δQU†(γ) by W ≤ U†, and

γ1 = γ + IN · f(e, a0). We have either δ1 = γ1 or δ1 = γQV for a s ≤ V ∈
dom(Q). In each case we obtain δ1 ≤ γ + IN · f(e, a0). The claim follows from
f(e, a0) + f(U, a2) < f(e, a).
Case 2.2. Otherwise: Let δ = γQV for the least V ∈ [W, s) ∩ dom(Q). If
V < s1, then δ1 = γQV = δ. The claim follows from f(e, a0) < f(e, a). Let
s1 ≤ V < s. Then δ1 = γ1. We show δQU†(γ) ≤ δ + IN , which yields the claim

by f(e, a0) + f(U, a2) < f(e, a) = 1 + f(e, a). If U† ≤ V, then δQU†(γ) = γQV = δ.

If δQU†(γ) = γQX for an V < U† ≤ X < s, then γQX < γQV. Otherwise δQU†(γ) = γ <

γQV + IN = δ + IN by V < s. 2
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We have a3 = f(U, a2) = φU+1(a2) < f(e, a), and hence Q has gaps a3 +
1 < f(e, a). By MIH with U < e we obtain (Hγ2 ,Θ, QW) ⊢a3W,W,W Ξ for γ2 =

δQUW (γ1) + IN · f(U, a2). On the other hand we have γ2 ≤ γW by Claim 5.12 and

a3 < f(e, a). Therefore (HγW ,Θ, QW) ⊢f(e,a)W,W,W Ξ.
Case 2. Next consider the case when the last inference is a (cut) of a cut
formula C(σ) wth max{rk(C), srk(σ)} < e. We have an ordinal a0 < a such
that (Hγ ,Θ, Q) ⊢a0e,e,e ¬C(σ),Ξ and (Hγ ,Θ, Q) ⊢a0e,e,e C(σ),Ξ.

We may assume that rk(C) ≥ srk(σ) by Proposition 5.6. Let U† = max{W, rk(C)†}.
We obtain U† ≤ e. We see U† ∈ HδQ

U†
(γ)+IN [Θ(Q◦U†)] as in Case 1. Let γU† =

δQU†(γ)+ IN ·a1 for a1 = f(e, a0) = φe+1(a0). SIH yields (HγU†
,Θ, QU†) ⊢a1U†,U†,U†

¬C(σ),Ξ and (HγU†
,Θ, QU†) ⊢a1U†,U†,U† C

(σ),Ξ. A (cut) yields (HγU†
,Θ, QU†) ⊢a1+1

U†,U†,U†

Ξ. If U† = W, then we are done. Assume W < U†. Then W ≤ U ∈ St. Let
a2 = φU†(U + ω(a1 + 1)) < f(e, a). Lemma 5.7 yields (Hγ1 ,Θ, QU) ⊢a2U,U,U Ξ,

where γ1 = γQU + IN if U ∈ dom(Q), and γ1 = γU† else. In each case γ1 is a
multiple of IN . We have a3 = f(U, a2) = φU+1(a2) < f(e, a), and hence Q has
gaps a3 + 1 < f(e, a).

By MIH with U < e we obtain (Hγ2 ,Θ, Q) ⊢
a3
W,W,W Ξ for γ2 = δQUW (γ1) + IN ·

f(U, a2) ≤ γW by Claim 5.12.
Other cases (

∨
), (

∧
) and (Σ−rfl) on Ω are seen from SIH. 2

Let us prove Theorem 1.1. Let SIN ⊢ θLΩ for a Σ-sentence θ. By Embedding
4.27 pick an m > 0 so that (HIN , ∅; ∅) ⊢∗IN ·2+m

IN+m θLΩ ; ∅. Cut-elimination 4.32

yields (HIN , ∅; ∅) ⊢∗a
IN θLΩ ; ∅ for a = ωm(IN · 2 + m) < ωm+1(IN + 1). Then

Collapsing 4.34 yields (Hâ+1, ∅; ∅) ⊢∗β
β θLΩ ; ∅ for β = ψIN (â) ∈ LStN with

â = IN + ωa = ωm+1(IN · 2 + m) > β. Now let γ0 = â + IN . Capping 5.1

then yields (Hγ0 , ∅, ∅) ⊢ββ,β,β,β,γ0 θ
LΩ where 2β = β, θLΩ ≡ (θLΩ)(u), and ∅ is

a finite family for γ0 with thresholds and gaps φβ+1(β) + 1. For the empty
family ∅ this means that each finite family Q with thresholds γQS have gaps
φβ+1(β) + 1 in a sequent (Hγ0 ,Θ, Q) ⊢aβ,β,β,β,γ0 Γ occurring in the derivation of

(Hγ0 , ∅, ∅) ⊢
β
β,β,β,β,γ0

θLΩ .
Let β < Λ = Γ(β) < IN be the next strongly critical number as the base

of the θ̃-function. In what follows each finite function is an f : Λ → Γ(Λ). Let
α = φβ+1(β) and S0 = Ω† be the least stable ordinal with B(S0) = {S0} ⊂ H0[∅].
By Lemma 5.11 for the multiple γ0 of IN we obtain (HγS0

, ∅, ∅) ⊢αS0,S0,S0,β,γ0 θ
LΩ

for γS0 = δ∅S0 + IN · f(β, β) = γ0 + IN · α < γ0 + (IN )2. Cut-elimination 4.44

yields (HγS0
, ∅, ∅) ⊢α1

Ω,S0,S0,β,γ0 θ
LΩ for α1 = φS0(α).

In a witnessed derivation of this fact, there occurs no inference (i−rflS(ρ, f,Θ1))
since there is no successor stable ordinal S < S0, cf. Definition 4.39. Hence
(HγS0

, ∅; ∅) ⊢∗α1

Ω,γ1
θLΩ ; ∅ for γ1 = γS0 + α1 + 1. (Hγ , ∅; ∅) ⊢∗δ

δ,γ1
θLδ ; ∅ follows

from Collapsing 4.35, where δ = ψΩ(γS0 + α1) with the epsilon number α1.

Cut-elimination 4.32 yields (Hγ , ∅; ∅) ⊢∗φδ(δ)
0,γ1

θLδ ; ∅. We see that θLδ is true by
induction up to φδ(δ), where δ < ψΩ(ωm+2(IN + 1)) < ψΩ(εIN+1).
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6 Some ordinals in well-foundedness proof

In this section we introduce some ordinals needed in our well-foundedness proof.
In [4] the following Lemmas 6.2 and 6.3 are shown. Lemma 6.2 is used in

showing the finiteness of the sequence ρ0 ≻ ρ1 ≻ ρ2 ≻ · · ·, cf. Definition 3.28
and Lemma 6.15. Lemma 6.3 is needed in showing Corollary 7.38.

Definition 6.1 Let Λ ≤ IN be a strongly critical number.

1. For ξ < φΛ(0), aΛ(ξ) denotes an ordinal defined recursively by aΛ(0) = 0,
and aΛ(ξ) =

∑
i≤m θ̃bi(ω · aΛ(ξi); Λ) · ai when ξ =NF

∑
i≤m θ̃bi(ξi; Λ) · ai

in (6).

2. For irreducible functions f : Λ → φΛ(0) with base Λ let us associate
ordinals oΛ(f) < φΛ(0) as follows. oΛ(∅) = 0 for the empty function
f = ∅. Let {0} ∪ supp(f) = {0 = c0 < c1 < · · · < cn}, f(ci) = ξi < φΛ(0)
for i > 0, and ξ0 = 0. Define ordinals ζi = oΛ(f ; ci) by ζn = ω ·aΛ(ξn), and
ζi = ω · aΛ(ξi) + θ̃ci+1−ci(ζi+1 + 1;Λ). Finally let oΛ(f) = ζ0 = oΛ(f ; c0).

3. For d ̸∈ {0} ∪ supp(f), let oΛ(f ; d) = 0 if fd = ∅. Otherwise oΛ(f ; d) =
θ̃c−d(oΛ(f ; c) + 1; Λ) for c = min(supp(fd)).

Lemma 6.2 Let f : Λ → φΛ(0) be an irreducible finite function with base
Λ defined from an irreducible function g : Λ → φΛ(0) and ordinals c, d as
follows. fc = gc, c < d ∈ supp(g) with (c, d) ∩ supp(g) = (c, d) ∩ supp(f) = ∅,
f(c) < g(c) + θ̃d−c(g(d); Λ) · ω, and f <dΛ g(d), cf. Definition 3.31.6. Then
oΛ(f) < oΛ(g) holds.

Lemma 6.3 For irreducible finite functions f, g : Λ → φΛ(0) with base Λ,
assume f <0

lx g. Then oΛ(f) < oΛ(g) holds.

6.1 A preview of well-foundedness proof

To prove the well-foundedness of a computable notation system, we utilize
the distinguished class introduced by W. Buchholz[7]. Also cf. [11] for a well-
foundedness in terms of a maximal distinguished class.

Let OT be a computable notation system of ordinals with an ordinal term
Ω1. Ω1 denotes the least recursively regular ordinal ωCK1 . Assume that we
are working in a theory in which the well-founded part W (OT ) of OT exists
as a set. A parameter-free Π1−

1 +CA suffices to show the existence. Then the
well-foundedness of such a notation system OT is provable. When the next
recursively regular ordinal Ω2 is in OT , we further assume that a well-founded
part W (CΩ1(W0)) of a set CΩ1(W0) exists, where W0 = W (OT ) ∩ Ω1, and
α ∈ CΩ1(W0) iff each component<Ω1 of α is in W0. Likewise when OT contains
α-many terms denoting increasing sequence of recursively regular ordinals, we
need to iterate the process of defining the well-founded parts α-times.

Let us consider a notation system OT for recursively inaccessible universes.
There are α-many ordinal terms denoting recursively regular ordinals in OT
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with the order type α of OT . The whole process then should be internalized.
We need to specify a feature of sets arising in the process. Then distinguished
sets emerge. D[P ] denotes the fact that P is a distinguished class and defined
by

D[P ] :⇔ ∀α
(
α ≤ P →W (Cα(P )) ∩ α+ = P ∩ α+

)
where α ≤ P ⇔ ∃β ∈ P (α ≤ β) and α+ denotes the next recursively regular
ordinal above α if such an ordinal exists.

W0 =W (OT )∩Ω1 is the smallest distinguished set, andW1 =W (CΩ1(W0))∩
Ω2 is the next one. Given two distinguished sets, it turns out that one is an
initial segment of the other, and the union W0 =

∪
{P ⊂ OT : D[P ]} of

all distinguished sets is distinguished, the maximal distinguished class. The
maximal distinguished class W0 is Σ1−

2 -definable, and a proper class without
assuming Σ1−

2 −CA.
Assuming the maximal distinguished class W0 exists as a set, the well-

foundedness of OT for a single stable ordinal is provable in [4]. Consider now a
notation system OT for several stable ordinals S0,S1, . . .. We then need several
maximal distinguished sets W0,W1, . . . to prove the well-foundedness. W0 is
the maximal distinguished set in an absolute sense as for the well-founded part
W0 =W (OT ) ∩ Ω1.

A moment reflection on the emergence of distinguished sets shows that W1

could be a maximal distinguished set relative to W0 and S0. Specifically cf. (46),
a set P is said to be a 0-distinguished set for γ and X, denoted by Dγ [P ;X], iff
P is well-founded and

P ∩ γ−† = X ∩ γ−† &∀α ≥ γ−† (α ≤ P →W (Cα(P )) ∩ α+ = P ∩ α+
)

where γ−† = max{S ∈ St ∪ {0} : S ≤ γ}. Then let, cf. (47)

W γ
1 (X) :=

∪
{P ⊂ OT : Dγ [P ;X]}.

Observe that W γ
1 (X) is a Σ1

2-definable class, and hence a set assuming Σ1
2−CA.

We see in Lemma 7.8.2 that W γ
1 (X) is the maximal 0-distinguished class for γ

and X provided that X ∩ γ−† is well-founded.
Assume that there are α-many stable ordinals with the order type α of a

notation system OT of ordinals. Then we have to introduce distinguished sets
in the next level. In the higher level the recursive regularity is replaced by the
stability, and the Π1

1-sets W (Cα(P )) by Σ1
2-sets W

γ
1 (X).

A set X is a 1-distinguished set, denoted by D1[X] iff X is well-founded and

∀γ
(
γ ≤ X → Wγ

1 (X) ∩ γ† = X ∩ γ†
)
.

where α† = min{S ∈ St : α < S} if such a stable ordinal S exists. We see that
W0 = W 0

1 (∅) is the smallest 1-distinguished set, and W1 = W S0
1 (W0) is the

next 1-distinguished set, and so forth. In Lemma 7.10 it is shown that if D1[X]
and γ ∈ X, then X is a 0-distinguished set for γ and X, i.e., Dγ [X;X], and
γ ∈ W (Cγ(X)) ∩ γ+ = X ∩ γ+, where γ ∈ W γ

1 (X) ∩ γ† = X ∩ γ†. This crucial
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lemma allows us to prove facts by going down to the lowest level, i.e., to the
well-foundedness.

W :=
∪
{X ⊂ OT : D1[X]} is then the 1-maximal distinguished class, which

is a Σ1−
3 -definable class. Although W is a proper class in a set theory with

Π1-Collection or equivalently in Σ1
3−DC+ BI, the theories proves that if S ∈ W

for S ∈ St∪{0}, then S† ∈ W, cf. Lemma 7.20. In showing that a limit of stable
ordinals is in W, we invoke Σ1

3−DC in Lemma 7.22: if α ∈ GW , then there
exists a 1-distinguished set Z such that Z is closed under S 7→ S† and α ∈ GZ
for a Π1

0-set GZ in Definition 7.14 of subsection 7.2.
By iterating this ‘jump’ operators, we arrive at a ΣN+1-formula DN [X]

denoting the fact that X is an N -distinguished set for positive integers N ,
cf. Definition 7.4. The maximal N -distinguished class

∪
{X ⊂ OT : DN [X]} is

Σ1−
N+2-definable proper class in ΠN -Collection or in Σ1

N+2−DC+ BI.

Up to this, everything seems to go well. But as long as we have an infinite
increasing sequence {Sn}n = {S0 < S1 < · · ·} of successor stable ordinals, a
technical difficulty is hidden as follows. Above a successor stable ordinal S0,
there are increasing sequence S1 = S†0 < S2 = S†1 < · · · of successor stable
ordinals. Let ρn ≺ Sn. Let us define ordinals κn,i and σn,i for i ≤ n recursively
by κn,n = Sn, κn,i = κn,i+1[ρi/Si], σn,n = ρn and σi = σn,i+1[ρi/Si]. Let
κn = κn,0 and σn = σn,0. Then we see that σ0 < σ1 < σ2 < · · · < κ2 < κ1 < κ0.
This might yield an infinite decreasing chain {κn}n of collapsed ordinals.

For simplicity let ρi = ψfiSi (αi). Then Mρi = Hαi(ρi). In order to collapse
κn,i+1 by ρi, ρj ∈ Mρi has to be enjoyed for j > i. Since ρj > ρi, this
means that αj < αi. Namely there must exist an infinite decreasing chain
α0 > α1 > α2 > · · · in advance to have another chain κ0 > κ1 > κ2 > · · ·.
Here αi is the ordinal p0(ρi) in Definition 3.30.2. Let η ∈ L(S) be an ordinal
in the layer L(S) of a successor stable ordinal S, cf. Definition 3.34. A pair
(g1(η), g2(η)) of ordinals is associated with such an ordinal η in Definitions 6.7
and 6.14, and we show in Lemma 6.15 that (g1(γ), g2(γ)) <lx (g1(η), g2(η))
when γ ∈ R(η) for the set R(η) in Definition 6.12. It turns out that this suffices
to prove the well-foundedness in Lemma 7.32.

6.2 Props

In this subsection an ordinal pS(α) and a pair g(α) = (g1(α), g2(α)) are intro-
duced for ordinal terms α. These are needed to show that there is no infinite
sequence {ρn, κn}n such that ρ0 ≺ S0, κn ∈ {IN [ρn]} ∪ {ρ†⃗inn ,S†⃗inn [ρn/Sn]}
and either ρn+1 ≺ S†⃗inn [ρn/Sn] = κn or ρn+1 ≺ τ †⃗in for τ ≺ IN [ρn] = κn,
cf. Proposition 6.10, Lemmas 6.15 and 7.32.

Recall that α ∈ SStM iff either α is a successor stable ordinal in SSt or
α = β[ρ/S] for a β ∈ SStM and a successor stable ordinal S, cf. Definition
3.31.8.

Definition 6.4 For ρ ∈ ΨS with S ∈ SStM , let N(ρ) = {IN [ρ]}∪{ρ†⃗i,S†⃗i[ρ/S] :
i⃗ ̸= ∅} ∩ OT (IN ) if S ̸∈ SSt. Otherwise N(ρ) = {IN [ρ]} ∪ {S†⃗i[ρ/S] : i⃗ ̸=

61



∅} ∩OT (IN ).

Note that ρ†⃗i ∈ SSt when S ∈ SSt, and N(ρ) ∩ Ψ = ∅. Recall that,
cf. Definition 3.34, L(S) denotes the layer of S, and α ∈ L(S) iff α ≺R S iff
there are ordinals {ρi, κi}i such that κ0 = S, ρi ≺ κi , κi+1 ∈ N(ρi), and
α ∈ {ρ0} ∪ {ρi, κi}i>0.

Definition 6.5 Let S ∈ SSti and T ∈ St∪ {Ω} be the least such that S = T†i.
For a ∈ OT (IN ), the prop pS(a) of a denotes an ordinal term defined recursively
as follows.

1. pS(IN ) = pS(a) = 0 if a ≤ T
In what follows assume IN ̸= a > T.

2. pS(a) = maxi≤m pS(ai) if a = a0 + · · ·+ am.

pS(a) = max{pS(b), pS(c)} if a = φbc.

3. pS(a) = pS(κ) if a ∈ N(κ) for a κ ∈ L(U) ∩Ψ with a U > T.

4. pS(U†k) = pS(U) for T ≤ U ∈ St.

5. pS(ψIN (a)) = pS(a).

6. For pS(SC(f)) = max{pS(b) : b ∈ SC(f)}, let

pS(ψ
f
κ(a)) =

 max{pS(κ), pS(a), pS(SC(f))} if κ > S
max{a, pS(a)} if κ = S
pS(κ) if κ < S

Proposition 6.6 Let S ∈ SSt and α = ψfS (a), β = ψgS(b) with {α, β} ⊂
OT (IN ),

1. Let c ∈ Hb(β) with pS(c) ̸= 0. Then there exists a subterm γ ∈ Hb(β) of
c such that γ ≺ S and pS(γ) = pS(c).

2. pS(SC(f)) ≤ pS(α) = max{a, pS(a)} holds.

3. pS(β) ≤ pS(α) if β < α.

4. Let δ < α < β with δ ≺ β. Then pS(β) ≤ pS(α).

5. Let {γ, δ} ⊂ OT (IN ). Then pS(γ) ≤ pS(δ) if γ < δ.

Proof. 6.6.1. By induction on ℓc.
6.6.2. By (11) in Definition 3.31.5 we obtain SC(f) ⊂ Ha(SC(a)).

By induction on ℓb, we see b ∈ Ha(SC(a)) ⇒ pS(b) ≤ max{a, pS(a)}.

We show Propositions 6.6.3 and 6.6.4 simultaneously by induction on ℓβ + ℓα.
6.6.3. If a = b, then pS(β) = pS(α). Let b < a. We can assume a < c = pS(b).
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By Proposition 6.6.1 pick a shortest subterm γ ∈ Hb(β) ∩ S ⊂ β of b such that
γ ≺ S and pS(γ) = pS(b) = c for b ∈ Hb(β). Then γ ⪯ δ = ψhS (c) for some h
and γ < β. If δ ≤ α, then IH yields c = pS(δ) ≤ pS(α). Assume γ < α < δ with
γ ≺ δ. IH for Proposition 6.6.4 then yields c ≤ pS(α).

Next let a < b. Pick a subterm η of a term in {a} ∪ SC(f) such that
β ≤ η ∈ Ha(α) and η ≺ S. Let η ⪯ ψhS (d) = σ for some h and d. Then we
obtain β ≤ σ, and IH yields pS(β) ≤ pS(σ) = pS(η). On the other hand we have
pS(η) ≤ max{a, pS(a)} by Proposition 6.6.2. Hence pS(β) ≤ pS(α).
6.6.4. Pick a subterm η of a term in {a} ∪ SC(f) such that δ ≤ η ∈ Ha(α),
η ≺ S and pS(η) ≤ max{a, pS(a)} by Proposition 6.6.2. Let η ⪯ ψhS (d) = σ for
some h and d. Then we obtain δ ≤ σ. If β ≤ σ, then IH for Proposition 6.6.3
yields pS(β) ≤ pS(σ) = pS(η) ≤ pS(α). Otherwise we obtain δ ≤ σ < β with
δ ≺ β. IH yields pS(β) ≤ pS(σ) ≤ pS(α).

6.6.5. This is seen by induction on ℓγ+ℓδ using Definition 3.35, and Propositions
6.6.3 and 6.6.4. 2

The set Cr of strongly critical numbers in OT (IN ) is divided to Cr = LStN∪
SSt∪

∪
{L(S) : S ∈ SSt}∪(Cr∩(Ω+1)), where LStN = {ψIN (a) : a ∈ OT (IN )},

cf. Definition 3.34.

Definition 6.7 Let S ∈ SSt and α ∈ L(S). Let us define ordinals g0(α), g
∗
0(α)

and g2(α) as follows.

1. g0(α) = g2(α) = 0 for α ̸∈ Ψ.

2. If ρ ≺ S, then let g0(ρ) = g∗0(ρ) = g0(ψIN [ρ](b)) = g∗0(ψIN [ρ](b)) = pS(ρ)
for every b. Also g2(ρ) = oIN (m(ρ))+ 1 for m(ρ) : IN → φIN (0) with base
IN , and g2(ψIN [ρ](b)) = 0.

3. Let ρ ≺ S and α ≺R τ ∈ N(ρ), where α ̸= ψIN [ρ](b) for any b if τ = IN [ρ].
Let g∗0(α) = g0(ρ) = pS(ρ). Let β ∈ Mρ be such that α = β[ρ/S]. If
α ∈ Ψ, let gi(α) = gi(β) for i = 0, 2.

Proposition 6.8 Let b = p0(α) for α ∈ L(S) ∩ Ψ with S ∈ SSt. Then
SC(g2(α)) ⊂ ψIN (b). Moreover p0(α) ≤ g∗0(α).

Proof. By induction on ℓα. Cf. Definition 3.30.2 for p0(α).
Case 1. First let α ⪯ ψgS(b) with an S ∈ SSt and f = m(α). By Proposition

3.32.2 let T ∈ LSt ∪ {Ω} be such that S = T†⃗i for a sequence i⃗. We obtain
SC(g2(α)) ⊂ SC(f) for g2(α) = oIN (f) + 1. By (12) in Definition 3.31 we
obtain SC(f) ⊂ Mα ∩ IN = Hb(α) ∩ IN . On the other hand we have p0(α) =
b ≤ pS(α) = g∗0(α).

We claim that α < ψIN (b). SC(g2(α)) ⊂ Hb(ψIN (b)) ∩ IN ⊂ ψIN (b) fol-
lows from the claim. For the claim it suffices to show S < ψIN (b). Let

{(Tm,Sm, i⃗m)}m≤n be the sequence such that T0 ∈ LStN ∪ {Ω}, Sm = T†⃗im
m

and Tm+1 ≺ Sm (m < n), and S = Sn, cf. the trail to S in Proposition 4.12. If
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T0 = Ω, then S ≤ S0 < ψIN (b) ∈ LStN . Let T0 = ψIN (c). Proposition 3.32.3
yields c < b, and T0 = ψIN (c) < ψIN (b) ∈ LStN . Hence S ≤ S0 < ψIN (b) ∈
LStN .
Case 2. Next let LSti ∋ ρ ≺ S ∈ SSt, α ≺R τ ∈ N(ρ) and α = β[ρ/S] for a
β ∈ Mρ. Then b = p0(α) = p0(β), and IH yields SC(g2(α)) = SC(g2(β)) ⊂
ψIN (b) for g2(α) = g2(β), and p0(β) ≤ g∗0(β).

On the other hand we have g∗0(α) = g0(ρ) = pS(ρ) ≥ p0(ρ) = c with Mρ =
Hc(ρ). Thus it suffices to show g∗0(δ) ≤ p0(ρ) for ρ < δ ∈ Hc(ρ) by induction

on ℓδ. If δ ⪯ ψfT(d) with a S < T ∈ SSt, then g∗0(δ) = g0(δ) = pT(δ) =
max{d, pT(d)}. We obtain d < c and d ∈ Hc(ρ). IH yields pT(d) < c.

Next let δ = γ[τ/T] with a γ ∈ Mτ . Then g∗0(δ) = g∗0(τ) and τ ∈ Mρ. IH
yields g∗0(τ) ≤ p0(ρ). 2

Proposition 6.9 Let τ ∈ L(S) ∪ {S} and S ∈ SSt.
For ρ, η ≺ τ , if ρ < η, then g0(ρ) ≤ g0(η).

Proof. By induction on ℓρ.
Case 1. τ = S: Let η ⪯ α = ψfS (a) and ρ ⪯ β = ψgS(b). Then g0(η) =
pS(η) = pS(α) and g0(ρ) = pS(ρ) = pS(β). If β ≤ α, then Proposition 6.6.3
yields pS(β) ≤ pS(α). Suppose ρ < α < β with ρ ≺ β. We obtain pS(β) ≤ pS(α)
by Proposition 6.6.4.

Case 2. τ ̸= S: Let κ ≺ S be such that either τ ⪯R S†⃗i[κ/S] or τ ≺R IN [κ].
Then g0(ρ) = g0(ρ1) and g0(η) = g0(η1) for ρ1 = ρ[κ/S]−1 and η1 = η[κ/S]−1,
cf. Definition 3.44 for uncollapsing. We obtain ρ1 < η1, ρ1 ≺ τ1 and η1 ≺ τ1 for
τ1 = τ [κ/S]−1. IH with ℓρ1 < ℓρ yields g0(ρ1) ≤ g0(η1). 2

Proposition 6.10 Let S ∈ SSt, ρ ≺ τ ∈ (L(S) ∪ {S}) ∩ SStM , and α ≺ σ ∈
SStM , where σ ⪯R κ ∈ N(ρ). Then g0(α) < g0(ρ).

Proof. We may assume that either σ = κ = S†⃗i[ρ/S] or κ = IN [ρ] &σ =

(ψIN [ρ](γ))
†⃗i for a γ and an i⃗. By induction on ℓα we show g0(α) < g0(ρ).

Case 1. ρ ≺ S: Let ρ ⪯ β = ψgS(b). Then g0(ρ) = pS(ψ
g
S(b)). From

b ∈ Hb(ψ
g
S(b)) we see pT(b) < pT(ψT(b)) = b ≤ pS(ψ

g
S(b)) = g0(ρ) for any

S < T ∈ SSt.
Case 1.1. σ = S†⃗i[ρ/S] : Let α ⪯ ψh1

σ (c1) =
(
ψhS†⃗i(c)

)
[ρ/S], where h1 =

h[ρ/S] ̸= ∅, c1 = c[ρ/S] and σ = S†⃗i[ρ/S] = (S†⃗i)[ρ/S]. Then g0(α) = pS†⃗i(ψ
h
S†⃗i(c)).

We have ρ < ψhS†⃗i(c) ∈ Mρ = Hb(ρ), and hence c < b. We obtain pS†⃗i(c) ≤
pS†⃗i(b) by Proposition 6.6.5.

Case 1.2. σ = (ψIN [ρ](γ1))
†⃗i for a γ1: Let α ⪯ ψh1

σ (c1) =
(
ψhT†⃗i(c)

)
[ρ/S], where

h1 = h[ρ/S] ̸= ∅, c1 = c[ρ/S] and σ = T[ρ/S] with T = ψIN (γ) and γ1 = γ[ρ/S].
Then g0(α) = pT†⃗i(ψhT†⃗i(c)). We have ψhT†⃗i(c) ∈ Mρ. As in Case 1.1 we see

c < b and pT†⃗i(c) ≤ pT†⃗i(b) from S < T†⃗i, i.e., from S < T = ψIN (γ) ∈ LStN .

Case 2. ρ ≺ τ ̸= S: Let λ ≺ S be such that either α ≺R S†⃗j [λ/S] or
α ≺R IN [λ]. Then g0(α) = g0(α1) with α = α1[λ/S] and g0(ρ) = g0(ρ1)
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with ρ = ρ1[λ/S]. We have ρ1 ≺ τ [λ/S]−1 and α1 ≺ σ[λ/S]−1 with σ = S†⃗i[ρ/S]
or σ = (ψIN [ρ](γ))

†⃗i for a γ. If τ [λ/S]−1 ∈ SSt, then we obtain g0(α1) < g0(ρ1)
by Case 1. Otherwise IH with ℓα1 < ℓα yields the proposition. 2

Proposition 6.11 Let {α, β} ⊂ L(S) with an S ∈ SSt. If α < β, then g∗0(α) ≤
g∗0(β).

Proof. Let ρ, η ≺ S be such that either α = ρ or α ⪯R κ ∈ N(ρ), and either
β = η or β ⪯R σ ∈ N(η). Then ρ ≤ η by α < β. Proposition 6.9 yields
g∗0(α) = g0(ρ) ≤ g0(η) = g∗0(β). 2

Definition 6.12 A set R(η) ⊂ Ψ is defined.

1. Let η ≺ IN . γ ∈ R(η) holds iff there exists an SSt ∋ S < η such that
γ ∈ L(S) ∩Ψ.

2. Let η ∈ L(S) with an S ∈ SSt. γ ∈ R(η)∩L(S) holds iff γ ∈ Ψ, γ < η and
one of the following holds:

(a) γ ≺ η.

(b) There exist τ ∈ L(S) and j⃗, i⃗ such that η ⪯ τ †⃗j and one of the
following holds:

i. γ ≺R τ †⃗i and i⃗ <lx j⃗.
ii. γ ≺R τ †⃗i, η = τ †⃗j and i⃗ = j⃗.

iii. γ ≺R IN [τ ] .

iv. γ ≺R S†⃗i[τ/S].
(c) There exist τ ∈ L(S) and i⃗ such that η ⪯ IN [τ ], and and one of the

following holds:

i. γ ≺R IN [τ ] and η = IN [τ ].

ii. γ ≺R S†⃗i[τ/S].

(d) There exist τ ∈ L(S) and j⃗, i⃗ such that η ⪯ S†⃗j [τ/S] , and and one of
the following holds:

i. γ ≺R S†⃗i[τ/S] and i⃗ <lx j⃗.
ii. γ ≺R S†⃗i[τ/S], η = S†⃗j [τ/S] and i⃗ = j⃗.

(e) There exist τ ∈ L(S), ρ and i⃗ such that η, ρ ≺ IN [τ ], ρ < η and

γ ≺R ρ†⃗i.
(f) There exist τ ∈ (L(S) ∪ {S}) ∩ SStM , ρ and κ such that η, ρ ≺ τ ,

ρ < η, γ ≺R κ ∈ N(ρ).

Proposition 6.13 Let η, γ ∈ L(S) for an S = T†k ∈ SSt with T ∈ {Ω}∪(LSt∩
Ψ). Assume η > γ ̸∈ R(η), and let τ be maximal such that γ ≺ τ ≤ η. Then
η > τ ∈ Ψ.
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Proof. This is seen by an inspection to Definition 3.35. 2

Definition 6.14 Let S ∈ SSt and α ∈ L(S).
Let i⃗ = (i0 ≥ i1 ≥ · · · ≥ im) be a weakly descending chain of positive

integers with i0 ≤ N . Then let o(⃗i ) := ωi0−1 + ωi1−1 + · · ·+ ωim−1 < ωN .
Let us define ordinals g′1(α) and g1(α) as follows. Let λ = ωN+1.

1. Let ρ ≺ S. Then g′1(ρ) = λg0(ρ) and g1(ρ) = λg0(ρ)+1.

2. Let ρ ∈ L(S) be such that ρ ≺ T ∈ SStM ∩ (L(S) ∪ {S}), α ≺ κ ∈
N(ρ) ∪ {(ψIN [ρ](a))

†⃗i : i⃗ ̸= ∅}, where α ̸= ψIN [ρ](b) for any b if κ = IN [ρ].

Let g1(α) = g′1(α) + λg0(ρ).

(a) g′1(T†⃗i[ρ/T]) = g′1(ρ) + λg0(ρ) · (o(⃗i ) + 1).

(b) α ≺ T†⃗i[ρ/T]: g′1(α) = g′1(ρ) + λg0(ρ) · o(⃗i ).
(c) g′1(IN [ρ]) = g′1(ρ) + λg0(ρ) · (ωN + 1).

(d) α ≺ IN [ρ]: g′1(α) = g′1(ρ) + λg0(ρ) · ωN .

(e) g′1((ψIN [ρ](a))
†⃗i) = g′1(ρ) + λg0(ρ) · (ωN + o(⃗i ) + 1).

(f) α ≺ (ψIN [ρ](a))
†⃗i: g′1(α) = g′1(ρ) + λg0(ρ) · (ωN + o(⃗i )).

(g) g′1(ρ
†⃗i) = g′1(ρ) + λg0(ρ) · (ωN + ωN + o(⃗i ) + 1).

(h) α ≺ ρ†⃗i: g′1(α) = g′1(ρ) + λg0(ρ) · (ωN + ωN + o(⃗i )).

Let g(α) = (g1(α), g2(α)).

Lemma 6.15 Let η ∈ L(S) with S ∈ SSt. Then g∗0(γ) ≤ g∗0(η), g(γ) <lx g(η)
and SC(g2(γ)) ⊂ ψIN (b) for γ ∈ R(η) and b = g∗0(η).

Proof.
Case 1. γ ≺ η: We have g∗0(γ) = g∗0(η). If η ∈ Ψ, then g1(η) = g1(γ) and
g2(γ) < g2(η) by Lemma 6.2. Otherwise g1(γ) < g1(η). In what follows assume
γ ̸≺ η. We claim that g1(γ) < g1(η).
Case 2. η ⪯ τ1, γ ≺R τ2 with {τ2 ≤ τ1} ⊂ N(τ) for a τ ∈ L(S), cf. Definitions
6.12.2b, 6.12.2(b)iii, 6.12.2(b)iv, 6.12.2c, 6.12.2d: We have g1(η) = g′1(τ) +
λg0(τ)·(α+1) for an α < ωN+1. If γ ≺ τ2, then g1(γ) = g′1(τ)+λ

g0(τ)·(β+1) with
β < α. Otherwise let σ ≺ τ2 be such that γ ≺ σ1 ∈ SStM , σ1 ⪯R κ1 ∈ N(σ).
We obtain g0(σ) < g0(τ) by Proposition 6.10, and g1(γ) = g′1(τ)+λg0(τ) · β+ δ
with δ < λg0(σ)+1 ≤ λg0(τ).
Case 3. ρ, η ≺ τ1 ∈ N(τ), ρ < η and γ ≺R κ ∈ N(ρ), cf. Definitions 6.12.2e
and 6.12.2f: We have g′1(ρ) = g′1(τ) + λg0(τ) · α for an α < ωN+1, g1(η) =
g′1(ρ) + λg0(τ), and g1(γ) = g′1(ρ) + δ for δ < λg0(τ) by Proposition 6.10.
Case 4. ρ, η ≺ S, ρ < η and γ ≺R κ ∈ N(ρ), cf. Definition 6.12.2f: We have
g1(η) = λg0(η)+1, and g′1(ρ) = λg0(ρ), where g0(ρ) ≤ g0(η) by Proposition 6.9.
On the other hand we have g1(γ) = g′1(ρ) + δ with δ < λg0(ρ)+1.
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Thus g(γ) <lx g(η) is shown. In each case c = p0(γ) ≤ g∗0(γ) ≤ g∗0(η) = b
holds by Proposition 6.8. We obtain ψIN (c) ≤ ψIN (b) by c ∈ Hc(ψIN (c)) and
b ∈ Hb(ψIN (b)). On the other hand we have SC(g2(γ)) ⊂ ψIN (c) by Proposition
6.8. Hence SC(g2(γ)) ⊂ ψIN (b). 2

Proposition 6.16 Let {α1, β} ⊂ L(S) for an S ∈ SSt, α1 = ψfκ(a) ≤ ψhσ(c) =
β and β ∈ Ha(α1). Then c < a and g∗0(β) ≤ g∗0(α1).

Proof. By induction on ℓβ. We have c ∈ Kα1
(β) < a, and {σ, c} ⊂ Ha(α1).

We show g∗0(β) ≤ g∗0(α1). First let β ≺ S. We show g∗0(β) = pS(β) ≤ g∗0(α1).
We can assume σ = S by IH. Let γ = ψgS(b) be a proper subterm of β. If
γ ∈ Kα1

(β), then b < a. If γ < α1, then g∗0(γ) ≤ g∗0(α1) by Proposition 6.11.
Second let ρ ≺ S and β ≺R κ ∈ N(ρ). Then g∗0(β) = pS(ρ). If α1 ≤ ρ, then

ρ ∈ Ha(α1) and pS(ρ) ≤ g∗0(α1) by the first case. Let ρ < α1 < β. Then we
obtain g∗0(α) = pS(ρ) = g∗0(β). 2

6.3 Coefficients

In this subsection we introduce coefficient sets E(α), Gδ(α), FX(α), kX(α) of
α ∈ OT (IN ) for X ⊂ OT (IN ), each of which is a finite set of subterms of
α. These are utilized in our well-foundedness proof. Roughly E(α) is the set
of subterms of the form ψfπ(a), and FX(α) [kX(α)] the set of subterms in X
[subterms not in X], resp.

Let us write for α < IN , α†0 = min{σ ∈ Reg : σ > α} for the next
regular ordinal α+ above α. Let α†i := ∞ if α ≥ IN . For 0 ≤ i ≤ N , let
α−i := max{σ ∈ Sti ∪ {0} : σ ≤ α} when α < IN , and α−i := IN if α ≥ IN .

Although α−1 looks alike the Mostowski uncollapsing α[ρ/S]−1 in Definition
3.44, no confusion likely occurs.

Since Sti+1 ⊂ Sti, we obtain α†i ≤ α†(i+1) and β†0 < σ if β < σ ∈ St ∩ IN
since each σ ∈ St is a limit of regular ordinals.

Note that R(η) ⊂ L(S) if η ∈ L(S), and γ−N = η−N for every γ, η ∈ L(S).

Definition 6.17 For terms α, δ ∈ OT (IN ) and X ⊂ OT (IN ), finite sets E(α),
Gδ(α), FX(α), kX(α) of terms are defined recursively as follows.

1. E(α) = ∅ for α ∈ {0,Ω, IN}. E(αm + · · · + α0) =
∪
i≤m E(αi). E(φβγ) =

E(β)∪E(γ). E(IN [ρ]) = E(ρ†⃗i) = E(S†⃗i[ρ/S]) = E(ρ). E(ψfπ(a)) = {ψfπ(a)}.
E(ψIN (a)) = {ψIN (a)}.

2. A(α) =
∪
{A(β) : β ∈ E(α)} for A ∈ {Gδ, FX , kX}.

3. Gδ(ψIN (a)) = Gδ(a). FX(ψIN (a)) = FX(a) if ψIN (a) ̸∈ X, and FX(ψIN (a)) =
{ψIN (a)} if ψIN (a) ∈ X. kX(ψIN (a)) = {ψIN (a)} ∪ kX(a) if ψIN (a) ̸∈ X,
and kX(ψIN (a)) = ∅ if ψIN (a) ∈ X.

Gδ(ψ
f
π(a)) =

{
Gδ({π, a} ∪ SC(f)) δ < π
{ψfπ(a)} π ≤ δ
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FX(ψfπ(a)) =

{
FX({π, a} ∪ SC(f)) ψfπ(a) ̸∈ X
{ψfπ(a)} ψfπ(a) ∈ X

kX(ψfπ(a)) =

{
{ψfπ(a)} ∪ kX({π, a} ∪ SC(f)) ψfπ(a) ̸∈ X
∅ ψfπ(a) ∈ X

4. For α ∈ N(ρ)

Gδ(α) =

{
{α} α < δ
Gδ(ρ) δ ≤ α

FX(α) = FX(ρ) and kX(α) = kX(ρ).

For A ∈ {Kδ, Gδ, FX , kX} and sets Y ⊂ OT (IN ), A(Y ) :=
∪
{A(α) : α ∈

Y }.

Definition 6.18 S(η) denotes the set of immediate subterms of η. For example
S(φβγ) = {β, γ}. S(η) := ∅ when η ∈ {0,Ω, IN}, S(α) = {ρ} for α ∈ N(ρ),
S(η) = {η} when η ∈ Ψ.

Proposition 6.19 For {α, δ, a, b, ρ} ⊂ OT (IN ),

1. Gδ(α) ≤ α.

2. α ∈ Ha(b) ⇒ Gδ(α) ⊂ Ha(b).

Proof. These are shown simultaneously by induction on ℓα. It is easy to see
that

Gδ(α) ∋ β ⇒ β < δ& ℓβ ≤ ℓα (43)

6.19.1. Consider the case α = ψfπ(a) with δ < π. Then Gδ(α) = Gδ(SC(f) ∪
{π, a}). On the other hand we have SC(f)∪{π, a} ⊂ Ha(α). Proposition 6.19.2
with (43) yields Gδ(SC(f) ∪ {π, a}) ⊂ Ha(α) ∩ π ⊂ α. Hence Gδ(α) < α.

Next let α ∈ N(ρ) with δ ≤ α. Then Gδ(α) = Gδ(ρ). By IH we have
Gδ(ρ) ≤ ρ < α. Hence Gδ(α) < α.
6.19.2. Since Gδ(α) ≤ α by Proposition 6.19.1, we can assume α ≥ b.

Consider the case α = ψfπ(a) with δ < π. Then SC(f)∪ {π, a} ⊂ Ha(b) and
Gδ(α) = Gδ(SC(f) ∪ {π, a}). IH yields the lemma.

Next let α ∈ N(ρ) with δ ≤ α. Then Gδ(α) = Gδ(ρ) and ρ < α. b ≤ α ∈
Ha(b) yields ρ ∈ Ha(b). IH yields the lemma. 2

Proposition 6.20 If β ̸∈ Ha(Y ) and KX(β) < a, then there exists a γ ∈
FX(β) such that Ha(Y ) ̸∋ γ ∈ X.

Proof. By induction on ℓβ. Assume β ̸∈ Ha(α) and KX(β) < a. By IH we
can assume that β = ψfκ(b). If β ∈ X, then β ∈ FX(β), and γ = β is a desired
one. Assume β ̸∈ X. Then we obtain KX(β) = {b} ∪KX({b, κ} ∪ SC(f)) < a.
In particular b < a, and hence {b, κ} ∪ SC(f) ̸⊂ Ha(Y ). By IH there exists a
γ ∈ FX({b, κ} ∪ SC(f)) = FX(β) such that Ha(Y ) ̸∋ γ ∈ X. 2
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7 Well-foundedness proof with the maximal dis-
tinguished sets

In this section working in the second order arithmetic Σ1
N+2-DC + BI, we

show the well-foundedness of the notation system OT (IN ) up to each α < Ω.
The proof is based on distinguished classes, which was first introduced by
Buchholz[7]. Each ordinal term α ∈ OT (IN ) is identified with its code ⌈α⌉ ∈ N,
cf. Lemma 3.36.

7.1 Distinguished sets

In this subsection we establish elementary facts on distinguished classes.
X,Y, Z, . . . range over subsets of OT (IN ), while X ,Y, . . . range over classes,

which are definable by second-order formulas in the language of arithmetic.
Following [10], we define sets Cα(X) ⊂ OT (IN ) for α ∈ OT (IN ) and X ⊂
OT (IN ) as follows.

Definition 7.1 For α, β ∈ OT (IN ) and X ⊂ OT (IN ), let us define a set Cα(X)
recursively as follows.

1. {0,Ω, IN} ∪ (X ∩ α) ⊂ Cα(X).

2. Let (α1 + · · · + αn) ∈ OT (IN ) with {α1, . . . , αn} ⊂ Cα(X). Then (α1 +
· · ·+ αn) ∈ Cα(X).

3. Let φβγ ∈ OT (IN ) with {β, γ} ⊂ Cα(X). Then φβγ ∈ Cα(X).

4. Let ψIN (β) ∈ OT (IN ) with β ∈ Cα(X). Then ψIN (β) ∈ Cα(X) if IN > α.

5. Let ψfσ(β) ∈ OT (IN ) with {σ, β}∪SC(f) ⊂ Cα(X). Then ψfσ(β) ∈ Cα(X)
if σ > α.

6. Let β ∈ N(ρ) with ρ ∈ Cα(X). Then β ∈ Cα(X) if β ≥ α.

Proposition 7.2 Assume ∀γ ≥ α[γ ∈ P ⇒ γ ∈ Cγ(P )] for a set P ⊂ OT (IN ).

1. α ≤ β ⇒ Cβ(P ) ⊂ Cα(P ).

2. α ≤ β < α†0 ⇒ Cβ(P ) = Cα(P ).

Proof. 7.2.1. We see by induction on ℓγ (γ ∈ OT (IN )) that

∀β ≥ α[γ ∈ Cβ(P ) ⇒ γ ∈ Cα(P ) ∪ (P ∩ β)] (44)

For example, if ψfπ(δ) ∈ Cβ(P ) with π > β ≥ α and {π, δ} ∪ SC(f) ⊂ Cα(P ) ∪
(P ∩ β), then π ∈ Cα(P ), and for any γ ∈ {δ} ∪ SC(f), either γ ∈ Cα(P ) or
γ ∈ P ∩β. If γ < α, then γ ∈ P ∩α ⊂ Cα(P ). If α ≤ γ ∈ P ∩β, then γ ∈ Cγ(P )
by the assumption, and by IH we have γ ∈ Cα(P ) ∪ (P ∩ γ), i.e., γ ∈ Cα(P ).
Therefore {π, δ} ∪ SC(f) ⊂ Cα(P ), and ψfπ(δ) ∈ Cα(P ).
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Using (44) we see from the assumption that ∀β ≥ α[γ ∈ Cβ(P ) ⇒ γ ∈
Cα(P )].
7.2.2. Assume α ≤ β < α†0. Then by Proposition 7.2.1 we have Cβ(P ) ⊂
Cα(P ). γ ∈ Cα(P ) ⇒ γ ∈ Cβ(P ) is seen by induction on ℓγ using the facts
β−0 = α−0 and β†0 = α†0. 2

Definition 7.3 1. Prg[X,Y ] :⇔ ∀α ∈ X(X ∩ α ⊂ Y → α ∈ Y ).

2. For a definable class X , TI[X ] denotes the schema:
TI[X ] :⇔ Prg[X ,Y] → X ⊂ Y holds for any definable classes Y.

3. For X ⊂ OT (IN ), W (X) denotes the well-founded part of X.

4. Wo[X] :⇔ X ⊂W (X).

Note that for α ∈ OT (IN ), W (X) ∩ α =W (X ∩ α).

Definition 7.4 For P,X ⊂ OT (IN ) ∩ IN and α, γ ∈ OT (IN ) with γ < IN ,
define Wα

i (P ) (0 ≤ i ≤ N) and Dγ
i [P ;X] (0 ≤ i ≤ N) recursively on i ≤ N as

follows.

Wα
0 (P ) := W (Cα(P )) (45)

Dγ
i [P ;X] :⇔ Wo[P ] &P ∩ γ−(i+1) = X ∩ γ−(i+1) & (46)

∀α < IN
(
γ−(i+1) ≤ α ≤ P →Wα

i (P ) ∩ α†i = P ∩ α†i
)

W γ
i+1(X) :=

∪
{P ⊂ OT (IN ) ∩ IN : Dγ

i [P ;X]} (i < N) (47)

where γ−(N+1) := 0. Obviously Dγ
N [X;Y ] ⇔ Dδ

N [X;Z] for every γ, δ, Y, Z.
From Wγ

N (X) define

DN [X] :⇔ DN [X;X]

⇔ Wo[X] & ∀γ
(
γ ≤ X → Wγ

N (X) ∩ γ†N = X ∩ γ†N
)

WN+1 :=
∪

{X ⊂ OT (IN ) ∩ IN : DN [X]}

A set P is said to be an i-distinguished set for γ and X if Dγ
i [P ;X], and a set

X is an N -distinguished set if DN [X].

Observe that in SIN , Wα
0 (P ) as well as Dγ

0 [P ;X] are ∆1. Assuming that
Dγ
i [P ;X] is ∆i+1, Wγ

i+1(X) is Σi+1, and Dγ
i+1[P ;X] is ∆i+2. Hence DN [X]

is ∆N+1, and W = WN+1 is a Σ−
N+1-class. In SIN , each Wγ

i (X) is a set, i.e.,
∀γ ∈ OT (IN ) ∩ IN∀X ⊂ OT (IN )∃Y [Y = Wγ

i (X)] for 0 ≤ i ≤ N , and WN+1 is
a proper class.

Proposition 7.5 Let Dγ
0 [P ;X] and γ−1 ≤ α ∈ P . Then ∀β ≥ γ−1[α ∈

Cβ(P )].
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Proof. Let Dγ
0 [P ;X] and γ−1 ≤ α ∈ P . We obtain α ∈ P ∩α†0 =W (Cα(P ))∩

α†0 ⊂ Cα(P ) by (45) and (46). Hence ∀δ ≥ γ−1(δ ∈ P ⇒ δ ∈ Cδ(P )), and
α ∈ Cβ(P ) for any γ−1 ≤ β ≤ α by Proposition 7.2.1. Moreover for β > α we
have α ∈ P ∩ β ⊂ Cβ(P ). 2

Proposition 7.6 If P ∩ α = Q ∩ α, then Wα
i (P ) =Wα

i (Q).

Proof. For i > 0, this follows from (46) and α−i ≤ α. For i = 0, we obtain
Cα(P ) = Cα(Q) by P∩α = Q∩α. HenceWα

0 (P ) =W (Cα(P )) =W (Cα(Q)) =
Wα

0 (Q) by (45). 2

Lemma 7.7 α ≤ P &α ≤ Q⇒ P ∩ α†i = Q ∩ α†i if Dγ
i [P ;X] and Dγ

i [Q;X].

Proof. Suppose α ≤ P , α ≤ Q, Dγ
i [P ;X] andDγ

i [Q;X]. We have P∩γ−(i+1) =
X∩γ−(i+1) = Q∩γ−(i+1). We may assume that γ−(i+1) ≤ α since α†i ≤ γ−(i+1)

when α < γ−(i+1).
By (46) we obtain Wα

i (P ) ∩ α†i = P ∩ α†i and Wα
i (Q) ∩ α†i = Q ∩ α†i. We

obtain Wo[P ∪Q] by Wo[P ] and Wo[Q]. We show β ∈ P ∩Q by induction on
β ∈ (P ∪ Q) ∩ α†i. Let β ∈ (P ∪ Q) ∩ α†i and P ∩ β = Q ∩ β. If β < γ−(i+1),
then β ∈ P ∩Q by P ∩ γ−(i+1) = Q ∩ γ−(i+1). Let γ−(i+1) ≤ β.

If α ≤ β, then P∩α = Q∩α, and Wα
i (P )∩α†i = Wα

i (Q)∩α†i by Proposition
7.6. Hence β ∈ P ∩Q.

Let γ−(i+1) ≤ β < α. We obtainWβ
i (P )∩β†i = Wβ

i (Q)∩β†i by P∩β = Q∩β
and Proposition 7.6. By (46), β ≤ P and β ≤ Q, we obtain P ∩ β†i = Wβ

i (P )∩
β†i = Wβ

i (Q) ∩ β†i = Q ∩ β†i. Hence β ∈ P ∩Q. 2

Lemma 7.8 (Σ1
N+1-CA)

For each i ≤ N , ∀γ < IN∀X∃Y (Y =W γ
i (X)). Let γ < IN .

1. For i ≤ N , W γ
i (X) is a well order: Wo[W γ

i (X)].

2. For i < N , W γ
i+1(X) is the maximal i-distinguished set for γ and X if

X ∩ γ−(i+1) is a well order: Wo[X ∩ γ−(i+1)] ⇒ Dγ
i [W

γ
i+1(X);X]. In

particular W γ
i+1(X) ∩ γ−(i+1) = X ∩ γ−(i+1) holds.

Proof. 7.8.1. ClearlyW γ
0 (X) =W (Cγ(X)) is a well order. We showWo[W γ

i+1(X)].
Let {β < α} ⊂ W γ

i+1(X). Pick a P and a Q such that Dγ
i [P ;X], α ∈ P ,

Dγ
i [Q;X] and β ∈ Q by (47). Lemma 7.7 yields β ∈ Q ∩ β†i ⊂ P . We obtain

Wo[W γ
i+1(X) ∩ α] by Wo[P ].

7.8.2. Assuming that X ∩ γ−(i+1) is a well order, we see that X ∩ γ−(i+1) is
the minimal i-distinguished set for γ and X: Dγ

i [X ∩ γ−(i+1);X]. We obtain
W γ
i+1(X) ∩ γ−(i+1) = X ∩ γ−(i+1). Lemma 7.8.1 yields Wo[W γ

i+1(X)].

Let γ−(i+1) ≤ α ≤W γ
i+1(X). We showWα

i (W
γ
i+1(X))∩α†i =W γ

i+1(X)∩α†i.

Pick a P such that Dγ
i [P ;X] and α ≤ P . We obtain Wα

i (P ) ∩ α†i = P ∩ α†i ⊂
W γ
i+1(X) ∩ α†i by (46). Let Dγ

i [Q;X] and β ∈ Q ∩ α†i. Lemma 7.7 yields

β ∈ Q ∩ β†i = P ∩ β†i for β†i ≤ α†i.

71



Therefore we obtain Wα
i (P ) ∩ α†i = P ∩ α†i = W γ

i+1(X) ∩ α†i, a fortiori

P ∩ α = Wγ
i+1(X) ∩ α. Hence W γ

i+1(X) ∩ α†i = P ∩ α†i = Wα
i (P ) ∩ α†i =

Wα
i (W

γ
i+1(X)) ∩ α†i by Proposition 7.6. 2

Lemma 7.9 1. Let X and Y be N -distinguished sets, and γ < IN . Then
γ ≤ X & γ ≤ Y ⇒ X ∩ γ†N = Y ∩ γ†N .

2. WN+1 is the N -maximal distinguished class, i.e., DN [WN+1].

3. For a family {Yj}j∈J of N -distinguished sets, the union Y =
∪
j∈J Yj is

also an N -distinguished set.

Proof. 7.9.1 is seen as in Lemma 7.7. 7.9.2 and 7.9.3 follow from Lemma 7.9.1
as in Lemma 7.8. 2

Lemma 7.10 Let DN [X] and γ ∈ X ⊂ IN . Then for each 0 ≤ i ≤ N , γ ∈
W γ
i (X) ∩ γ†i = X ∩ γ†i and Dγ

i [X;X] holds. In particular γ ∈ Cγ(X).

Proof. By induction on N − i. We obtain γ ∈ W γ
N (X) ∩ γ†N = X ∩ γ†N

by DN [X] and γ ∈ X. Lemma 7.8 with Wo[X] yields Dγ
N−1[W

γ
N (X);X], and

Dγ
N−1[X;X] follows.

AssumingDγ
i+1[X;X], we obtainW γ

i+1(X)∩γ†(i+1) = X∩γ†(i+1) by γ−(i+1) ≤
γ ∈ X, and Dγ

i [W
γ
i+1(X);X] by Lemma 7.8. Hence Dγ

i [X;X] and γ ∈W γ
i (X)∩

γ†i = X ∩ γ†i . 2

Proposition 7.11 Let DN [X], α ≤ γ ∈ X and α ∈ Cγ(X). Then α ∈ X.

Proof. Lemma 7.10 yields γ ∈ W (Cγ(X)) ∩ γ†0 = W γ
0 (X) ∩ γ†0 = X ∩ γ†0.

γ ≥ α ∈ Cγ(X) yields α ∈W γ
0 (X) ∩ γ†0 = X ∩ γ†0. 2

Proposition 7.12 Let DN [X] and α, β < IN .

1. Let {α, β} ⊂ X with α+ β = α#β and α > 0. Then γ = α+ β ∈ X.

2. If {α, β} ⊂ X, then φαβ ∈ X.

Proof. Proposition 7.12.2 is seen by main induction on α ∈ X with subsidiary
induction on β ∈ X using Proposition 7.12.1. We show Proposition 7.12.1. By
Lemma 7.10 we obtain α ∈ X ∩ α†0 = Wα

0 (X) ∩ α†0. We see that α + β ∈
Wα

0 (X) =W (Cα(X)) by induction on β ∈ X ∩ (α+ 1) ⊂ Cα(X). 2

Lemma 7.13 1. CIN (WN+1) ∩ IN = WN+1 ∩ IN =W (CIN (WN+1)) ∩ IN .

2. (BI) For each n < ω, TI[CIN (WN+1)∩ωn(IN +1)], i.e., for each class X ,
Prg[CIN (WN+1),X ] → CIN (WN+1) ∩ ωn(IN + 1) ⊂ X .

3. For each n < ω, CIN (WN+1) ∩ ωn(IN + 1) ⊂W (CIN (WN+1)). In partic-
ular {IN , ωn(IN + 1)} ⊂W (CIN (WN+1)).
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Proof. 7.13.1. α ∈ CIN (WN+1) ∩ IN ⇒ α ∈ WN+1 is seen by induction on
ℓα using Proposition 7.12 and Lemma 7.9.2. Since WN+1 is well-founded, we
obtain CIN (WN+1) ∩ IN =W (CIN (WN+1)) ∩ IN .
7.13.2. We show TI[CIN (WN+1)∩ωn(IN +1)] by metainduction on n < ω. Let
DN [Y ]. We obtain Wo[Y ], and TI[Y ] follows from (BI). We have CIN (WN+1)∩
IN = WN+1 ∩ IN , and WN+1 ∩ γ†N = Y ∩ γ†N for γ ∈ Y ∩ IN by Lemma 7.9.1.
We obtain TI[WN+1 ∩ IN ], from which TI[CIN (WN+1) ∩ (IN + 1)] follows.

Assuming TI[CIN (WN+1) ∩ ωn(IN + 1)], TI[CIN (WN+1) ∩ ωn+1(IN + 1)] is
seen from the fact that Prg[CIN (WN+1), A] → Prg[CIN (WN+1), j[A]], where for
a given formula A, j[A](α) denotes the formula
∀β ∈ CIN (WN+1)

[
∀γ ∈ CIN (WN+1) ∩ β A(γ) → ∀γ ∈ CIN (WN+1) ∩ (β + ωα)A(γ)

]
.

2

7.2 Sets GX

In this subsection we establish a key fact, Lemma 7.25 on distinguished sets.

Definition 7.14 GX := {α ∈ OT (IN ) ∩ IN : α ∈ Cα(X)&Cα(X) ∩ α ⊂ X}.

Proposition 7.15 Let DN [X] and α ∈ X. Then α ∈ GX .

Proof. By Lemma 7.10 we obtain α ∈ Wα
0 (X) = W (Cα(X)). Hence α ∈

Cα(X). On the other side Proposition 7.11 yields Cα(X) ∩ α ⊂ X. 2

Lemma 7.16 (Σ1
N+1-CA)

Suppose DN [Y ] and α ∈ GY . Let PN = Wα
N (Y ) ∩ α†N . Assume that the

following condition (48) is fulfilled. Then α ∈ PN and DN [PN ]. In particular
α ∈ WN+1 holds.

Moreover if there exists a set Z and an ordinal γ such that Y =W γ
N (Z) and

α−N = γ−N , then α ∈ Y holds.

∀β ≥ α−1
(
Y ∩ α†1 < β&β†0 < α†0 →W β

0 (Y ) ∩ β†0 ⊂ Y
)

(48)

Proof. If Y = W γ
N (Z) with α−N = γ−N , then Y ∩ α−N = Z ∩ α−N and

W γ
N (Z) =Wα

N (Y ). Hence if α ∈Wα
N (Y ), then α ∈ Y .

Lemma 7.8.2 yields

∀i < N
[
W β
i+1(Y ) ∩ β†(i+1) = Y ∩ β†(i+1)

]
(49)

Let Pi = Wα
i (Y ) ∩ α†i for 0 ≤ i ≤ N . By Cα(Y ) ∩ α ⊂ Y and Wo[Y ] we

obtain for P0 =W (Cα(Y )) ∩ α†0

P0 ∩ α = Y ∩ α = Cα(Y ) ∩ α (50)

Hence α ∈ P0. On the other hand we have Dα
i−1[W

α
i (Y );Y ] for i > 0. This

together with (50) yields for 0 ≤ i ≤ N

Pi ∩ α−i = Y ∩ α−i (51)
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Claim 7.17 α†0 = γ†0 & γ ∈ P0 ⇒ γ ∈ Cγ(P0).

Proof of Claim 7.17. Let α†0 = γ†0 and γ ∈ P0 = W (Cα(Y )) ∩ α†0. We
obtain γ ∈ Cα(Y ) = Cγ(Y ) by Propositions 7.15 and 7.2. Hence Y ∩ γ ⊂
Cγ(Y )∩γ = Cα(Y )∩γ. γ ∈W (Cα(Y )) yields Y ∩γ ⊂ P0. Therefore we obtain
γ ∈ Cγ(Y ) ⊂ Cγ(P0). 2 of Claim 7.17.

Claim 7.18 Dα
i [Pi;Y ] and α ∈ Pi+1 for each 0 ≤ i < N .

Proof of Claim 7.18. ObviouslyWo[Pi]. (51) yields Pi∩α−(i+1) = Y ∩α−(i+1).

Let α−(i+1) ≤ β ≤ Pi. We show W β
i (Pi) ∩ β†i = Pi ∩ β†i.

Case 1. β†i = α†i: First let i = 0. We obtain Cβ(P0) = Cα(P0) by Proposition
7.2 and Claim 7.17. Hence the assertion follows from (50).

Next let i > 0. (51) with β−i = α−i yields W β
i (Pi) =Wα

i (Pi) =Wα
i (Y ).

Case 2. β†i < α†i: For i > 0, (49) yields W β
i (Y ) ∩ β†i = Y ∩ β†i. We obtain

W β
i (Pi) ∩ β†i =W β

i (Y ) ∩ β†i = Y ∩ β†i = Pi ∩ β†i by (51).
Let i = 0. We have β†0 ≤ α−0. First let Y ∩ α†1 < β. Then the assumption

(48) with α−1 ≤ β yields W β
0 (Y ) ∩ β†0 ⊂ Y . We obtain W β

0 (P0) ∩ β†0 =

W β
0 (Y )∩β†0 ⊂ Y ∩β†0 = P0∩β†0 by (50). It remains to show Y ∩β†0 ⊂W β

0 (Y ).
Let γ ∈ Y ∩ β†0. We obtain γ ∈ W γ

0 (Y ) by Lemma 7.10. On the other hand
we have Cβ(Y ) ⊂ Cγ(Y ) by Propositions 7.15 and 7.2. Moreover (50) with

Propositions 7.15 and 7.2 yields γ ∈ Cα(Y ) ⊂ Cβ(Y ). Hence γ ∈W β
0 (Y ).

Next let β ≤ Y ∩ α†1. We obtain Y ∩ β†1 = Wβ
1 (Y ) ∩ β†1, and β−1 =

α−1 ≤ β < α†1 = β†1 with β < β†0 ≤ α < β†1. On the other hand we have
Dβ

0 [W
β
1 (Y );Y ] by Lemma 7.8. Therefore P0 ∩ β†0 = Y ∩ β†0 = Wβ

1 (Y ) ∩ β†0 =

W β
0 (W

β
1 (Y )) ∩ β†0 =W β

0 (P0) ∩ β†0 by (50).
Thus Dα

i [Pi;Y ] is shown. From α ∈ P0 we see by induction on i < N that
α ∈ Pi ∩ α†(i+1) ⊂ Wα

i+1(Y ) ∩ α†(i+1) = Pi+1 for the maximal i-distinguished
set Wα

i+1(Y ) for α and Y . 2 of Claim 7.18.

Claim 7.19 DN [PN ].

Proof of Claim 7.19. Let β ≤ PN = Wα
N (Y ) ∩ α†N . Then β < α†N , and

β−N ≤ α−N < α†N . We show W β
N (Wα

N (Y )) ∩ β†N =Wα
N (Y ) ∩ β†N .

Case 1. α−N ≤ β: ByWα
N (Y )∩α−N = Y ∩α−N withWo[Y ], and α−N = β−N

we obtain Wα
N (Y ) =Wα

N (Wα
N (Y )) =W β

N (Wα
N (Y )).

Case 2. β < α−N and β−N ≤ Y : We obtain β†N ≤ α−N . Hence Wα
N (Y ) ∩

β†N = Y ∩ β†N =W β
N (Y )∩ β†N by DN [Y ]. Therefore W β

N (Y ) =W β
N (Wα

N (Y )).

We obtain Wα
N (Y ) ∩ β†N =W β

N (Wα
N (Y )) ∩ β†N .

Case 3. β < α−N and Y < β−N : Then β†N ≤ α−N . (49) yields Y ∩ β†N =

W β
N (Y )∩β†N . On the other hand we have Y ∩β†N =Wα

N (Y )∩β†N andW β
N (Y )∩

β†N =W β
N (Wα

N (Y )) ∩ β†N . Therefore W β
N (Wα

N (Y )) ∩ β†N =Wα
N (Y ) ∩ β†N .

2 of Claim 7.19.
This completes a proof of Lemma 7.16. 2
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Lemma 7.20 Assume DN [Y ], IN > S ∈ Y ∩ (Stk ∪ {0}) and {0,Ω} ⊂ Y for
0 < k ≤ N . Then S†k ∈ WN+1.

Proof. Let us verify the condition (48) in Lemma 7.16 for α = S†k. Let α−1 ≤
β. We have α = α−1 ≤ β. Hence α†0 ≤ β†0, and (48) is vacuously fulfilled.

Thus it suffices to show that α = S†k ∈ GY . α ∈ Cα(Y ) follows from
S ∈ Y ∩ α, cf. Definition 7.1.6. We show γ ∈ Cα(Y ) ∩ α ⇒ γ ∈ Y by induction
on ℓγ. By Proposition 7.12 and the assumption {0,Ω} ⊂ Y , we can assume
S ̸= γ = ψfσ(a) < α = S†k < σ, cf. Definition 7.1.6. Suppose S < γ. Then
S ∈ Ha(γ), and α = S†k ∈ Ha(γ) ∩ σ ⊂ γ. We obtain γ < S. Lemma 7.10 with
S ∈ Y and DN [Y ] yields S ∈ W S

0 (Y ) ∩ S†0 = Y ∩ S†0 for W S
0 (Y ) = W (CS(Y )),

where ∀δ[δ ∈ Y ⇒ δ ∈ Cδ(Y )]. We obtain γ ∈ CS(Y ) by γ ∈ Cα(Y ), S < α and
Proposition 7.2.1. Hence γ ∈W S

0 (Y ) ∩ S†0 ⊂ Y follows. Therefore α ∈ GY . 2

Proposition 7.21 {0,Ω} ⊂ WN+1.

Proof. For each α ∈ {0,Ω} and any set Y ⊂ OT (IN ) we have α ∈ Cα(Y ).
First let α = 0. We obtain C0(∅) ∩ α ⊂ ∅, and 0 ∈ G∅. Moreover DN [∅], and
there is no β such that β†0 < α†0 since α†0 = Ω is the least in SSt0. Hence the
condition (48) is fulfilled, and we obtain 0 ∈ X =W 0

N (∅) ∩ 0†N with DN [X] by
Lemma 7.16.

Next let α = Ω. Let γ ∈ Cα(X) ∩ α. We show that γ ∈ X by induction on
ℓγ as follows. We see that each strongly critical number γ ∈ Cα(X) ∩ α is in
X from Definition 7.1. Otherwise γ ∈ X is seen from IH using Proposition 7.12
and 0 ∈ X. Therefore we obtain α ∈ GX .

Let β†0 < α†0. Then β†0 = Ω and β < Ω. Let γ ∈ W β
0 (X) ∩ Ω. We

show γ ∈ X. We obtain D0
0[X;X] by Lemma 7.10, and γ ∈ W β

0 (X) ∩ Ω =
W 0

0 (X) ∩ Ω = X ∩ Ω. Hence the condition (48) is fulfilled, and we obtain
Ω ∈ WN+1 by Lemma 7.16. 2

Lemma 7.22 (Σ1
N+2-DC)

If α ∈ GWN+1 , then there exists an N -distinguished set Z such that {0,Ω} ⊂ Z,
α ∈ GZ and ∀k∀S ∈ Z ∩ (Stk ∪ {Ω})[S†k ∈ Z].

Proof. Let α ∈ GWN+1 . We have α ∈ Cα(WN+1). Pick an N -distinguished set
X0 such that α ∈ Cα(X0). We can assume {0,Ω} ⊂ X0 by Proposition 7.21.
On the other hand we have Cα(WN+1)∩α ⊂ WN+1 and ∀k∀S ∈ WN+1∩ (Stk∪
{Ω})[S†k ∈ WN+1] by Lemma 7.20. We obtain

∀n∀X∃Y {DN [X] → DN [Y ]

∧ ∀β ∈ OT (IN ) (ℓ(β) ≤ n ∧ β ∈ Cα(X) ∩ α→ β ∈ Y )

∧ ∀k∀S ∈ (Stk ∪ {Ω})
(
ℓ(S) ≤ n ∧ S ∈ X → S†k ∈ Y

)
}

Since DN [X] is ∆1
N+2, Σ

1
N+2-DC yields a set Z such that Z0 = X0 and

∀n{DN [Zn] → DN [Zn+1]

∧ ∀β ∈ OT (IN ) (ℓ(β) ≤ n ∧ β ∈ Cα(Zn) ∩ α→ β ∈ Zn+1)

∧ ∀k∀S ∈ (Stk ∪ {Ω})
(
ℓ(S) ≤ n ∧ S ∈ Zn → S†k ∈ Zn+1

)
}
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Let Z =
∪
n Zn. We see by induction on n that DN [Zn] for every n. Lemma

7.9.3 yields DN [Z]. Let β ∈ Cα(Z) ∩ α. Pick an n such that β ∈ Cα(Zn)
and ℓβ ≤ n. We obtain β ∈ Zn+1 ⊂ Z. Therefore α ∈ GZ . Furthermore let
S ∈ Z ∩ (Stk ∪ {Ω}). Pick an n such that S ∈ Zn and ℓ(S) ≤ n. We obtain
S†k ∈ Zn+1 ⊂ Z. 2

Proposition 7.23 Let DN [Y ] and α ∈ Cβ(Y ). Assume Y ∩ β < δ. Then
Fδ(α) ⊂ Cβ(Y ).

Proof. By induction on ℓα. Let {0,Ω, IN} ̸∋ α ∈ Cβ(Y ). We have E(α) ≤ α
First consider the case α ̸∈ E(α). If α ∈ Y ∩ β ⊂ GY by Proposition 7.15,
then E(α) ⊂ Cα(Y ) ∩ α ⊂ Y ⊂ Cβ(Y ) by Proposition 7.5. Otherwise we have
α ̸∈ E(α) ⊂ Cβ(Y ). In each case IH yields Fδ(α) = Fδ(E(α)) ⊂ Cβ(Y ).

Let α = ψfπ(a) for some π, f, a. If α < δ, then Fδ(α) = {α}, and there is
nothing to prove. Let α ≥ δ. Then Fδ(α) = Fδ({π, a} ∪ SC(f)). On the other
side we see {π, a} ∪ SC(f) ⊂ Cβ(Y ) from α ∈ Cβ(Y ) and the assumption. IH
yields Fδ(α) ⊂ Cβ(Y ).

Finally let α ∈ N(ρ). Then Fδ(α) = Fδ(ρ). If ρ ∈ Cβ(Y ), then IH yields
Fδ(ρ) ⊂ Cβ(Y ). Otherwise we have α ∈ Y , and α ∈ Cα(Y ). Hence ρ ∈
Cα(Y ) ∩ α ⊂ Y ⊂ Cβ(Y ). 2

Proposition 7.24 Let γ < β. Assume α ∈ Cγ(Y ) and Gβ(α) < γ. Moreover
assume ∀δ[ℓδ ≤ ℓα& δ ∈ Cγ(Y ) ∩ γ ⇒ δ ∈ Cβ(Y )]. Then α ∈ Cβ(Y ).

Proof. By induction on ℓα. If α < γ, then α ∈ Cγ(Y ) ∩ γ. The third assump-
tion yields α ∈ Cβ(Y ). Assume α ≥ γ. Consider the case α = ψfπ(a) for some
{π, a} ∪ SC(f) ⊂ Cγ(Y ) and π > γ. If π ≤ β, then {α} = Gβ(α) < γ by the
second assumption. Hence this is not the case, and we obtain π > β. Then
Gβ({π, a} ∪ SC(f)) = Gβ(α) < γ. IH yields {π, a} ∪ SC(f) ⊂ Cβ(Y ). We
conclude α ∈ Cβ(Y ) from π > β.

Next let γ ≤ α ∈ N(ρ) with ρ ∈ Cγ(Y ). If α < β, then {α} = Gβ(α) < γ,
and this is not the case. Let α ≥ β. Then Gβ(α) = Gβ(ρ). IH yields ρ ∈ Cβ(Y ),
and α ∈ Cβ(Y ) by α ≥ β. 2

The following Lemma 7.25 is a key result on distinguished classes.

Lemma 7.25 Suppose DN [Y ] with {0,Ω} ⊂ Y and ∀k∀U ∈ Y ∩(Stk∪{Ω})[U†k ∈
Y ]. For η ∈ ΨIN ∪

∪
S∈SSt L(S), cf. Definition 6.12,

η ∈ GY (52)

R(η) ∩ {γ ∈ OT (IN ) ∩ IN : Y ∩ η†1 < γ} ∩ GY ⊂ Y (53)

and
∀T ∈ {Ω} ∪ (LSt ∩Ψ)∀k⃗(η ∈ L(T†k⃗) ⇒ T ∈ Y ) (54)

Then η ∈ WN+1. Moreover if there exists a set Z and an ordinal γ such that
Y =W γ

N (Z) and η−N = γ−N , then η ∈ Y holds.
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Proof. By Lemma 7.16 and the hypothesis (52) it suffices to show (48)

∀β ≥ η−1
(
Y ∩ η†1 < β&β†0 < η†0 →W β

0 (Y ) ∩ β†0 ⊂ Y
)
.

Assume Y ∩ η†1 < β and β†0 < η†0. We have to show W β
0 (Y ) ∩ β†0 ⊂ Y . We

prove this by induction on γ ∈W β
0 (Y ) ∩ β†0. Suppose γ ∈ Cβ(Y ) ∩ β†0 and

MIH : Cβ(Y ) ∩ γ ⊂ Y.

We show γ ∈ Y . We can assume that

Y ∩ η†1 < γ (55)

since if γ ≤ δ for some δ ∈ Y ∩ η†1, then by Y ∩ η†1 < β and γ ∈ Cβ(Y ) we
obtain δ < β, γ ∈ Cδ(Y ) and δ ∈ W (Cδ(Y )) ∩ δ†0 = Y ∩ δ†0 by Lemma 7.10.
Hence γ ∈W (Cδ(Y )) ∩ δ†0 ⊂ Y .

Moreover we can assume γ ̸∈ (Reg0 \ {Ω, IN}) ∩ β with Reg0 = (Reg \ Ψ).
For otherwise γ ∈ Y by Definition 7.1.6 and γ ∈ Cβ(Y ) ∩ β.

We show first
γ ∈ GY (56)

First γ ∈ Cγ(Y ) by γ ∈ Cβ(Y ) ∩ β†0 and Proposition 7.2. Second we show the
following claim by induction on ℓα:

α ∈ Cγ(Y ) ∩ γ ⇒ α ∈ Y (57)

Proof of (57). Assume α ∈ Cγ(Y ) ∩ γ. We can assume γ†0 ≤ β for otherwise
we have α ∈ Cγ(Y ) ∩ γ = Cβ(Y ) ∩ γ ⊂ Y by MIH.

By induction hypothesis on lengths, Proposition 7.12, and {0,Ω} ⊂ Y , we
can assume that α = ψfπ(a) for some π > γ such that {π, a} ∪ SC(f) ⊂ Cγ(Y ).
Case 1. β < π: Then Gβ({π, a} ∪ SC(f)) = Gβ(α) < α < γ by Proposition
6.19.1. Proposition 7.24 with induction hypothesis on lengths yields {π, a} ∪
SC(f) ⊂ Cβ(Y ). Hence α ∈ Cβ(Y ) ∩ γ by π > β. MIH yields α ∈ Y .
Case 2. β ≥ π: We have α < γ < π ≤ β. It suffices to show that α ≤ Y ∩ η†1.
Then by (55) we have α ≤ δ ∈ Y ∩ η†1 for some δ < γ. Cδ(Y ) ∋ α ≤ δ ∈
Y ∩ δ†0 =W (Cδ(Y )) ∩ δ†0 yields α ∈W (Cδ(Y )) ∩ δ†0 ⊂ Y .

Consider first the case γ ̸∈ E(γ). By α = ψfπ(a) < γ < π, we can assume
that γ ̸∈ {0,Ω, IN}. Then let δ = maxS(γ) denote the largest immediate
subterm of γ. Then δ ∈ Cγ(Y ) ∩ γ, and by (55), Y ∩ η†1 < γ ∈ Cβ(Y ) we have
δ ∈ Cβ(Y ) ∩ γ. Hence δ ∈ Y ∩ η†1 by MIH. Also by α < γ, we obtain α ≤ δ,
i.e., α ≤ Y ∩ η†1, and we are done.

Next let γ ̸∈ (Reg0 \ {Ω, IN}) and γ ∈ E(γ). This means that γ ∈ Ψ.
Let γ = ψgκ(b) for some b, g and κ > β by (55) and γ ∈ Cβ(Y ). We have
α < γ < π ≤ β < κ. Let π ⪯ ρ and κ ⪯ τ with {ρ, τ} ⊂ Reg0. We obtain ρ = τ
by Proposition 3.39.

π ̸∈ Hb(γ) since otherwise by π < κ we would have π < γ. Then by
Proposition 3.27 we have a ≥ b and SC(g) ∪ {κ, b} ̸⊂ Ha(α). On the other
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hand we have Kγ(SC(g) ∪ {κ, b}) < b ≤ a, i.e., SC(g) ∪ {κ, b} ⊂ Ha(γ). By
Proposition 6.20 pick a δ ∈ Fγ(SC(g) ∪ {κ, b}) such that Ha(α) ̸∋ δ ∈ γ. In
particular δ < γ. Also we have SC(g)∪{κ, b} ⊂ Cβ(Y ), Y ⊂ GY by Proposition
7.15, and Y ∩η†1 < γ by (55). Therefore by Proposition 7.23 with MIH we obtain
α ≤ δ ∈ Cβ(Y ) ∩ γ ⊂ Y .

2 of (57) and (56).

Hence we obtain γ ∈ GY . We have γ < β†0 ≤ η and γ ∈ Cγ(Y ). If γ ∈ R(η),
then the hypothesis (53) yields γ ∈ Y . In what follows assume γ ̸∈ R(η).

If Gη(γ) < γ, then Proposition 7.24 yields γ ∈ Cη(Y ) ∩ η ⊂ Y by η ∈ GY .
In what follows suppose Gη(γ) = {γ}. This means γ ∈ Ψ by γ ̸∈ (Reg0 \

{Ω, IN}), and γ ≺ τ for a τ < η by γ ̸≺ η and Definition 6.17.3. If η ≺ IN , then
γ ≺ IN by γ ̸∈ R(η). Hence this is not the case.

Let η ∈ L(T†k⃗) with T ∈ {Ω} ∪ (LSt ∩ Ψ). By (54) we obtain T ∈ Y . On

the other hand we have Y ∩ η†1 < γ by (55), and T†⃗i ∈ Y since Y is closed

under U 7→ U†i. Hence T†⃗i < γ as long as T†⃗i < η. We obtain γ ∈ L(T†k⃗) by
Definition 3.35.4.

Let τ be maximal such that γ ≺ τ < η. We obtain τ ∈ Ψ by γ ∈ L(T†k⃗)\R(η)
and Proposition 6.13. From γ ∈ Cγ(Y ) we see τ ∈ Cγ(Y ).

Next we show that
Gη(τ) < γ (58)

Let τ = ψfκ(b) and γ ⪯ γ1 = ψgτ (a1). Then η < κ by the maximality of τ , and
Gη(τ) = Gη({κ, b} ∪ SC(f)) < τ by Proposition 6.19.1. On the other hand we
have τ ∈ Ha1(γ1). Proposition 6.19.2 yields Gη(τ) ⊂ Ha1(γ1) ∩ τ ⊂ γ1. We see
Gη(τ) < γ inductively.

(58) is shown. Proposition 7.24 yields τ ∈ Cη(Y ), and τ ∈ Cη(Y ) ∩ η ⊂ Y
by η ∈ GY . Therefore Y ∩ η†1 < γ < τ ∈ Y . This is not the case by (55). We
are done. 2

Proposition 7.26 For α1 = ψIN (a), α1 ∈ GWN+1 ⇒ α1 ∈ WN+1.

Proof. Let α1 ∈ GWN+1 . By Lemma 7.22 pick an N -distinguished set Z such
that {0,Ω} ⊂ Z, α1 ∈ GZ and ∀k∀S ∈ Z ∩ (Stk ∪ {Ω})[S†k ∈ Z].

Claim 7.27 Let SSt ∋ T < α1 and γ ∈ GZ ∩ L(T) ∩Ψ. Then γ < Z ∩ α1.

Proof of Claim 7.27. Let ρ ≺ S†k⃗ = T < α1 for an S ∈ LSt ∪ {Ω} and a k⃗ ̸= ∅.
First let γ = ρ. We obtain T ∈ Cγ(Z) by γ ∈ Cγ(Z), and S ∈ Cγ(Z)∩γ ⊂ Z.

Hence γ < T = S†k⃗ ∈ Z ∩ α1 since Z is closed under U 7→ U†i.
Second let γ ≺R κ ∈ N(ρ) for a κ. We show ρ ∈ Z by induction on ℓγ.

First let γ = ψIN [σ](b) for some b and σ ⪯R κ. Then we obtain IN [σ] ∈ Cγ(Z)
by γ ∈ Cγ(Z), and σ ∈ Cγ(Z) ∩ γ ⊂ Z. Proposition 7.15 yields σ ∈ GZ . If
σ = κ = IN [ρ], then σ ∈ Cσ(Z) yields ρ ∈ Cσ(Z) ∩ σ ⊂ Z. Otherwise IH

yields ρ ∈ Z. Second let γ = ψf
σ†⃗i(b) ∈ Cγ(Z) for some f , b and σ†⃗i ⪯R κ. We

obtain σ ∈ Cγ(Z) ∩ γ ⊂ Z, and σ ∈ GZ . We obtain σ ≺R κ. IH yields ρ ∈ Z.
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Third let γ = ψfτ (a) with τ = W†⃗j [σ/W]. We obtain γ < τ ∈ Cγ(Z), and

σ ∈ Cγ(Z) ∩ γ. Hence σ ∈ GZ . If τ = W†⃗j [σ/W] = U†⃗i[ρ/S], then σ ∈ Cσ(Z)
yields ρ ∈ Cσ(Z) ∩ σ ⊂ Z. Otherwise IH yields ρ ∈ Z.

Now ρ ∈ Z yields ρ ∈ Cρ(Z), and this yields S ∈ Cρ(Z) ∩ ρ ⊂ Z. Since Z is

closed under U 7→ U†i, we obtain γ < S†k⃗ ∈ Z ∩ α1. 2 of Claim 7.27.

Since there is no γ ≺ α1, if γ ∈ R(α1), then γ ∈ L(T)∩Ψ for a SSt ∋ T < α1

by Definition 6.12.1. Also α1 ̸∈ LmS) for any S ∈ SSt, and we have (53) by
Claim 7.27. We conclude α1 ∈ WN+1 by Lemma 7.25. 2

Lemma 7.28 For each n < ω, the following holds:
Let a ∈ CIN (WN+1) ∩ ωn(IN + 1). Then ψIN (a) ∈ WN+1 holds.

Proof. For each n < ω, we have TI[CIN (WN+1) ∩ (ωn(IN + 1))] by Lemma
7.13.2. We show the lemma by induction on a ∈ CIN (WN+1) ∩ ωn(IN + 1).
Assume

IH :⇔ ∀b ∈ CIN (WN+1) ∩ a (ψIN (b) ∈ OT (IN ) ⇒ ψIN (b) ∈ WN+1) .

Let α1 = ψIN (a) ∈ OT (IN ) with a ∈ CIN (WN+1) ∩ ωn(IN + 1). By Proposition
7.26 it suffices to show α1 ∈ GWN+1 .

From a ∈ CIN (WN+1) with α1 < IN we see α1 ∈ Cα1(WN+1). It suffices to
show the following (59) by induction on ℓβ1.

∀β1 ∈ Cα1(WN+1) ∩ α1[β1 ∈ WN+1]. (59)

Proof of (59). Assume β1 ∈ Cα1(WN+1) ∩ α1 and let

LIH :⇔ ∀γ ∈ Cα1(WN+1) ∩ α1[ℓγ < ℓβ1 ⇒ γ ∈ WN+1].

We show β1 ∈ WN+1. We can assume β1 ̸∈ {0,Ω} by Proposition 7.21.
Case 1. β1 ̸∈ E(β1): Assume β1 ̸∈ WN+1. Then β1 ̸∈ N(ρ) for any ρ by
β1 ∈ Cα1(WN+1) ∩ α1 and Definition 7.1. We obtain S(β1) ⊂ Cα1(WN+1) ∩ α1.
LIH yields S(β1) ⊂ WN+1. Hence we conclude β1 ∈ WN+1 from Proposition
7.12.
Case 2. In what follows consider the cases when β1 = ψgπ(b) for some π, b, g. We
can assume π > α1. Then we see π = IN and β1 = ψIN (b) with b ∈ Cα1(WN+1).
We obtain b < a by Proposition 3.17.1, and b ∈ Hb(β1). By IH it suffices to
show b ∈ CIN (WN+1).

By induction on ℓc we see that c ∈ Hb(β1) ⇒ GIN (c) < β1. For example let

c = γ †⃗i1 with γ1 ∈ LStN ∪ {Ω} and i⃗ ̸= ∅. Suppose c > β1. Then γ1 ∈ Hb(β1).
The induction hypothesis on ℓc yields {γ1} = GIN (γ1) < β1 ∈ LStN , and hence
{c} = GIN (c) < β1.

In particular we obtain GIN (b) < β1. Proposition 7.24 with LIH yields
b ∈ CIN (WN+1). This shows (59). 2
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7.3 Layers of stable ordinals

In this subsection we examine ordinals in layers L(S) = {α ∈ OT (IN ) : α ≺R
S} for S ∈ SSt. We show that there is no infinite descending chain in L(S),
cf. Lemma 7.32. Here we need the condition (12) and the fact that α ∈ Mρ if
α is in the domain of the Mostowski collapsing α 7→ α[ρ/S], cf. Definition 3.33
and Proposition 7.31.

Let k(ψfκ(a)) = {κ, a} ∪ SC(f) and h(ψfκ(a)) = {a, g∗0(ψfκ(a))}.

Proposition 7.29 Let Z be an N -distinguished set such that {0,Ω} ⊂ Z and
∀k∀S ∈ Z ∩ (Stk ∪ {Ω})[S†k ∈ Z]. Assume ψIN (b) ∈ Z, and let

MIH(b;Z) :⇔ ∀T ∈ (St ∪ {Ω}) ∩ Z∀k∀γ ∈ L(T†k) ∩Ψ[
k(γ) ⊂ CIN (Z)& h(γ) ⊂ CIN (Z) ∩ b⇒ {γ} ∪N(γ) ⊂ Z

]
.

Then for any Θ ⊂ Z, Hb(Θ) ⊂ CIN (Z) holds.

Proof. Let Θ ⊂ Z. Assuming γ ∈ Hb(Θ), we show γ ∈ CIN (Z) by induction
on ℓγ. Let γ ̸∈ Θ. By IH and Proposition 7.12, we can assume γ ∈ Ψ ∪ (Reg0 \
{Ω, IN}).
Case 1. γ = ψfκ(a) with k(γ) ⊂ Hb(Θ): We show {γ} ∪ N(γ) ⊂ Z. IH yields
{κ, a} ⊂ k(γ) ⊂ CIN (Z).
Case 1.1. κ = IN : Then we obtain f = ∅ and γ = ψIN (a) < ψIN (b) = δ ∈ Z
and N(γ) = ∅. a ∈ CIN (Z) ⊂ Cδ(Z) yields γ ∈ Cδ(Z) ∩ δ ⊂ Z.
Case 1.2. κ < IN : Let γ ∈ L(S) with S = T†k and T ∈ St ∪ {Ω}. We claim
that T ∈ Z and h(γ) ⊂ CIN (Z) ∩ b. We have κ ∈ CIN (Z) ∩ IN ⊂ Z. We obtain
κ ∈ GZ . Let ρ ≺ S be such that either ρ = κ or κ ≺R σ ∈ N(ρ). In the latter
case we obtain ρ ∈ Cκ(Z) ∩ κ ⊂ Z. We obtain ρ ∈ Z and ρ ∈ GZ , from which
we see S ∈ Cρ(Z) and T ∈ Cρ(Z) ∩ ρ ⊂ Z.

On the other, IH yields a ∈ CIN (Z) ∩ b. We show g∗0(γ) ∈ CIN (Z) ∩ b.
Case 1.2.1. γ ≺ S: Then g∗0(γ) = pS(γ0) for γ ⪯ γ0 = ψgS(c). IH with
pS(γ0) ∈ Hb(Θ) yields pS(γ0) ∈ CIN (Z). On the other hand we have pS(γ0) < b
by γ0 ∈ Hb(Θ).
Case 1.2.2. ρ ≺ S and γ ≺R σ ∈ N(ρ) for some ρ and σ: Then g∗0(γ) = g∗0(ρ).
We obtain ρ ∈ Hb(Θ). From Case 1.2.1 with IH we see g∗0(ρ) ∈ CIN (Z) ∩ b.

Therefore MIH(b;Z) yields {γ} ∪N(γ) ⊂ Z.
Case 2. γ ∈ N(γ1) for a γ1 ∈ Ψ: Then γ1 ∈ Hb(Θ), and Case 1 yields
γ ∈ N(γ1) ⊂ Z. 2

Proposition 7.30 1. Let γ1 = γ[ρ/S]−1 be the Mostowski uncollapsing, and
{S, γ} ⊂ Cρ(Z). Then γ1 ∈ Cρ(Z).

2. γ ∈ Hb(ρ) ∩ Cρ(Z) ⇒ γ ∈ Hb(C
ρ(Z) ∩ ρ).

Proof. Each is seen by induction on ℓγ. For Proposition 7.30.1, use the fact
γ1 = γ[ρ/S]−1 ≥ γ. 2
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Proposition 7.31 Let S ∈ SSt, η ∈ L(S) and Z be an N -distinguished set such
that {0,Ω} ⊂ Z, ∀k∀S ∈ Z ∩ (Stk ∪{Ω})[S†k ∈ Z]. Assume η ∈ GZ , ψIN (b) ∈ Z
and MIH(b;Z) in Proposition 7.29 for a b ≥ g∗0(η). Then the following holds.

1. g0(η) ∈ CIN (Z).

2. g1(η) ∈ CIN (Z).

3. g2(η) ∈ CIN (Z).

Proof. Proposition 7.31.2 is seen from Proposition 7.31.1 by induction on ℓη
as follows. Let η > ρ ∈ L(S) ∩ Ψ be in the trail to η. We see g∗0(ρ) = g∗0(η)
from Definition 6.7. Moreover we see ρ ∈ Cη(Z) ∩ η ⊂ Z from η ∈ GZ . In
particular ρ ∈ GZ . By IH we obtain g0(ρ) ∈ CIN (Z). On the other side, we see
g1(η) ∈ CIN (Z) if g0(ρ) ∈ CIN (Z) for every η > ρ ∈ L(S) ∩ Ψ in the trail to η
from Definition 6.14.
7.31.1. Let η ∈ Ψ.
Case 1. η = ρ or η = ψIN [ρ](c) for a ρ ≺ S and a c: Then p0(ρ) ≤ g0(ρ) =

g0(η) = g∗0(η) ≤ b. We show pS(ρ) = g0(ρ) ∈ CIN (Z). By (12) in Definition
3.31.6 we have p0(ρ) ∈ Hb(ρ), and pS(ρ) ∈ Hb(ρ). On the other hand we have
ρ ∈ GZ . We obtain pS(ρ) ∈ Cρ(Z) by ρ ∈ Cρ(Z), and pS(ρ) ∈ Hb(Cρ(Z) ∩ ρ)
by Proposition 7.30.2. Moreover we have Cρ(Z)∩ ρ ⊂ Z. Proposition 7.29 with
MIH(b;Z) yields pS(ρ) ∈ Hb(Cρ(Z) ∩ ρ) ⊂ CIN (Z).
Case 2. Otherwise: Let ρ ≺ S be such that η ≺R τ ∈ N(ρ). Let η1 ∈ Mρ be
such that η = η1[ρ/S]. Then g0(η) = g0(η1) and p0(ρ) ≤ g0(ρ) = g∗0(η) ≤ b.

On the other hand we have η ∈ GZ . η ∈ Cη(Z) yields ρ ∈ Cη(Z) ∩ η ⊂ Z.
Hence ρ ∈ Z. We obtain ρ ∈ GZ . We see S ∈ Cρ(Z) from ρ ∈ Cρ(Z). Hence
{S, η} ⊂ Cρ(Z). Proposition 7.30.1 yields η1 ∈ Cρ(Z), and g0(η1) ∈ Cρ(Z)
by η1 > ρ. η1 ∈ Mρ ⊂ Hb(ρ) yields g0(η1) ∈ Hb(ρ). We obtain g0(η1) ∈
Ha(Cρ(Z) ∩ ρ) by Proposition 7.30.2. ρ ∈ GZ yields Cρ(Z) ∩ ρ ⊂ Z. Hence
Proposition 7.29 yields g0(η1) ∈ CIN (Z).
7.31.3. By induction on ℓη. Let η ∈ Ψ.
Case 1. η = ρ ≺ S: Then p0(ρ) = p0(η). Let f = m(ρ). Then g2(ρ) = oS(f)+1
and SC(f) ⊂ Hb(ρ) for b ≥ p0(η) by (12) in Definition 3.31.6. Moreover
SC(f) ⊂ Cρ(Z) by ρ ∈ Cρ(Z). Hence we obtain SC(f) ⊂ Hb(Cρ(Z) ∩ ρ)
by Proposition 7.30.2, where Cρ(Z) ∩ ρ ⊂ Z. Proposition 7.29 with MIH(b;Z)
yields SC(f) ⊂ CIN (Z), and oS(f) ∈ CIN (Z).
Case 2. Otherwise: Let ρ ≺ S be such that η = η1[ρ/S] with η1 ∈ Mρ ∩ L(S1)
and g0(η1) = g0(η), where η ≺R (S1[ρ/S]) and Mρ ⊂ Hb(ρ) for p0(ρ) ≤ g0(ρ) =
g∗0(η) ≤ b. Then ℓη1 < ℓη. η ∈ Cη(Z) with ρ < η yields η ∈ Cρ(Z) and
ρ ∈ Cη(Z) ∩ η ⊂ Z. We see S ∈ Cρ(Z) from ρ ∈ Cρ(Z). We obtain η1 ∈ Cρ(Z)
by Proposition 7.30.1 and η ∈ Cρ(Z), and η1 ∈ Hb(Cρ(Z) ∩ ρ) by Proposition
7.30.2. On the other hand we have Cρ(Z) ∩ ρ ⊂ Z. By Proposition 7.29 we
obtain η1 ∈ CIN (Z) ∩ IN ⊂ Z. Hence η1 ∈ GZ . Moreover we see g∗0(η1) < b =
p0(ρ) ≤ g∗0(η) from η1 ∈ Hb(ρ). IH yields g2(η) = g2(η1) ∈ CIN (Z). 2
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Lemma 7.32 Let S = T†k⃗ ∈ SSt with T ∈ {Ω} ∪ (LSt ∩ Ψ), T < η ∈ L(S),
and Z be an N -distinguished set such that {0,Ω,T} ⊂ Z, ∀k∀U ∈ Z ∩ (Stk ∪
{Ω})[U†k ∈ Z]. Assume η ∈ GZ , b ≥ g∗0(η), Λ = ψIN (b) ∈ Z, and MIH(b;Z) in
Proposition 7.29. Then η ∈ Z.

Proof. By Lemma 6.15 we obtain SC(g2(η)) ⊂ Λ = ψIN (b). An ordinal
gΛ2 (η) = oΛ(f) + 1 < IN is obtained from g2(η) = oIN (f) + 1 in Definition
6.1.2 by changing the base IN to Λ. Then for SC(g2(γ)) ∪ SC(g2(δ)) ⊂ Λ,
g2(δ) < g2(γ) ⇔ gΛ2 (δ) < gΛ2 (γ) by Proposition 3.3, and g2(γ) ∈ CIN (Z) ⇔
gΛ2 (γ) ∈ Z by the assumption Λ ∈ Z.

On the other side, we see WT
N (Z)∩S = Z∩S from T ∈ Z and DN [Z]. Hence

GY ∩ S = GZ ∩ S for Y =WT
N (Z) ∩ S.

We see Wo[CIN (Z)] from CIN (Z)∩ IN = Z ∩ IN as in Lemma 7.13. We show
η ∈ Z ∩ S =WT

N (Z) ∩ S by induction on gΛ(η) = (g1(η), g
Λ
2 (η)) with respect to

the lexicographic order <lx on CIN (Z)× Z.
Let γ ∈ R(η) be such that γ ∈ GZ . Then γ ∈ R(η) ⊂ L(S), T−N =

γ−N = η−N and T < γ < η < S. By Lemma 6.15 we obtain g∗0(γ) ≤
g∗0(η), g(γ) <lx g(η) and SC(g2(γ)) ⊂ Λ = ψIN (b). Proposition 7.31 yields
{g1(γ), g2(γ), g1(η), g2(η)} ⊂ CIN (Z). We obtain gΛ(γ) <lx gΛ(η). IH yields
γ ∈ Z, and (53) is shown. On the other hand we have T ∈ Z for (54).

Lemma 7.25 yields η ∈ Z. 2

Proposition 7.33 Let DN [Z] and ρ ∈ L(S) ∩ Z ∩ Ψ with an S ∈ SSt. Then
N(ρ) ⊂ GZ .

Proof. Let α ∈ N(ρ). We obtain α ∈ Cα(Z) by ρ ∈ Z ∩ α. We show β ∈
Cα(Z) ∩ α ⇒ α ∈ Z by induction on ℓβ. Let ρ ̸= β ∈ Cα(Z) ∩ α. If β < ρ,
then β ∈ Cρ(Z)∩ ρ ⊂ Z by Propositions 7.2.1 and 7.15. Let ρ < β < α. By IH,
Proposition 7.12 and Definition 7.1 we may assume that β = ψfσ(c) with σ > α.
Then β < ρ by Proposition 3.39. 2

Corollary 7.34 For each ζ ∈ CIN (WN+1), the following holds:

Let S = T†k⃗ ∈ SSt with T ∈ {Ω} ∪ (LSt ∩Ψ), η ∈ N(ρ) with ρ ∈ L(S), and
{T, ρ} ⊂ WN+1. Assume ζ ≥ g∗0(η) and MIH(ζ;WN+1) in Proposition 7.29.
Then η ∈ WN+1.

Proof. By g∗0(η) ≤ ζ ∈ CIN (WN+1) and Lemma 7.28 we obtain ψIN (ζ) ∈
WN+1. As in the proof of Lemma 7.22 we see that there exists anN -distinguished
set Z such that {0,Ω,T, ρ} ⊂ Z, ∀k∀U ∈ Z ∩ (Stk ∪{Ω})[U†k ∈ Z], ψIN (ζ) ∈ Z,
and MIH(ζ;Z). Then η ∈ Z ⊂ WN+1 follows from Lemma 7.32 and Proposition
7.33. 2

Definition 7.35 For irreducible functions f let

f ∈ J :⇔ SC(f) ⊂ WN+1.
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For a ∈ OT (IN ) and irreducible functions f , define:

A(ζ, a, f) :⇔ ∀σ ∈ WN+1 ∩ IN [g∗0(ψ
f
σ(a)) ≤ ζ ⇒ ψfσ(a) ∈ WN+1]

SIH(ζ, a) :⇔ ∀b ∈ CIN (WN+1) ∩ a∀f ∈ J A(ζ, b, f).

SSIH(ζ, a, f) :⇔ ∀g ∈ J [g <0
lx f ⇒ A(ζ, a, g)].

Lemma 7.36 For each ζ ∈ CIN (WN+1), the following holds:
Assume a ∈ CIN (WN+1) ∩ (ζ + 1), f ∈ J , SIH(ζ, a), SSIH(ζ, a, f) in Defi-

nition 7.35. Moreover assume MIH(ζ;WN+1) in Proposition 7.29. Then for

any S = T†k⃗ ∈ SSt with T ∈ ({Ω} ∪ (LSt ∩ Ψ)) ∩ WN+1 and any κ ∈
WN+1 ∩ (L(S) ∪ {S}) the following holds:

g∗0(ψ
f
κ(a)) ≤ ζ ⇒ ψfκ(a) ∈ WN+1.

Proof. Let α1 = ψfκ(a) ∈ OT (IN ) with a ∈ CIN (WN+1)∩ (ζ + 1), κ ∈ WN+1 ∩
(L(S) ∪ {S}) and f ∈ J such that S = T†k⃗ with T ∈ WN+1, and g∗0(α1) ≤ ζ.
By Lemma 7.28 we have ψIN (ζ) ∈ WN+1. By Lemma 7.32 and the assumption
MIH(ζ;WN+1) it suffices to show α1 ∈ GWN+1 .

By Lemma 7.10 we have {κ, a} ∪ SC(f) ⊂ Cα1(WN+1), and hence α1 ∈
Cα1(WN+1). It suffices to show the following claim by induction on ℓβ1.

Claim 7.37 ∀β1 ∈ Cα1(WN+1) ∩ α1[β1 ∈ WN+1].

Proof of Claim 7.37. Assume β1 ∈ Cα1(WN+1) ∩ α1 and let

LIH :⇔ ∀γ ∈ Cα1(WN+1) ∩ α1[ℓγ < ℓβ1 ⇒ γ ∈ WN+1].

We show β1 ∈ WN+1. We can assume β1 ̸∈ {0,Ω} by Proposition 7.21.
Case 1. β1 ̸∈ E(β1): Assume β1 ̸∈ WN+1. Then β1 ̸∈ N(ρ) for any ρ by
β1 ∈ Cα1(WN+1)∩α1 and Definition 7.1. We obtain S(β1) ⊂ Cα1(WN+1)∩α1.
LIH yields S(β1) ⊂ WN+1. Hence we conclude β1 ∈ WN+1 from Proposition
7.12.

In what follows consider the cases when β1 = ψgπ(b) for some π, b, g. We
can assume π > α1 and {π, b} ∪ SC(g) ⊂ Cα1(WN+1). Then either π = IN or
β1 ∈ L(S) for α1 ∈ L(S).
Case 2. π = IN and b < a: As in the proof of Lemma 7.28 we see b ∈
CIN (WN+1). We obtain β1 = ψIN (b) ∈ WN+1 by b < a ≤ ζ and Lemma 7.28.
Case 3. π < IN , b < a, β1 < κ and {π, b} ∪ SC(g) ⊂ Ha(α1): Then β1 ∈ L(S).

Let B denote a set of subterms of β1 defined recursively as follows. First
{π, b}∪SC(g) ⊂ B. Let α1 ≤ β ∈ B. If β =NF γm+· · ·+γ0, then {γi : i ≤ m} ⊂
B. If β =NF φγδ, then {γ, δ} ⊂ B. If β = ψhσ(c), then {σ, c} ∪ SC(h) ⊂ B. If
β ∈ N(τ), then τ ∈ B.

Then from {π, b} ∪ SC(g) ⊂ Cα1(WN+1) we see inductively that B ⊂
Cα1(WN+1). Hence by LIH we obtain B ∩ α1 ⊂ WN+1. Moreover if α1 ≤
ψhσ(c) ∈ B, then c ∈ Kα1({π, b} ∪ SC(g)) < a.
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We claim that
∀β ∈ B(β ∈ CIN (WN+1)) (60)

Proof of (60) by induction on ℓβ. Let β ∈ B. We may assume that α1 ≤ β is
a strongly critical number such that β ̸∈ {Ω, IN}∪SSt by induction hypothesis
on the lengths. First consider the case when α1 ≤ β = ψhσ(c). By induction
hypothesis we have {σ, c} ∪ SC(h) ⊂ CIN (WN+1). On the other hand we have
c < a and g∗0(β) ≤ g∗0(α1) by Proposition 6.16. SIH(ζ, a) yields β ∈ WN+1.

Second let α1 ≤ β ∈ N(τ) for a τ ∈ L(S). By IH we obtain τ ∈ WN+1.
We claim that g∗0(τ) ≤ g∗0(α1) ≤ ζ. If τ ≤ α1, then we obtain g∗0(τ) = g∗0(α1).
Otherwise α1 < τ = ψhσ(c) ∈ B ⊂ Ha(α1) for some σ, h, c. We obtain g∗0(τ) ≤
g∗0(α1) by Proposition 6.16. On the other hand we have T ∈ WN+1 by one of
the assumptions. Corollary 7.34 yields β ∈ WN+1.

Thus (60) is shown. 2

In particular we obtain {π, b} ∪ SC(g) ⊂ CIN (WN+1). Moreover we have
b < a and g∗0(β1) ≤ g∗0(α1) by Proposition 6.9. Therefore once again SIH(ζ, a)
yields β1 ∈ WN+1.
Case 4. b = a, π = κ, ∀δ ∈ SC(g)(Kα1

(δ) < a) and g <0
lx f : Obviously

g∗0(β1) = g∗0(α1). As in (60) we see that SC(g) ⊂ WN+1 from SIH(ζ, a).
SSIH(ζ, a, f) yields β1 ∈ WN+1.
Case 5. a ≤ b ≤ Kβ1(δ) for some δ ∈ SC(f)∪{κ, a}: It suffices to find a γ such
that β1 ≤ γ ∈ WN+1 ∩ α1. Then β1 ∈ WN+1 follows from β1 ∈ Cα1(WN+1)
and Propositions 7.2.1 and 7.11.

kX(α) denotes the set in Definition 6.17. In general we see that a ∈ KX(α)
iff ψhσ(a) ∈ kX(α) for some σ, h, and for each ψhσ(a) ∈ kX(ψh0

σ0
(a0)) there exists

a sequence {αi}i≤m of subterms of α0 = ψh0
σ0
(a0) such that αm = ψhσ(a), αi =

ψhi
σi
(ai) for some σi, ai, hi, and for each i < m, X ̸∋ αi+1 ∈ E(Ci) for Ci =

{σi, ai} ∪ SC(hi).
Let δ ∈ SC(f) ∪ {κ, a} such that b ≤ γ for a γ ∈ Kβ1

(δ). Pick an α2 =
ψh2
σ2
(a2) ∈ E(δ) such that γ ∈ Kβ1

(α2), and an αm = ψhm
σm

(am) ∈ kβ1
(α2) for

some σm, hm and am ≥ b ≥ a. We have α2 ∈ WN+1 by δ ∈ WN+1. If α2 < α1,
then β1 ≤ α2 ∈ WN+1 ∩ α1, and we are done. Assume α2 ≥ α1, i.e., α2 ̸∈ α1.
Then a2 ∈ Kα1(α2) < a ≤ b, and m > 2.

Let {αi}2≤i≤m be the sequence of subterms of α2 such that αi = ψhi
σi
(ai)

for some σi, ai, hi, and for each i < m, β1 ≤ αi+1 ∈ E(Ci) for Ci = {σi, ai} ∪
SCI(hi).

Let {nj}0≤j≤k (0 < k ≤ m− 2) be the increasing sequence n0 < n1 < · · · <
nk ≤ m defined recursively by n0 = 2, and assuming nj has been defined so that
nj < m and αnj ≥ α1, nj+1 is defined by nj+1 = min({i : nj < i < m : αi <
αnj} ∪ {m}). If either nj = m or αnj < α1, then k = j and nj+1 is undefined.
Then we claim that

∀j ≤ k(αnj
∈ WN+1)&αnk

< α1 (61)

Proof of (61). By induction on j ≤ k we show first that ∀j ≤ k(αnj ∈
WN+1). We have αn0

= α2 ∈ WN+1. Assume αnj
∈ WN+1 and j < k.
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Then nj < m, i.e., αnj+1 < αnj , and by αnj ∈ Cαnj (W), we have Cnj ⊂
Cαnj (WN+1), and hence αnj+1 ∈ E(Cnj ) ⊂ Cαnj (WN+1). We see inductively
that αi ∈ Cαnj (WN+1) for any i with nj ≤ i ≤ nj+1. Therefore αnj+1

∈
Cαnj (WN+1) ∩ αnj

⊂ WN+1 by Propositions 7.2.1 and 7.11.
Next we show that αnk

< α1. We can assume that nk = m. This means that
∀i(nk−1 ≤ i < m⇒ αi ≥ αnk−1

). We have α2 = αn0
> αn1

> · · · > αnk−1
≥ α1,

and ∀i < m(αi ≥ α1). Therefore αm ∈ kα1(α2) ⊂ kα1({κ, a} ∪ SC(h)), i.e.,
am ∈ Kα1({κ, a} ∪ SC(h)) for αm = ψhm

σm
(am). On the other hand we have

Kα1
({κ, a} ∪ SC(h)) < a for α1 = ψhσ(a). Thus a ≤ am < a, a contradiction.
(61) is shown, and we obtain β1 ≤ αnk

∈ WN+1 ∩ α1.
This completes a proof of Claim 7.37 and of the lemma. 2

Corollary 7.38 For each ζ ∈ CIN (WN+1), MIH(ζ;WN+1) holds.

Proof. For each n < ω, we have TI[CIN (WN+1) ∩ ωn(IN + 1)] by Lemma
7.13.2. We show MIH(ζ;WN+1) by induction on ζ ∈ CIN (WN+1). Assume
∀ξ ∈ CIN (WN+1) ∩ ζMIH(ξ;WN+1).

Let S = T†k⃗ with T ∈ WN+1, and γ = ψfκ(a) ∈ L(S) be such that k(γ) =
{κ, a} ∪ SC(f) ⊂ CIN (WN+1) and h(γ) = {a, g∗0(γ)} ⊂ CIN (WN+1) ∩ ζ. We
obtain MIH(ξ;WN+1) by IH for ξ = max{a, g∗0(γ)}.

We obtain γ ∈ WN+1 by Lemma 7.36 and MIH(ξ;WN+1) with subsidiary
induction on a ∈ CIN (WN+1) ∩ (ξ + 1) and sub-subsidiary induction on f ∈ J .
Then Corollary 7.34 yields N(γ) ⊂ WN+1.

Here by induction on f ∈ J we mean by induction along g <0
lx f . In the proof

of Lemma 7.36, SSIH(ζ, a, f) is invoked inCase 4, i.e., only when ψgκ(a) < ψfκ(a)
with κ < IN . Then Lemma 6.3 yields oIN (g) < oIN (f) ∈ CIN (WN+1) for
SC(f) ⊂ CIN (WN+1) ∩ Λ, where Λ = ψIN (b) and b = g∗0(ψ

f
κ(a)) ≥ p0(ψ

f
κ(a)).

Hence oΛ(g) < oΛ(f) ∈ WN+1 by Λ ∈ WN+1. 2

Lemma 7.39 For each n < ω, the following holds:
If one of the followings holds, then α ∈ WN+1 for α ∈ OT (IN ).

1. α = S†k with S ∈ WN+1 ∩ (Stk ∪ {Ω}).

2. α = ψIN (a) with a ∈ CIN (WN+1) ∩ ωn(IN + 1).

3. α = ψfκ(a) ∈ L(S) for S = T†k with T ∈ WN+1 and k(α) ∪ h(α) =
{κ, a, g∗0(α)} ∪ SC(f) ⊂ CIN (WN+1) ∩ ωn(IN + 1).

4. α ∈ N(ρ) for ρ ∈ WN+1 ∩ L(S) with S = T†k such that T ∈ WN+1 and
g∗0(ρ) < ωn(IN + 1).

Proof. 7.39.1 is seen from Lemma 7.20.
7.39.2 follows from Lemma 7.28.
7.39.3 follows from Lemma 7.36 and Corollary 7.38.
7.39.4 follows from Corollaries 7.34 and 7.38. 2
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Let us conclude Theorem 1.2. For each α ∈ OT (IN ), α ∈ CIN (WN+1) is seen by
metainduction on the lengths ℓα using Propositions 7.12, 7.21 and Lemma 7.39.
Note that ℓ(g∗0(ψ

f
κ(a))) < ℓ(ψfκ(a)) and ℓ(T) < ℓ(ρ) for ρ ∈ L(S) and S = T†k.

Therefore we obtain Σ1
N+2-DC+BI ⊢ α ∈ CIN (WN+1) ∩ Ω = WN+1 ∩ Ω =

W (C0(WN+1)) ∩ Ω = W (OT (IN )) ∩ Ω, and Σ1
N+2-DC+BI ⊢ Wo[α] for each

α < ψΩ(εIN+1).

8 Outcomes on Z2

In this final section let us conclude some standard outcomes of an ordinal anal-
ysis of the theory Z2.

Let TI[Π1−
0 , ψΩ(εIN+1)] denote a schema of transfinite induction ∀α ∈ OT (IN )∩

Ω(Prg[OT (IN ), A] → OT (IN ) ∩ α ⊂ A) up to ψΩ(εIN+1) in OT (IN ) applied to
arithmetic formulas A ∈ Π1−

0 in the language of the first-order arithmetic PA.
Let T0 = PA+

∪
{TI[Π1−

0 , ψΩ(εIN+1)] : N < ω}, and T1 = FiXi(T0) denote the
intuitionistic fixed point theory over T0. The language of the theory T1 is ex-
panded by unary predicate symbols I for each operator Φ(X,x), in which every
occurrence of a unary predicate symbol X is strictly positive. The axioms in T1
are obtained from T0 by adding the axioms ∀x[I(x) ↔ Φ(I, x)] for a fixed point
I. The axiom schema TI[Π1−

0 , ψΩ(εIN+1)] of transfinite induction as well as
schema of complete induction may be applied to arbitrary first-order formulas
in the expanded language with the predicates I. The underlying logic in T1 is
the intuitionistic first-order logic with the axiom ∀x, y(x = y → I(x) → I(y)).
The excluded middle ∀x(¬I(x)∨ I(x)) for the predicate I is not available in T1.

Lemma 8.1 FiXi(T0) is a conservative extension of T0. Moreover the fact is
provable in the fragment IΣ0

1 of the first-order arithmetic: IΣ0
1 ⊢ PrT1(⌈φ⌉) →

PrT0(⌈φ⌉), where PrT (x) is a standard provability predicate for a theory T .

Proof. The fact is seen as in [1, 3]. To formalize a proof of the fact in IΣ0
1,

follow a finitary analysis in section 4.4 of [3]. 2

Theorem 8.2 Z2 is a conservative extension of PA +
∪
{TI[Π1−

0 , ψΩ(εIN+1)] :
N < ω}. Moreover the fact is provable in the fragment IΣ0

1.

Proof. Assume that Z2 ⊢ A for an arithmetic sentence A ∈ Π1−
0 . Pick an N <

ω such that Σ1
N+2-DC+BI ⊢ A. By Lemma 2.3 we obtain KPω+ΠN -Collection+

(V = L) ⊢ Aset, and hence KPω + ΠN -Collection ⊢ Aset. Then by Lemma 2.5
we obtain SIN ⊢ Aset.

Now we see that the proof of Theorem 1.1 in sections 4 and 5 is formalizable
in the intuitionistic fixed point theory T1 = FiXi(T0) over T0. Let us regard each
of the relations (Hγ ,Θ; QΠ) ⊢∗a

c,γ0 Γ;Π{·} and (Hγ ,Θ, Q) ⊢ac,d,e,β,γ0 Γ as a fixed
point of a strictly positive operator. Then by applying transfinite induction
to first-order formulas with the fixed point predicates, Theorem 1.1 is proved.
Therefore we obtain FiXi(T0) ⊢ A, and T0 ⊢ A by Lemma 8.1. 2
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We see readily that the transfinite induction TI(ψΩ(Iω)) up to ψΩ(Iω) is
equivalent to the Π1

1-soundness RFNΠ1
1
(Z2) of Z2 over RCA0, where TI(ψΩ(Iω))

denotes a Π1
1-sentence ∀N∀α ∈ OT (IN )∩Ω∀Y (Prg[OT (IN ), Y ] → OT (IN )∩α ⊂

Y ).

Definition 8.3 Let α ∈ OT (IN ) be an ordinal term.

1. DSα denotes a Π0
2-sentence saying that ‘there is no primitive recursive

and descending sequence {f(n)}n of ordinals with f(0) < α’. This means
that f(0) < α⇒ ∃n(f(n+ 1) ̸< f(n)).

2. WDSα denotes a Π0
3-sentence saying that ‘for every primitive recursive

and weakly descending sequence {f(n)}n of ordinals with f(0) < α, there
exists an n such that ∀m ≥ n(f(m) = f(n))’. This is equivalent to the
principle that ‘for every primitive recursive sequence {f(n)}n of ordinals,
there exists an n such that ∀m(f(n) ≤ f(m)).

3. DSψΩ(εIN+1) :⇔ ∀α ∈ OT (IN )∩ΩDSα andDSψΩ(Iω) :⇔ ∀N > 0DSψΩ(εIN+1).

Also WDSψΩ(εIN+1) :⇔ ∀α ∈ OT (IN ) ∩ ΩWDSα and WDSψΩ(Iω) :⇔
∀N > 0WDSψΩ(εIN+1).

4. A computable (total) function f on integers is said to be ψΩ(εIN+1)-
recursive if f is defined from α-recursive functions g, r, h by ψΩ(εIN+1)-
recursion:

f(y, x) =

{
g(y, x, f(y, r(y, x))) if r(y, x) < x < Ω in OT (IN )
h(y, x) otherwise

5. RFNΣ0
n
(Z2) denotes the uniform reflection principle of Z2 for Σ

0
n-formulas.

Corollary 8.4 1. The 2-consistency RFNΣ0
2
(Z2) of Z2 is equivalent toWDSψΩ(Iω)

over IΣ0
1.

2. Z2 is Π0
3-conservative over IΣ0

1 + {WDSψΩ(εIN+1) : 0 < N < ω}.

3. The 1-consistency RFNΣ0
1
(Z2) of Z2 is equivalent to DSψΩ(Iω) over IΣ0

1.

4. Z2 is Π0
2-conservative over IΣ0

1 + {DSψΩ(εIN+1) : 0 < N < ω}.

5. For computable total function f on N, f is provably computable in Z2 iff
f is ψΩ(εIN+1)-recursive for an N < ω.

Proof. Each follows from Theorem 8.2 as in chapter 4 of [3]. 2

For the consistency Con(Z2) of Z2 we obtain the following.

Corollary 8.5 There are primitive recursive predicate B and primitive recur-
sive function f such that both of ∀N > 0∀α ∈ OT (IN ) ∩ Ω(f(N,α) < α →
B(N, f(N,α)) → B(N,α)) and ∀N > 0∀α ∈ OT (IN ) ∩ ΩB(N,α) → Con(Z2)
is provable in IΣ0

1.

Proof. This is seen from Theorem 8.2 as in section 4.3 of [3]. 2
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