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Abstract

In this paper we give an ordinal analysis of a set theory with Iln-
Collection.

1 Introduction

Throughout in this paper N denotes a fixed positive integer. In this paper we
give an ordinal analysis of a Kripke-Platek set theory with the axiom of Infinity
and one of IIy-Collection, denoted by KPw + IIn-Collection. Our proof is an
extension of [4, 5]. Since [5] has not yet appeared, some proofs are duplicated
for the readers’ conveniences.

In [5] we analyzed proof-theoretically a set theory KP{" + (M <5, V) ex-
tending KP/™ with an axiom stating that ‘there exists a transitive set M such
that M <y, V’. An ordinal analysis of an extension KPi+ (M <x, V) is given
in M. Rathjen[14]. Our proof is an extension of [2, 5]. In [2], a set theory KPII
of IIy-reflection is analyzed, which is an extension of M. Rathjen’s analysis for
II5-reflection in [13].

YN 12-DC+BI [} ,-AC+BI] denotes a second order arithmetic obtained
from ACA( +BI by adding the axiom of ¥} ,-Dependent Choice [S}, ,-Axiom
of Choice], resp. It is easy to see that 3} 12-DC+BI is interpreted canonically
to the set theory KPw + IIx-Collection + (V' = L) with the axiom V = L of
constructibility. It is well known that X}, ,-DCy implies £} ,-AC, which yields
A} ,-CA, a fortiori X}, ,-CA, cf. Lemma VIL6.6 of [15]. Moreover it is known
that X}, ,-DC+BI is II}-conservative over ¥} ,-AC+BI [over A}, ,-CA+BI],
resp., cf. Exercise VII.5.13 and Theorem VIIL.6.16 of [15].

Let n be a positive integer. We say that an ordinal « is n-stable if L, <5, L
for the constructible universe L = |J, Lo. In general, a transitive and non-
empty set M is n-stable if M <y, V for the universe V. We see that (V€
) = KPw + ITnx-Collection if V' enjoys the Ag({st; }o<i<n)-collection, where st;
denotes the predicate for the class {M € V : M <y, V'} of i-stable sets in V.



We introduce an extension Sy, of KPw + IIn-Collection in the language
{€} U {sti}o<i<n, which codifies 3({st; }o<i<n)-reflection. We aim to give an
ordinal analysis of the theory Sy, .

In the following theorems, €2 denotes the least recursively regular ordinal
WK and 1) a collapsing function such that ¥q(a) < . Iy is an ordinal term
denoting an ordinal such that Ly, = KPw + IIy-Collection + (V = L).

First we show the following Theorem 1.1.

Theorem 1.1 Suppose St = 052 for a ¥i-sentence 0 in the language {€} of
set theory. Then Lyg (e, .,) F 6 holds.

It is not hard to see that the ordinal 1 (ery+1) is computable. Let < de-
note a computable well-ordering of type ¥q(ery+1) on the set of natural num-
bers. Conversely we show that X% 4+o-DC+BI proves that each initial segment
of Ya(ery+1) is well-founded.

Theorem 1.2 X} ,-DC+BIF Wola] for each o < tha(ery41).

For T' D ACAy, |T| denotes the proof-theoretic ordinal of T, i.e., the supre-
mum of order types of computable well-orderings < on the set of natural num-
bers for which T proves the fact that < is a well-ordering. Also let |KPw +
IIy-Collection|se denote the ¥$-ordinal of KPw + ITx-Collection, i.e., the or-
dinal min{a < w{¥ : V6 € ¥ (KPw + IIy-Collection - L2 = L, = 6)}. For
more on ordinal analysis see [3]. We conclude the following Theorem 1.3, where
a(ery+1) denotes the order type of the initial segment OT (I )N$2 of a notation
system OT(Iy) of ordinals.

Theorem 1.3 |A}_,-CA+BI| =[S}, ,-AC+BI| =[S}, ,-DC+BI| = |[KPw +
IIy-Collection|se = Ya(ery+1)-

Let Zy = X1 -DC be the full second order arithmetic with the Dependent
Choice schema, and ZFC — Power denote the set theory ZFC minus the power set
axiom. Zsg proves the (II}-)soundness of ¥} 42-DC + BI, and hence Z3 proves
that (OT'(Ix), <) is a well ordering for each N. Zs is canonically interpreted in
(ZFC — Power) + (V = L), which is ITi-conservative over ZFC — Power.

Assume ZFC—Power - 6 for a sentence 6. Since Sy, subsumes IIy-Collection
and Y py-Separation, there is an N such that Sp, = 6. Therefore we conclude
the following.

Theorem 1.4 ¢qo(L,) := sup{va(ly) : 0 < N < w} = [Z| = [ZFC— Power|sa.

Let us mention the contents of this paper. In the next section 2 a second or-
der arithmetic X}, ,-DC+Bl is interpreted to a set theory KPw-IIy-Collection+
(V = L), and KPw + IIy-Collection is shown to be a subtheory of a set theory
Sty - In section 3 ordinals for our analysis of IIx-Collection are introduced, and
a computable notation system OT(Iy) is extracted.



Theorem 1.1 is proved in sections 4 and 5. In section 4 operator controlled
derivations are introduced. In section 5, stable ordinals are removed from deriva-
tions. Although our proof of Theorem 1.1 is based on operator controlled deriva-
tions introduced by W. Buchholz[9], it is hard for us to give its sketch here. See
subsection 4.2 for an outline of the proof.

Theorem 1.2 is proved in sections 6 and 7. For 0 < ¢ < N, we intro-
duce i-mazimal distinguished sets, which are X3 ;-definable. A 0-maximal dis-
tinguished set is ¥j-definable as in [4]. X} ,-(Dependent) Choice is needed
to handle limits of N-stable ordinals. Our proof of Theorem 1.2 is based on
maximal distinguished class introduced again by Buchholz[7]. A sketch of the
well-foundedness proof is outlined in subsection 6.1.

In the final section 8 let us conclude some standard outcomes of an ordinal
analysis of the theory Z,.

IH denotes the Induction Hypothesis, MIH the Main IH, STH the Subsidiary
IH, and SSIH the Sub-Subsidiary IH.

2 IIy-Collection

In this section a second order arithmetic X}, , ,-DC+BL is interpreted canonically
to a set theory KPw + IIy-Collection + (V' = L), and KPw + IIx-Collection is
shown to be a subtheory of a set theory Sy, .

For subsystems of second order arithmetic, we follow largely Simpson’s
monograph[15]. The schema Bar Induction, BI is denoted by TI in [15]. BI
allows the transfinite induction schema for well-founded relations.

YN 2-AC+BI denotes a second order arithmetic obtained from II{-CAg +
BI by adding the axiom E}VH—AC, VYnaXF(n,X) — 3YVnF(n,Y,) for each
Iy, ;-formula F(n,X), where m € Y,, < (n,m) € Y for a bijective pairing
function (-,-). ¥}, ,-DC+BI denotes a second order arithmetic obtained from
[13-CAg +BI by adding the axiom E}V+2—DC for each H}VJrl-formula F(n,X,Y),
YnVX3IY F(n, X,Y) — VXo3YVn[Yy = Xo A F(n,Y,,Y,11)]. It is easy to see
that the formulas F' can be X}, , in the axioms.

The axioms of the set theory KPw + IIn-Collection consists of those of
KPw (Kripke-Platek set theory with the Axiom of Infinity, cf.[6, 12]) plus
IIy-Collection: for each IIy-formula A(z,y) in the language of set theory,
Vo € adyA(z,y) — IV € aTy € bA(z,y).

Y n-Separation denotes the axiom JyVez(x € y <> z € a Ap(x)) for each X -
formula p(x). Apnyi-Separation denotes the axiom Yz € a(p(x) < —(z)) —
JyVz(x € y <> x € a A p(z)) for each X yii-formulas p(z) and ¢(z).

Y n+1-Replacement denotes the axiom stating that if Va € a3lyp(x,y), then
there exists a function f with its domain dom(f) = a such that Va € a p(z, f(x))
for each ¥y 1-formula ¢(x,y).

Lemma 2.1 KPw + II-Collection proves each of ¥ y-Separation, Ay41 —
Separation and ¥y 41-Replacement.



Proof. We show that {z € a : p(x)} exists as a set for each ¥;-formula ¢ by
(meta)induction on ¢ < N. The case i = 0 follows from Ag-Separation. Let
» = Jyb(x,y) with a II,_;-matrix 0. We have by logic Vz € aTy(320(z, 2) —
O(x,y)). By IL;-Collection pick a set b so that Va € aJy € b(p(x) — 0(x,y)).
In other words, {z € a : p(x)} = {z € a: Jy € bO(x,y)}. If i = 1, then
defe = {x € a: Jy € bO(x,y)}] by Ap-Separation. Let 2 < i < N. By II;_o-
Collection we obtain a II;_;-formula o such that Jy € b6(z,y) + o(z). By IH
we obtain Je[c = {x € a : o(2)}].

A ny1-Separation follows from X y-Separation as in [6], p.17, Theorem 4.5(A
Separation), and ¥ y41-Replacement follows from Ay i-Separation as in [6],
p.17, Theorem 4.6(3 Replacement). O

For a formula A in the language of second order arithmetic let A%¢* denote
the formula obtained from A by interpreting the first order variable x as x € w
and the second order variable X as X C w.

The following is the Quantifier Theorem in p.125 of [12], in which KPI" is
defined as a set theory for limits of admissible sets with restricted induction.
KPI" is a subtheory of KPw + IIy-Collection. Ad(z) designates that z is an
admissible set.

Lemma 2.2 For each Z}Vﬂ-formula F(n,a,Y), there ezists a Xy -formula Ax(d,n,a,Y)
in the language of set theory so that for Fs(n,a,Y) & 3d[Ad(d) ANY € d A
Ax(d,n,a,Y)],

KPI" - n,a € wAY Cw— {F*(n,a,Y) & Fy(n,a,Y)},

For an ordinal «, L, denotes the initial segment of Gddel’s constructible
universe L = Ua L,. © € Lis a Xi-formula. < denotes a canonical Ay well
ordering of L such that if y <y x € L,, then y € Ly, cf.p.162 of [6]. V = L
denotes the axiom of Constructibility.

Lemma 2.3 For each sentence A in the language of second order arithmetic,
E}VH—DC +BIF A = KPw + I y-Collection + (V = L) - A%,

Proof. By the Quantifier Theorem 2.2 F*¢*(n, X|Y) is equivalent to a Ily-
formula ¢(n, X,Y) for a H}V+1—formula Fn,X,Y),n € wand X C w. It
suffices to show for a Il y-formula p(n, X,Y) that assuming Vn € wVX C w3Y C
we(n, X,Y) and Xy C w, there exists a function f with its domain dom(f) = w
such that Vn € w[f(0) = XoAp(n, f(n), f(n+1))]. By induction on k € w using
V = L we see that there exists a unique family (V;,),<x of subsets of w such that
VY < klp(n, Ya, Yoi1) AVZ <p Yor1—p(n,Y,, Z)], where VZ < Y—p(n,Y, Z)
is equivalent to a X y-formula under IIy_;-Collection. By ¥y 1-Replacement
pick a function g with dom(g) = w and rng(g) C <“P(w) so that for any k € w
g(k) is the unique sequence (Y;,)n<x € *P(w) with Yy = X,. Then the function
f(n) = (g(n+1))(n) is a desired one. O



It is easy to see that KPw+IIy-Collection+(V = L) - A = KPw+IIx-Collection -
AE for any A, and each IT}-sentence B on w is absolute for L, KPw~+IIy-Collection
B < BL.

Next we show that KPw + IIy-Collection is contained in a set theory Si, .
The language of the theory Sy, is {€, Mo} U {st; }o<i<ny with unary predicate
constants st; and an individual constant M. st;(a) is intended to denote the
fact that a is an i-stable set and M, is intended to denote the least admissible
set, Lwch above L. The axioms of Sy, are obtained from those! of KPw by
adding the following axioms. By a Ag({st; }o<i<k)-formula we mean a bounded
formula in the language L, = {€, Mo} U {st; }i<k-

1. The axioms for the admissible set My: My # 0, Vo € MoVy € x(y € M),
and the axioms stating that (Mg, €) = KPw.

2. Ao({st;}o<i<n)-collection:
Vo € ayf(z,y) — IVz € ady € bl(z,y)
for each A¢({st;}o<i<n)-formula @ in which the predicates st; may occur.
Note that i ({st; }o<i<n)-collection follows from this.
VaTbla € b A sty ()] (1)
4. For each 7+ 1 < N:
stiy1(a) = My € a AVy € aVz € y(z € a) Alst;(a) (2)

where [st;(a) < st;(a) AVb € adc € a (b € c A st;i(c)) and sty(c) = (0 =
0).

5. For 0 <i < N:
sti(a) A p(u) Au € a— p*(u) (3)

for each X4 ({st;};<;)-formula ¢ = (3 0) in the language £; = {€, My} U
{st;}j<i, where p* = (Iz € a ).

Note that if Ist;y1(a) for a transitive set a, then Ist;(a) holds.

Lemma 2.4 Sy, F st;(M)Au € M — [pM(u) < @(u)] for set-theoretic ;-
formulas .

Proof. Argue in Sy, . The case i = 1 follows from the axiom (3). We show

sti(a) Au € a— [0%(u) <> 3b € a{sti(b) Au € bA O (u)}] (4)

n the axiom schemata Ag-Separation and Ag-Collection, Ag-formulas remain to mean a
Ap-formula in which st; does not occur, while the axiom of foundation may be applied to a
formula in which st; may occur.



for 0 < i < k < N+ 1 and II1({st;};<i—1)-formula 6(u), where a = V,
stni1(V) < (0=0) and 6V (u) <> 6 when k = N + 1.

Assume st (a) and 6 (u) with u € a. By the axioms (1) and (2) there exists
a set b € a such that st;(b) and u € b. °(u) follows logically. Conversely assume
6°(u) for b € a such that st;(b) and u € b. (3) yields 6(u), a fortiori %(u). Thus
(4) is shown.

Let o(u) € X140 ({st;}j<;) and st;1,(a) with v € a. From (4) we see by
(meta-)induction on n that there exists a X1 ({st;};<itn)-formula 6 such that
©® <> 0% and p < 0.

Now we show oM (u) <+ ¢p(u), where 0 < n < N, sti1,(M), p € 14, and
u € M. Suppose pM(u). Pick a X1({st;};<,)-formula 6 such that ¢™ (u) «
M (u) and p(u) <> O(u). O(u) follows logically, and ¢(u) follows. Conversely
assume o(u). Then we obtain (u), and (3) yields 6™ (u), and hence ™ (u). O

Lemma 2.5 Sy, is an extension of KPw + IIx-Collection. Namely Sy, proves
IInx-Collection.

Proof. Argue in Sp,. Let A(z,y) be a IIy-formula in the language of set
theory. We obtain by the axiom (1) and Lemma 2.4

A(z,y) < (st (b) Az,y € bA A (2,y)) (5)

Assume Vz € adyA(z,y). Then we obtain Vx € aJyIb(sty(b) A z,y € b A
A®(z,y)) by (5). Since sty (b) Az,y € bA A (z,y) is a Ag({st; }o<i<n)-formula,
pick a set ¢ such that Vo € a3y € c3b € c(sty(b) Ax,y € b A A%(x,y)) by
Ao({st;}o<i<n)-Collection. Again by (5) we obtain Va € a3y € cA(z,y). O

3 Ordinals for IIy-Collection

In this section up to subsection 3.2 we work in a set theory ZFC({S%;}o<i<n),
where each St; is a unary predicate symbol. Let Sty denote the set of uncount-
able cardinals below I. Q and [y are strongly critical numbers with Q < I,
i.e., non-zero ordinals closed under the binary Veblen function paf = ¢, (58).
We assume that St;1; C St; for i < N, each St; is an unbounded class of
ordinals below Iy such that the least element of St; is larger than Q, Q <
min({Jy,;<n Sti). The predicate St; is identified with the class {a € ON : o €
St;}. al? denotes the least ordinal> « in the class St; when a < In. af? := Iy
if > Iy. Put af := afl. Let SSt; := {af": o € ON} and LSt; = St; \ SSt;.

I, denotes the a-th strongly critical number. For ordinals «, e(«) denotes
the least epsilon number above «, and I'(«) the least strongly critical number
above a. For ordinals o, 3, and v, v = o — 3 designates that o = 8 + 7. a+f
denotes the sum « + 8 when « + 8 equals to the commutative (natural) sum
a#f, i.e., when either o = 0 or a = g + w®' with w1 > g.

U, vV, W, T, Y, 2, ... range over sets in the universe, a,b,c,a, ,7,6,... range
over ordinals< ¢(Iy), and &, (,m, ... range over ordinals< I'(I), and ordinals<
Iy are denoted by m, k,p, 0,7, A, .. ..



Let S € St; with ¢ > 0. A ‘Mahlo degree’ m(w) of ordinals = < S with higher
reflections is defined to be a finite function f : Iy — ¢y, (0). Let A < Iy be a
strongly critical number. To denote ordinals< ¢, (0), it is convenient for us to
introduce an ordinal function ,(¢; A) < A (0) for € < @A(0) and b < A as in
[4, 5], which is a b-th iterate of the exponential f;(¢; A) = A¢ with the base A.

Definition 3.1 Let A < Iy be a strongly critical number. ¢,(§) denotes the
binary Veblen function on (Ix)f® = w11 with ¢o(€) = wf, and @p(&;A) =
Pb(A - £). -

Let b,& < (In)™. 6,(€) [64(&; A)] denotes a b-th iterate of ¢o(€) = w® [of
@o(&;A) = A¢], resp. Specifically ordinals 6;(€),0,(&;A) < (In)T are defined
by recursion on b as follows. 0o(€) = Oo(&A) = &, 0,(€) = @p(€), 0,0 (& A) =

@u(&A), and 0,4 0 (§) = 0c(0,0(8)), e (6 A) = Oc(Bop (S5 A); A).

A finite set SC(a) of strongly critical numbers is defined recursively as
follows. SC(0) = 0, SC(a) = U,<,, SC(a;) for a = w4 ---+w, and
SC(a) = SC(b) U SC(c) for a = pp(c) if a is not strongly critical. SC(a) = {a}
if @ is strongly critical.

Let A < Iy be a strongly critical number. Let us define a normal form of
non-zero ordinals & < o (0). Let & = AS. If ¢ < A, then 6;((; A) is the normal
form of ¢, denoted by & =yp 61 (¢;A). Assume ¢ = AS, and let b > 0 be the
maximal ordinal such that there exists an ordinal n with { = @p(n; A) > 7.
Then & = Gp(m; A) =nF O (15 ).

Letﬁzch’Lam+--~+A<Ua0, where (,, > -+ > (g and 0 < ag, ..., am < A.
Let AE =nF O, (ni; A) with b; = w® for each i. Then & =nF O, (Mm; A) - am +
w+ =+ 0, (05 A) - ao.

Definition 3.2 Let £ < ¢4 (0) be a non-zero ordinal with its normal form:

€= 00,6 A) - ai =xp Oy, (EmiA) - am + -+ O (§05A) a0 (6)

i<m

where 0y, (£ A) > &, Oy, (EmsA) > -+ > Oy, (€03 A), b = w® < A, and 0 <
ao, -+ am < A. Oy, (§0; A) is said to be the tail of &, denoted 6y, (§o; A) = tI(E),
and 6y, (&m; A) the head of £, denoted 0y, (§,n; A) = hd(£).

L. ¢ is a segment of £ iff there exists an n (0 < n < m + 1) such that
C =NF ZiZn Hbl(fl,A) sa; = Qbm(fm;A) e SRR +9bn(§n;A) *Qp for f in
(6).

2. Let ¢ =np 0p(&;A) with 6,(6;A) > € and b = w’, and ¢ be an or-
dinal. An ordinal ﬁ_c(c ;A) is defined recursively as follows. If b > ¢,
then 0_.((;A) = 0p—c(§A). Let ¢ > b If € > 0, then 0_.(A) =
é—(c—b)(ébm (Em; A); A) for the head term hd(€) = 6y, (€m; A) of € in (6).
If € = 0, then let §_.(C;A) = 0.

3. Let £ < ¢, (0) be such that SC(§) C A for a strongly critical number
A < Iy. Then &[A : Iy] denotes an ordinal< @A (0) obtained from ¢ by



changing the base Iy into A. This means that &[A : Iy] is obtained from
§ in (6) by replacing 0y, (§5;1n) - a; by 0y, (&[A < In]; A) - a.

Proposition 3.3 Let £,¢ < ¢y, (0) be such that SC(£,{) C A for a strongly
eritical number A < T. Then & < ¢ iff E[A : In] < C[A : Iy].

Definition 3.4 1. A function f : A — A (0) with a finite support supp(f) =
{ec < A: f(c) # 0} C A is said to be a finite function with base A if
Vi > 0(a; = 1) and ap = 1 when by > 1in f(c) =nF ébm(ﬁm;A) CQ +
<o+ + 0y (§0; A) - ag for any c € supp(f).

It is identified with the finite function f [supp(f). When ¢ & supp(f), let
f(c):==0. f,g,h,... range over finite functions.

Let SC(f) :==U{SC(c) USC(f(c)): c € supp(f)}.

For an ordinal ¢, f. and f€ are restrictions of f to the domains supp(f.) =
{d € supp(f) : d < ¢} and supp(f°) = {d € supp(f) : d > ¢}. g.* f°
denotes the concatenated function such that supp(g. * f¢) = supp(g.) U
supp(f©), (ge * f¢)(a) = g(a) for a < ¢, and (g. * f¢)(a) = f(a) for a > c.

2. Let f be a finite function and ¢ < A, € < I'(A) ordinals. A relation f <§ ¢
is defined by induction on the cardinality of the finite set {d € supp(f) :
d > c} as follows. If f¢ =0, then f <§ & holds. Let f¢# 0. If fet =,
then f <§ € iff f(c) < £ Otherwise for d = min{d > 0: c+d € supp(f)},
f <§ € iff there exists a segment p of & such that f(c) < p and f <§

O_q(tl(p); A), where tl(u) is the tail of p with base A.

The following Proposition 3.5 is shown in [4].

Proposition 3.5 1. ( <& < a(0) = 0_.(GA) <O_o(&A).
2. 0e(0-c(G M) A) <€ for ¢ < ¢ (0),

Although the following Proposition 3.6 is shown in [5], let us reproduce its
proof.

Proposition 3.6 f <{ < (= f <§ (.

Proof. By induction on the cardinality n of the finite set {d € supp(f) : d >
cy ={c+di <--- <c+d,} with c < c+d;. If n = 0, then there is nothing
to prove. Let n > 0. We have f(c) < p, and f <™ 6_g, (t1(u); A) for a
segment p of £&. We show the existence of a segment A of ¢ such that pu < A,
and 0_g, (t1(p); A) < 6_g, (t1(N); A). Then TH yields f <5t 6_g4, (t(N); A), and
f <4 ¢ follows.

If 11 is a segment of ¢, then A\ = p works. Otherwise £ < ¢ and there exists a
segment A of ¢ such that pu < A, and tl(u) < tI(A). We obtain 0_g, (t1(p); A) <
0_q, (t1(X); A) by Proposition 3.5.1. m|



3.1 Skolem hulls and Mahlo classes

In this subsection Skolem hulls H,(X), collapsing functions ) and Mahlo classes
Mh .(§) are introduced. -functions are introduced in Buchholz[8].

Definition 3.7 Let A C Iy be a set, and o < Iy a limit ordinal.
a € M(A) :& ANa is stationary in o < every club subset of o meets A.

In the following Definition 3.8, paf = ¢.(8) denotes the binary Veblen
function on (Ix)". For a < e(Iy), ¢ < In, € < I'(Ix), and X C Iy, define
simultaneously classes Ho(X) C I'(Iy), Mh{ .(§) C (In+1) (i > 0), and ordinals

Y1y (a) < Iy and 9f(a) < k by recursion on ordinals a as follows.
Definition 3.8 Let a < e(Iy), ¢ < Iy, £ <T'(Iyn), and X C Iy.
1. (Inductive definition of H, (X))

(a) {0, In}UX C Hy(X), where Q € SSty.
(b) If x,y € Ho(X), then 2 +y € Ho(X) and pzy € Ho(X).

(c) Let @ = 9 (b) with m € Ho(X)NSStoNIy, b € Hyo(X)Na such that
{m,b} C Hp(a). Then o € H(X).

(d) Let a = 1, (b) with b € Ho(X)Na. Then o € Ho(X)N(LStnyU{In}).

(e) Let o € Ho(X) NIy. Then af? € H,(X) N SSt; for each 0 < i < N.

(f) Let a = v (b) with b < a, and a finite function f : Iy — ¢y, (0) such
that {m,b} USC(f) C Ho(X)NHp(a). Then o € Ho(X).

2. (Definitions of Mh .(§) and Mh{ . (f) for 0 <i < N)
The classes Mh¢ .(§) are defined for ¢ < Iy, a < e(Iy) and € < 1, (0). By
main induction on ordinals 7 < I with subsidiary induction on ¢ < Iy
we define 7 € Mh .(§) iff m € LSt;_1, {a,c,§} C Ha(m) and the following
condition is met for any finite functions f,g : In — 1, (0) such that

f<iy &
SC(f,9) C Ha(m) &€ Mhiy(g9.) = m € M(Mh{o(ge * f))
where SC(f,g) = SC(f) U SC(g) and
MR (f) = [{MBEa(f(d)) : d € supp(f)}
= [({Mh4(f(d): e < d € supp(f)}.

Mhio(ge) = ({Mhi,(g9(d) : d € supp(ge)} = N{Mh4(g(d)) : c>d €
supp(g)}. When f =0 or f¢ =0, let Mh{ (0) := LSt;_;.



3. (Definition of 9 (a))
Let a, 7 be ordinals, and f : Iy — ¢y, (0) a finite function. Then wzﬂ(a)
denotes the least ordinal kK < 7 such that

k€ Mhio(f)&Ha(k) N7 C r&{m, a} USC(f) C Ha(k) (7)

if such a & exists. Otherwise set wiﬂ(a) =.
4. Yo(a) :=min({Q} U{B: H(B) NQ C B}) and

Y1y (a) == min({In} U {k € LStn : Ho(k) NIxy C k}) (8)

5. For classes A C Ix, let @ € M{.(A) iff a € A and for any finite functions
g:In— PlIn (O)

o € Mhio(ge) & SC(ge) C Hala) = o€ M (Mh(ge) N A)  (9)

The following Propositions 3.9, 3.10 and 3.11 are seen as in [5].

Proposition 3.9 Assume m € Mh .(¢) and § < ¢ with SC(§) C Ha(m). Then
T e Mh;l,c(g) N Mz(fc(Mhic(S))

Proof. Proposition 3.6 yields 7 € Mh{ (). © € Mg .(Mhi.(§)) is seen from
the function f such that f <f ¢ with supp(f) = {c} and f(c) = &. O

Proposition 3.10 Suppose m € Mh{ .(§).
1. Let f <f_ & with SO(f) C Ha(mw). Then m € M (Mhi . (f)).
2. Let m € M{;(A) ford>c and A Cly. Then m € M (Mhg.(§) N A).

Proof. 3.10.1. Let g be a function such that 7 € Mh{(g.) with SC(g.) C
Ho(m). We obtain 1 € M (Mhﬁo(gc) N Mhﬁc(fc)) by Definition 3.8.2 of 7 €
Mhi (€)-

3.10.2. Let m € M ;(A) for d > c. Then m € Mh{ (§) N A. Let g be a function
such that m € Mh{ ((g.) with SC(g.) C Ha(r). We obtain by (9) and d > ¢ with

the function gc * h, 7 € M (Mh{(gc) 0 Mh{ (§) N A), where supp(h) = {c}
and h(c) = ¢&. O

Proposition 3.11 FEach of x € Ha(y), € Mhi (f) and z = ¥l(a) is a
Al({Sti}OQSN)—predicate m ZFC({Sti}Q<i§N).

Proof. An inspection of Definition 3.8 shows that @ € H,(y), ¥f(a) and = €
Mhg .(f) are simultaneously defined by recursion on a < ¢(ly), in which z €
Mhg .(f) is defined by recursion on ordinals z < Iy with subsidiary recursion
onc <lIy. O
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3.2 A small large cardinal hypothesis

It is convenient for us to assume the existence of a small large cardinal in
justification of Definition 3.8. Shrewd cardinals as well as A-shrewd cardinals
are introduced by M. Rathjen[14].

Definition 3.12 (Rathjen[14])

Let n > 0. A cardinal k is n-shrewd iff for any P C V,, and a set-theoretic
formula ¢(x,y) if Viyy = [P, k], then there are 0 < kp,1m9 < & such that
Vio+no = @[P NV, ko]. For classes A, k is A-n-shrewd iff for any P C V., and
a formula ¢(z,y) in the language {€, R} with a unary predicate R if (Vi.4.,; A) =
[P, k], then there are 0 < ko,19 < K such that (Vi 4n,;A) E [P N Vi, Kol,
where (V,;.A) denotes the structure (Vg, €; ANV,), and for the formulas ¢ in
the language {€, R}, R(t) is interpreted as t € ANV, in (V,; A) E ¢.

Obviously each A-n-shrewd cardinal is n-shrewd. We see easily that each 7-
shrewd cardinal is regular. A cardinal & is said to be (< n)-shrewd [A-(< n)-
shrewd) if  is d-shrewd [A-d-shrewd] for every § < 7, resp.

On the other side subtle cardinals are introduced by R. Jensen and K. Kunen.
The following Lemma 3.13 is shown in [14] by Rathjen.

Lemma 3.13 (Lemma 2.7 of [14])
Let 7 be a subtle cardinal. The set {k € Vi : (Vi3 A) E ‘K is A-shrewd’} of
A-shrewd cardinals in (Vz;A) is stationary in 7 for each class A.

Definition 3.14 Let 7 be a cardinal. The classes B,, and A,, are defined re-
cursively for n < w. Let

By = {k€Vy;:V, E ‘kisan uncountable cardinal’}
A, = {{i,o0):i<n,0€B;}
Boyi = {keVi: (Vi Ay) | ‘K is an A,-shrewd cardinal’}.

We say that a cardinal k € V. is n-shrewd in 7 iff k € B,,. An n-shrewd carinal
is an n-shrewd limit iff the set of n-shrewd cardinals is cofinal in it.

B is the set of shrewd cardinals in V., and a l-shrewd cardinal is a shrewd
cardinal in w. Each A, i-shrewd cardinal is A,-shrewd, and each (n + 1)-
shrewd cardinal is n-shrewd.

Lemma 3.15 Let 7 be a subtle cardinal.
1. The set of n-shrewd cardinals in m is stationary in ™ for each n < w.

2. Let k be an (n+ 1)-shrewd cardinal in w. If (Viq; An) = @[P, k] for 0 <
n<m, P C Vg and a formula p(z,y) in {€, R}, then there are an n-shrewd
limit kg < k and 0 < 1o < Kk such that (Viy4ny; An) E ©[P N Vi, Kol

11



Proof. 3.15.1. From Lemma 3.13 we see that the set of A,,_1-shrewd cardinals
is stationary in a subtle cardinal 7.
3.15.2. Let k be an (n+1)-shrewd cardinal in 7. Then & is n-shrewd, and hence
(Vietn; An) = Jz(x € P)AR({n, k)) for each P = {a} C V, with k < k+7n < 7.
Since & is A,,-shrewd, there are 0 < kg, 1o < & such that (Vi 4, An) = Jz(z €
PNVg) A R((n,ko)). This means that o < k¢ is n-shrewd. Therefore x is an
n-shrewd limit.

Suppose (Viqn: An) = [P, k] for 0 <n <7, P CV, and a formula ¢(z,y)
in {€,R}. Then (Vitn; An) E ¢[P, k] A R((n,k)) AVa < k3o < k(e > a A
R({n,0))). Since k is A,-shrewd, there are an n-shrewd limit ko < k and
0 < no < & such that (Viyin,;An) = @[P N Vi, ko). O

In this subsection we work in an extension 7" of ZFC by adding the axiom stating
that there exists a regular cardinal Iy in which the set of N-shrewd cardinals is
stationary. {2 denotes the least uncountable ordinal wy, For 0 < i < N, St;, = B;
the class of i-shrewd cardinals in V7. LSt; denotes the class of i-shrewd limits
in Vi,. Let Styy1 =SSty = {In} with Iy = QFV+1D | Also St denotes the
class of uncountable cardinals in Vi, and LSty the class of limit cardinals in
Wiy - A successor n-shrewd cardinal is an n-shrewd cardinal in Vi, but not in
LSt,.

Lemma 3.16 T+ Va < I'(In)[¢1, (a) < In].

Proof. We see that the set C' = {k < Iy : Hao(k) NIy C K} is a club subset of
the regular cardinal Iy. This shows the existence of a k € LSty NC, and hence
Y1y (a) < Iy by the definition (8). O

ik

ot is defined by recursion on k < w by at'” = a and afi"™" = (afi")1,

Proposition 3.17 Let a € H,(¢1y(a)), b € Hp(1, (D)), ¢ € He(tba(c)) and
de Hd(¢g(d))

1. Y1y (a) < Yry (b) iff a < b.
2. QN < Y1 (D) for every k < w.

3. Let a = Y, (a) and 0 < k < w. Then o™ < vy, (b) iff & < ¥n, (b).
Vi (0) < o™ iff g () < o

4. valc) < va(d) iff ¢ < d.

5. If v <y, then Y, () < Uiy (y).

Proof. 3.17.2 and 3.17.3. Let § = 1, (b). By the definition (8) and Q2 €
Hp(B) NIy C B we obtain @ < 8. Let a € {Q,¢1,(a)}. If < S, then
B € LSty yields afN® < 8.

3.17.5. We obtain w]IN (y) € LSty and %w(’(/)]],\, (y)) NIy C Hy(’L/JHN (y)) NIy C
1y (y) by < y and Lemma 3.16. Hence 1, () < ¢, (). O
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3.3 -functions

In this subsection we work in ZFC({St;}o<;<n) with St; = B;, and show that
7,/1{ s(a) < S for i-shrewd cardinal S in Lemma 3.19, and introduce an irreducibil-
ity of finite functions in Definition 3.24 using Lemma 3.21, which is needed to
define a normal form in ordinal notations.

Lemma 3.18 Let S be an i-shrewd cardinal with 0 < ¢ < N, a < e¢(In), h :
In = 15 (0) a finite function with {a} USC(h) C Ha(S). Then S € Mhiq(h)N
M(Mhio(h)).

Proof. By induction on § < ¢y, (0) we show S € Mhg .(§) for {a,c, £} C Ha(S).
Let {a,c,§} USC(f) C Ha(S) with f <f € and a < (Ix). We show
S € Mg (Mhg,(f°)), which yields S € Mh¢ (£). TH yields S € Mh2 (f°) by
Proposition 3.5.2, é_e(g‘; In) < (. By the definition (9) it suffices to show that
Vg[S € Mhio(gc) & SCge) € Ha(S) = S € M (Mhio(ge) N Mhi.(£9))]-
Let g : Iy — 1, (0) be a finite function such that SC(g.) C Ha(S) and
S € Mh{,(g.). We have to show S € M(AN B) for A = Mh{,(g.) NS and
B = Mhi.(f°)NS. Let C be a club subset of S.
We have § € Mh{q(ge) N Mhi (f€), and {a} U SC(gc, f¢) C Ha(S). Pick
a b < S so that {a} U SC(ge, f¢) C Hq(b). Since the cardinality of the set
Hao(S) is equal to S, pick a bijection F' : S — Hq(S). Each o < I'(Iy) with
a € H,(S) is identified with its code, denoted by F~1(a) < S. Let P be the

class P = {(m,d,a) € §* : 7 € Mh[ 110} (F(£))}, where F(d) € Hq(S) N (c+ 1)
and F(a) < I'(In) with {F(d), F(o)} C He(m). For fixed 4, a and ¢, the set
{(d,¢) € (Ha(S)N(c+1)) x I(In) : S € Mh{,(¢)} is defined from the classes
P and {St;};<; by recursion on ordinals d < c.

Let ¢ be a formula in {€}U{St;},<; such that (Vs .+i;{St;}<i) = ¢[P,C,S,b]
iff S € Mhg o (ge)NMh .(f¢) and C'is a club subset of S, where {St;};<; = A;_1.
Since S is ¢-shrewd in Vi, pick b < Sg < n < S such that (Vs,+; {St;}i<i) E
QD[P NSy, C NSy, S, b] We obtain S e AnNBNC.

Therefore S € Mh{ .(§) is shown for every {c,§} C Ho(S). This yields S €
Mhio(h) for SC(h) C Ha(S). S € M(Mhiy(h)) follows from the i-shrewdness

of S. O

Lemma 3.19 LetS be an i-shrewd cardinal, a an ordinal, and f : Iy — o1, (0)
a finite function such that {a,S} U SC(f) C Ho(S). Then zpzf’s(a) < S holds.

Proof. Suppose {a,S} U SC(f) C Hy(S). By Lemma 3.18 we obtain S €
M(Mh$o(f)). The set C = {rk <S:Ha(k) NS C k,{a,S}USC(f) C Ha(r)}
is a club subset of the regular cardinal S, and Mh{ (f) is stationary in S. This
shows the existence of a K € Mhiy(f) N C'NS, and hence d’{s(a) < S by the
definition (7). |
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Proposition 3.20 Let a be either 2 or an i-shrewd cardinal for 0 < i < N and
S = aft. Assume {a,S}USC(f) C Ha(S) for an ordinal a and a finite function
f:In = @1, (0). Thenall < wzg(a) for every j <i, and wl{s(a) € LSt;_1\St;.

Proof. Let x = wis(a) < S. We obtain a € H,(k) by al® =S € H,(x), and

ali € Ho(k) NS for S € LSt;. a < k is seen from oV € H,(k) NS C & in the
definition (7). m|

The following Lemma 3.21 and Corollary 3.23 are seen as in [5].

Lemma 3.21 Assume Iy > m € Mhi, (&) N Mh{ (&), §o # 0, and d < c.

Moreover let & € Ha(m) for & < Oe_q(€o:1n), and tI(€) > & when &€ # 0.
Then m € Mhzd(ﬁ +&)N Mffd(Mh?,d(ﬁ +£&1)).

Proof. 7 € Mg ,(Mh,(§ + &) follows from 7 € Mh{ (€ + &) and 7 €
Mhg (o) C M2 (Mg, (0)) by Proposition 3.10.1.

Let f be a finite function such that SC(f) C Ho(r), and f <ﬁiN E+&. We
show m € M¢,(Mh ,(f*)) by main induction on the cardinality of the finite set
{e € supp(f) : e > d} with subsidiary induction on &.

First let f <ﬁl u for a segment pu of £. By Proposition 3.9 we obtain
™€ Mh{ ,(p) and 7 € M“d(thd(f‘i))

In what follows let f( ) = §+ ¢ with ¢ < &. By SIH we obtain « €
Mg o (f(d)NME (Mg 4(f(d))). If {e € supp(f) : e > d} = 0, then Mh¢ ,(f9) =
Mh ,(f(d)), and we are done. Otherwise let e = min{e € supp(f) : e >
d}. By SIH we can assume f <f_ 9~_(e_d)(tl(fl);]IN). We obtain f <f_

0_(e—ay(Oc—a(€0;In);In) = O_c(0c(C0;In);In) by & < Oe—al(éo;Inv), Proposi-
tions 3 6 and 3.5.1. We claim that 7 € M2, (Mh{, (f)) for ¢cg = min{c, e}.

2,Co

If ¢ = e, then the claim follows from the assumption 7= € Mh;{c(fo) and
f <iy &- Let e = c+eg > c. Then 0_.(0:.(60;In);In) = 0-c,(Rd(&0); In),
and f <f_ & with f(c) = 0 yields the claim. Let ¢ = e +c¢1 > e. Then
)_o(0.(&0;In); In) = O, (€0;:1). MIH yields the claim.

On the other hand we have Mh¢ ,(f*) = Mh{,(f(d)) N Mh{, (f©). =
Mhg ,(f(d)) N Mg (Mhi, (f°)) Wlth d < ¢ yleldb by PrOpOblthH 3.10. 2

1,Co 2,Co

™€ M{,(Mhg ,(f(d)) N Mhg . (f°)), ie. wEM“d(Mhld(fd)) |

2,Co

Definition 3.22 For finite functions f,g : In — ¢1,(0), Mhiq(g) < Mhio(f)
iff the following holds:

vr € Mhio(f) (SC(g) C Ha(m) = 7€ M(Mhy(9))) -
Corollary 3.23 Let f,g : In — @1, (0) be finite functions and ¢ € supp(f).
Assume that there exists an ordinal d < ¢ such that (d,c) Nsupp(f) = (d,¢) N
supp(g) = 0, ga = fa, 9(d) < f(d) + Oc—q(f(c);In) - w, and g < f(c).
Then Mhio(g) < Mhgo(f) holds. In particular if m € Mhg(f) and SC(g) C
Ha(m), then ¢ (a) <.
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Proof. Let m € Mhiy(f) = ({Mhi.(f(e)) : e € supp(f)} and SC(g) C
Hao(m). Lemma 3.21 with w € Mhﬁd(f(d))ﬂMh;*,C(f(c)) yields m € Mhg ;(g(d))N
M. (Mhi . (g¢)). On the other hand we have m € Mh{,(ga) = {Mh{ . (f(e))
e € supp(f) Nd}. Hence m € M(Mhg(g)).

Now suppose SC(g) C Hq(m). The set C = {k <7 : Hq(k) N7 C K, {m,a}U
SC(g) C Ha(k)} is a club subset of the regular cardinal m, and Mh{y(g) is
stationary in 7. This shows the existence of a k € Mh;{o(g) N C N, and hence
i (a) < 7 by the definition (7). 0

Definition 3.24 An irreducibility of finite functions f : Iy — r, (0) is defined
by induction on the cardinality n of the finite set supp(f). If n <1, f is defined
to be irreducible. Let n > 2 and ¢ < c¢+d be the largest two elements in supp( f),
and let g be a finite function such that supp(g) = supp(f.) U{c}, 9. = f. and

g(e) = f(¢) + 0a(f(c + d):1n). N
Then f is irreducible iff tI(f(c)) > 04(f(c + d);In) and g is irreducible.

Definition 3.25 Let f,g : Iy — 1, (0) be irreducible finite functions, and b
an ordinal. Let us define a relation f <§’x g by induction on the cardinality
#{e € supp(f) Usupp(g) : e > b} as follows. f <¥ g holds iff f* # g* and for
the ordinal ¢ = min{c > b: f(c) # g(c)}, one of the following conditions is met:

L. f(c) < g(c) and let p be the shortest segment of g(c) such that f(c) < u.
Then for any ¢ < c¢+d € supp(f), if tl(p) < 04(f(c+d);1y), then f <fx+d g
holds.

2. f(c¢) > g(c) and let v be the shortest segment of f(c) such that v > g(c).
Then there exist a ¢ < ¢+ d € supp(g) such that f <7 g and ti(v) <

~ lx
Gd(g(c + d), ]IN)
In [4] the following Proposition 3.26 is shown.

Proposition 3.26 Let f,g : In — ¢1,(0). If f <0 g, then Mhio(f) <
Mhio(g)-

Proposition 3.27 Let f,g: In — @1, (0) be irreducible functions, and assume
that w{ﬁ(b) < and ¥, (a) < k.
Then d)zf,ﬂ(b) <], (a) iff one of the following cases holds:

1. 7 <Y, (a).

2. b <a, ¥ (b) <k, and SC(f) U {m,b} C Ha(¥{,(a)).
b>a, and SC(g) U {r,a} ¢ Hy(¥] . (b)).

b=a, k<, and k & Hy(v] (D).

b=a, 7 =r, SC(f) C Ha(¥{,(a)), and f <, g.

6. b=a, m=r, SC(g9) ¢ Hb(wfm(b))-

Proof. This is seen from Proposition 3.26 as in [2]. 0

A N
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3.4 A computable notation system for IIy-collection

Although Propositions 3.17, 3.20, and 3.27 suffice for us to define a com-
putable notation system for H.,)(0), we need a notation system closed un-
der Mostowski collapsings to remove stable ordinals from derivations as in [5],

cf. section 5. Two new constructors Iy[-] and Sff[p/ S] are used to generate terms
in OT(]IN)

Definition 3.28 p < ¢ denotes the transitive closure of the relation {(p,o) :
3f,alp=vi(a)}. Let p<o = p<oVp=o0.

Let S € SSt; and p < S. We define a set M, = Hy(p) from p in (10) in
such a way that Hy(p) NS C p. Then a Mostowski collapsing M, 3 a — «a[p/S]
in Definition 3.33 maps ordinal terms o € M, to alp/S] < S isomorphically.
The transitive collapse (M,)l?/S = {a[p/S] : @ € M,} is an initial segment in
OT(Iy) such that (M,)l’/5l < k if p < k < S. Note that both p and  can be
interpreted as uncountable cardinals, and the cardinality of the set M, is equal
to p.

Let us define simultaneously the followings: A set OT'(Iy) of terms over con-
stants 0,2, Iy and constructors +, ¢, 1, In[*], *7 (0 < i < N), and #o[*1/*2].
Its subsets SSt;, LSt; with St; = SSt; U LSt;, and sets M, (p € ¥), finite
sets Kx(a) of subterms of o for X € OT'(Iy). Let SSt = (Jy.;<n SSti and
LSt = Uyci<n LSti. For each S € SSt, there exists a unique ¢ such that
S € §St;.

For ¢ > 0, k € St; is intended to designate that  is an ¢-shrewd cardinal,
or k is an i-stable ordinal. xk € SSt; [k € LSt;] is intended to designate that
K is a successor i-stable ordinal [k is a limit of i-stable ordinals], resp. x € St
is intended to designate that s is an uncountable cardinal, or x is either a
recursively regular ordinal or their limit. We have St; = SSt; U LSt; with
SSt; N LSt; = 0, and St; 41 C LSt;. If S € SSt;, then the ordinal term wg(a)
in Definition 3.31.5 denotes the ordinal wzfs(a) in (7) of Definition 3.8.3.

o =NF Oy + -+ + g means that a = Qp, + -+ ap with oy, > -+ >
and each «; is a non-zero additive principal number. a =5 @37 means that
a=ppyand B,y < a.

Sets SC(a) of strongly critical numbers are slightly modified as SC(Q) =
SC(Iny) = 0. Specifically SC(0) = 0, SC(a) = ;<,, SC () for a =np o +
-+ 4 ap, and SC(a) = SC(b) U SC(c) for a =nF pp(c). SC(2) = SC(Iy) = 0.
SC(a) ={a} if a &€ {Q,Ix} is strongly critical.

For a = 1 (a), let m(a) = f. SC(f) = U{SC(c)USC(f(c)) : c € supp(f)}.
Immediate subterms of terms are defined as follows. k(ay, + -+ + ag) =
{ao, .., am}, k(paB) = {a, B}, k(Y1y(a)) = {In,a}, and k(ﬂ}{j(()&)) ={o,a}U
SC(f)-

Note that in the following Definition 3.31, e.g., there is no clause for con-
structing k = ¢s(a) from a for S ¢ SSt.

Definition 3.29 1. a € ¥ :& 3k, f,a(la = ¥l(a)) and a € Vg & Ik =<
S3f, ala = ¥l (a)).
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2. For asequence i = (ig, i1,...,in) of numbers, let afl = (- ((afto)tin) .. Hfin,

3. By i < i let us understand that i = (40,71, .- -,4n) is a non-empty and
non-increasing sequence of numbers such that 0 < i, <--- <4y <ip <.

Definition 3.30 1. Let o < ¢(b) for an S € SSt and a g with b = po(a).
Then let
M, = Hp(a) (10)

2. For « € ¥, an ordinal pp(«) is defined.

(a) If o« < 9 (D), then po(a) = b.
(b) If there are p and § € M, such that LSt; 3 p < S € SSt;;; and

a = B[p/S] # B, then po(ar) = po(8).
(¢) po(c) = 0 otherwise.

3. af = afl.

Definition 3.31 (Definitions of OT(Iy) and Kx («))
Let St; = SSt; U LSt; C OT(HN) with SSt; N LSt; = ¢ and StH_l C LSt;. For
§,a € OT(Iy), Ks(a) = Kx(a), where X = {8 € OT(Iy) : B8 < §}.

1. {0,92,Ix} € OT(Iy) and Q" € SSt; for 0 < i < N. Let Styy1 = {Iy}.
m(a) = Kx(a) =0 for a € {0,In,Q} U{Q1":0<i < N}.

2. If o =y am + -+ ap(m > 0) with {a; : i < m} C OT(Iy), then
a € OT(Iy), and m(a) = 0.
Let o =np ¢Bv < e(Iy) with {8,7} € OT(In). Then oo € OT(Iy) and
m(a) = 0.
In each case Kx(a) = Kx (k(a)).

3. Let a = ¢q(a) with a € OT(Iy) and K,(a) < a. Then o € OT(Iy).
Let m(a) =0. Kx(a)=0ifa e X. Kx(a) ={a} UKx(a) if « & X.

4. Let a = Y1, (a) with a € OT(Iy) such that K,(a) < a. Then a € LSty
and ol € SSt; for 0 < i < N. For 8 € {a,al’}, m(B3) = 0. Also
Kx(a') =0 if o' € X. Kx(al) = Kx(a) if o' ¢ X. Kx(a) = 0 if
ac€X. Kx(a)={a}UKx(a)ifa & X.

5. Let T € LSt U{Q} and S = T ¢ SSt; 1 for a non-empty and non-
increasing sequence of numbers i = (i > i1 > -+ > i,) such that ig < k
and ¢, = 7 + 1, cf. Proposition 3.32. Let a = wg(a), where {a,S} C
OT (Iy), and if f # 0, then there are {d, £} C OT(Iy) such that supp(f) =
{d}, 0 < f(d) = € < (Iy)?, d < Iy. If Ks({S,a} U SC(f)) < a for
SC(f) = SC({d,€}), and

SC(f) € Ha(5C(a)) (11)
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then o € LSt; and o' € SSt; for 0 < j <.

Let a = po(a), m(a) = f. Kx(a) = 0if « € X. Kx(a) = {a} U
Kx({a,S}USC(f)) if a & X.
m(al) =0. Kx(aV)=0if ol € X. Kx(al) = Kx(a) if o' ¢ X.

6. Let {m,a,d} C OT(Iy) with 7 <S € SSt;11, m(w) = f, d < ¢ € supp(f),
and (d,c) Nsupp(f) = 0.
When g # 0, let g be an irreducible finite function such that SC(g) C
OT(In), g4 = fa, (d,c) Nsupp(g) = 0, g(d) < f(d) + Oc—a(f(c);In) - w,
and g <g_ f(c).
Then a = ¥¥(a) € LSt; and ol € SSt; for 0 < j < i if K,(k(a)) < a,
and

SC(g) U{po(a)} C My (12)
Let m(a) =g. Kx(a)=0ifa € X. Kx(a) ={a}UKx(k(a)) if a & X.
m(a') =0. Kx(alV)=0ifal € X. Kx(a') = Kx(a) if o' ¢ X.
7. Let S € SSt; and 0 < k <i. Then St* € SSt,.
m(StF) = 0. Kx(St*) =0 if St* € X. Kx(St*) = Kx(S) if StF ¢ X.

8. Let SStM = SSt; U{alp/S] : p < S € SStM, a0 € M, N SStM} and
SStM = Uo<icn SStM. Also let LStM = LSt; U{a[p/S] : p < S €
SStM o€ M, N LStM} and LStM = Uo<icn LStM.

Let p < S € SStM, and i = (ip > i1 > -+ > i,) (n > 0) with 0 < 4, <
io < i+ 1. Then (S'[p/S]) € SStM c OT(Iy), where a term ST[p/S] is

built from terms St?, p and S by the constructor ko [*1/%2).

9. Let o = B[p/S] with S < B € M,, p <S, and S € SSt™. Then a €
OT(Iy) \ St.

Note that in Definition 3.31.5,
Ko(k(T)u{b} <a (13)

follows from S = Tt € H,(a) if T = 19 (b) € LSt with k(T) = {o,b} U SC(g),
and a = dzét (a).
Proposition 3.32 Let « € OT(Iy).

1. a € LSty iff a = 1y (a) for an a. For 0 <i < N, a € LSt; NV iff there
exists an S € SSt; 11 such that a < S.

2. B € SSty iff there exists an o € {Q} U (LSt; N¥) for an k < i < N
and a non-empty and non-increasing sequence t = (ig > 41 > -+ > ip) of
numbers such that k =14, >0, a € LSt; = iy < i and § = a'.
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3. Let wg(a) € OT(Iy) with S € SSt. Suppose that there exists a sequence
{(Tm,Sm,fm)}mgn of T,, € LStNVY, S,, € SSt and sequences i of

numbers such that To = 11, (b), Sy, = ']I‘IZ"" and Tpp1 < Sy, (m < n), and
S=S,. Then b < a holds.

4. o€ SStM iff there exists a p and an i such that o € {pﬁ, Sﬁ[p/S]}.

Proof. 3.32.1 and 3.32.2. We see these from Definitions 3.31.1, 3.31.4, 3.31.5,
3.31.6 and 3.31.7.

3.32.3. Let T,, = g (by) and T, =< 5" (am-—1) for ¢ 1 = ¢y, and
a_y = b. In general, if 0 = f(c) € Hyp(9(b)) with ¥J(b) < o, then ¢ < b.
Hence a;,—1 < by,. On the other we obtain b, < a,, by (13), where a,, = a.
Therefore b =a_1 < a,, = a. O

Sets H (X)) are defined for {y}UX C OT(Iy) in such a way that o € H.,(X)
iff Kx(a) < for a,y € OT(In) and X C OT(Iy). In particular OT(Iy) =
He(1y)(0), and H,(X) is closed under Mostowski collapsing o +— a[p/S] if v >
I, and differs from sets defined in Definition 3.8.

We define terms a[p/S], sets Kx(a[p/S]) and a relation 8 < v on OT(Iy)
recursively as follows.

Definition 3.33 (Definitions of a[p/S] and Kx(«[p/S]))
Let p < S € SStM,. We define a term a[p/S] € OT(Iy) for a € M, in such a
way that afp/S] = « iff @ < p. Moreover afp/S] € St iff either «[p/S] = a € St
or a[p/S] = p € SSt.

Also Kx(«a[p/S]) is defined recursively as follows. The map a — a[p/S]
commutes with ¥, ¢, In[-], and +. Kx(a[p/S]) =0 if a[p/S] € X.

1. afp/S] := a when a < S.

In what follows assume a > S, a[p/S] > p and alp/S] ¢ X.

2. (S)[p/S] == p and (In)[p/S] := In|p]-
For 7 = (ig > i1 > - > in) < i+ 1, (S7)[p/S] := (SV[p/S]) € S5tV
cf. Definition 3.31.8. Here ST;[p/S] £ pfi,
Kx(alp/s]) = Kx(p) if alp/S] € {In], S"[o/S]}.

3. Let a = 11y (a). Then afp/S] = 1, (alp/S]).
Kx(alp/S]) = Kx({p, alp/S]}) U{alp/S]}-

4. Let a = ¢ (a). Then a[p/S] = /"3 (alp/S]), where (f[p/S)) : In[o] —
@110 (0), supp(flp/S]) = (supp(f))[p/S] = {c[p/S] : ¢ € supp(f)} and
(flo/S)(clo/S]) = (£(c))lp/S] for f : [p] = @ry(,1(0) and ¢ € supp(f)-

Kx(alp/S]) = Kx({klp/S], alp/S]} U SC(f[p/S])) U{alp/S]}.
Map/s) = Hjpys)(alp/S]) for b = po(a) and b[p/S] = po(alp/S]).
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5. Let a = In[7] # In. Then afp/S| = In[r[p/S]], where In[r] € M, iff
T € M,. Kx(alp/S]) = Kx(7[p/S]).

6. Let a = 1 (7(a) for In[7] # In. Then a[p/S] = ¥r, (751 (alp/S]).
Kx(alp/S]) = Kx({7[p/S], alp/S]}) U {alp/S]}.

7. Let a = 717 with S < 7 € LStM. Then alp/S] = (7'[/)/8])“?7 where
e M, iff T € M,. Kx(alp/S]) = Kx(7[p/S]).

8. Let o = T [7/T], where 7 < T € S5t™. Then a[p/S] = ']T?[Tl/ﬂ‘l], where
7 = 7lp/S] < T1 = T[p/S] € ™ and T = (T)V. Kx(alp/S]) =
Kx(7lp/S])-

9. Let av = ppv. Then a[p/S] = ¢(B[p/S])(v[p/S])-

Kx(alp/S]) = Kx(Blp/S],7[p/S])-
10. For @ = ap + -+ ag(m > 0), alp/S] = (anlp/S]) + - + (aolp/S)).
Kx(alp/S]) = UiKx (ulp/8))) = i < m}.

A relation a < 8 for a, 8 € OT (I y) is defined according to Lemmas 3.16 and
3.19, Propositions 3.17, 3.20, and 3.27, and Corollary 3.23, provided that a €
H.,(X) is replaced by Ky (a) < 7. The relation enjoys ¥/ (a) < x according to
Lemma 3.19 and Corollary 3.23. Moreover we obtain St < Vi) (bo) < StG+1)
for i +1 < N, and LSty 3 19 = 1, (co) < "0 (do) < Tg < Iy by Proposition

To
3.20 and Lemma 3.16. Hence if S < ¢, (co), then S < SV < 42, (bo) <
St < 75 = 9ry(co) < ¥™(do) < T(;r < In. The Mostowski collapsing
To
-[p/S] maps these inequalities isomorphically to p < St[p/S] < ¢§t(i+1)[p/§](b) <
SUHDp/S] < 7 = Yy (e) < ¥l (d) < 71 < In[p] < pi%, where b = bo[p/S],
etc.

Definition 3.34 For terms 7,k € OT(Iy), a relation 7 <% & is defined recur-
sively as follows.

L Let 7 <k XS € SStH,, and i <i+1. Then each of 7 < k, STZ[’IT/S] <R
x and Iy[r] <f & holds. Moreover 7" <% k holds provided that 71 &
SSt.

2. T <P <R r=71 <R

Let < ko1 <B kv 7=k ForS eSSt let
L(S) := {a € OT(Iy) : a < S}.

Note that L(S)NSSt = 0, and SSt > p° AR S for LSt; 3 p < S € SSt;1 and
i < i. For each strongly critical number < a ¢ {In}USt, there exists a unique
S € §5t such that « <% S. If 8 < T and a < S with T < S, then 8 < . In
other words, L(T) < L(S) for layers L(S). Moreover if n & (Jscgg; L(S) U SSt
and n € U, then either n < Q or n < Iy.
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Definition 3.35 Let 8, € OT(Iy) NIy be strongly critical numbers. 5 < «
iff one of the following cases holds:

1. B =1%va(b), a =q(a) and b < a.

2. B=1r(b), a =¢s(a), 7=k € {In}U{o € OT(Iy) : 3p(o = In[p])},
and b < a.

3. B =0 and Q # a # Ya(a).

4. SY < T1T iff (S) # @ <ip (T) % for S,T € {Q} U (LSt N V), where i =
(G081, - yin) <tz (Jo,J1s---yJdm) = j iff either Ik < min{n,m}(Vp <
k(ip = jp) & i < jg) or n <m&Vp < n(ip, = jp).

5. (a) There is an S € St such that o <*'S > 3 € LSty.
(b) There is a T € SSt such that 8 <% T < a.

6. There are T, S € SSt such that 3 <% T and o <% S with T < S.

7. There is an S € SSt such that 3, < S and one of the following holds:

(a) B=vL(b), @ =19(a), and there is a p < S such that s, 7 < p and
one of the following holds:
. m<a.
ii. b<a, B <k, and K,(SC(f)U{r,b}) <a
ili. b>a and b < Kg(SC(g) U{k,a}).
iv. b=a, k <m, and b < Kg(k).
v. b=a, =k, Ko(SC(f)) < a, and f <P g.
vi. b=a, m =k, and b < K3(SC(g)).

(b) There are Iy[p] <% S, ¢,d and 7, such that § <7 (Y1y[0] (d))ﬁ,
« jR (’(/)HN[P] (C))Tj and "/)]IN[p](d) < 1/)]1N[p] (C)

(c) There are i, Iy[p] such that p < T <% S, g <R ']I‘ﬁ[p/T] and a <t
Iy |p]-

(d) There are p < T <R'S, 0,7 < U = T'[p/T], k and I such that
T <o, (r,0) # (B,a), a =0cVa=fiyo]Vva=xF UTE[U/U], and

B=1vp 2 Iy[r]vp R UN[r/U].

Lemma 3.36 (OT'(In), <) is a computable linear order. Specifically each of
a < B and o = f is decidable for a, 8 € OT(Iy), and o € OT(Iy) is decid-
able for terms a over symbols {0,Q,In,+,0,¥}, {7 : 0 < i < N}, In[¥] and
ko [*1/%2].

In particular the order type of the initial segment {o € OT(Iy) : a < Q} is
less than W™ if it is well-founded.
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In what follows by ordinals we mean ordinal terms in OT (I ). fa denotes
the length of ordinal terms «, which means the number of occurrences of symbols
in a.

Proposition 3.37 IfS € St;,1 = SSt;; 1 ULSt;1 and a < S, then af* < S.
Proof. This is seen from Proposition 3.32 and Definition 3.35. O
Proposition 3.38 {S} U SC(m(p)) U {po(p)} C M, for p € Us.

Proof. If p = d)g(a) with an S € SSt, then we obtain f = m(p), a = po(p),
{S}uSC(f) U{po(p)} C Ha(er) = M, by Definition 3.31.5. Otherwise {S} U
SC(m(p)) U{po(p)} C M, follows from (12) in Definition 3.31.6. O

An ordinal term o € OT(Iy) is said to be regular if either o € {Q,In} U

{o € OT(Iy) : 3p(o = In[p])} or ¥f(a) is in OT(Iy) for some f and a. Reg

denotes the set of regular terms. Then Reg = SStM U {Iy[p] : IS € SStM(p <

S)}U{,In}. We see that for each o € U, there exists a & € Rego := (Reg \ V)

such that o < k. Such a & 1s either in {Q,Ix} or one of the form In[p], p“ or
STZ[p/S] with a non-empty 7.

Proposition 3.39 Let ¢f(a) < (b)) < 7 < k and 7 < p and K < T with
{p,7} C Rego. Then p =r.

Proof. From Definition 3.35 we see that the only possible case is Definition
3.35(7a). |

Lemma 3.40 For p < S and S € SSt, {a[p/S] : o € M,} is a transitive
collapse of M, in the following sense. Let {c, 5,7} C M,.

1. B <a<+ Blp/S] < alp/s].

2. B <" a s Blp/S] <F alp/s].

3. S <y = (Ky(8) < as Kys(Blp/S) < alp/s]).
4- OT(In) Nalp/S] = {~[p/S] : v € M, Na}.

Proof. We show Lemmas 3.40.1- 3.40.3 simultaneously by induction on the
sum 2°~ + 2% for a, 8 € M,. We see easily that S > I'(Iy[p]) > ap/S] > p
when o > S. Also afp/S] < a.

3.40.2 and 3.40.3 are seen from TH.

3.40.1. Let k(¢d(a)) = SC(g9) U{k,a}. Let S < B = i(b) < ¥i(a) = «
with k(8,a) C M,. From IH with Definition 3.35 we see that S[p/S] =

zbf[zg]( [p/S]) < @Dg[zg (alp/S]) = alp/S]. Other cases are seen from IH.
3.40.3. Suppose K, () < a for S < . Then K,,,5(8[p/S]) < a[p/S] is seen

from TH and Lemma 3.40.1 using the fact [p/S] > p.
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3.40.4. Let 8 € OT(Ix) Nalp/S] for « € M,. We show by induction on ¢f that
there exists a v € M, such that 8 = v[p/S]. If B < p, then S[p/S] = B. Also
p = S[p/S] and In[p] = (In)[p/S]. Let I'(In[p]) > alp/S] > B > p. We may
assume Iy[p] > S > p by IH.

If 8 = In[7], then Ix[r] > 7. Pick a k € M, such that x[p/S] = 7. Then
8= nlDlo/Sl.

If B = 7t then 71" > 7. Pick a k € M, such that k[p/S] = 7. Then
B = (x")[p/S)].

If 8 = T/ [y /T1], then T [r/T1] > 7. Pick a 7 € M, such that 7[p/S] =
7. Then for 7 < T € SStM, we obtain 8 = (T [r/T])[p/S].

Finally let 8 = 7 (b) with k(8) C Hy(8), b < T'(Inx[p]) and f : A — A (0)
for 7 < ofF with a k # (. We have 3 < O'TE, p < B < Iylp], and p < S.
By Definition 3.35 we obtain ¢ # S. Suppose 8 < S < ot Then a < p by
Definition 3.35. Hence we may assume otk < S. Then we obtain p < otk <
In[p]. Hence o <% Iy[p] or o <% ST;[p/S} for an i. By IH with = < ofF
there are {c,k, A} C M, and g : A = ¢»(0) such that c[p/S] = b, k[p/S] =,

No/S] = A, SC(g) C M, glp/S] = f in the sense that (supp(9))[o/S] = supp()
and (g(d))[p/S] = f(d[p/S]) for every d € supp(g). Let v = ¢9(c) € M,. Then

Ylp/S] = ¥ (b) = B and k() C He(7).
Other cases are seen from IH. O

Lemma 3.41 1. Let a = ¢q(a) with a € He(a). Then Hqo(a) N C a.
2. Let o = ) (a) with a € Hq(a). Then Hqo(a) NIy C a.

3. LetS € SSt, and a = ¥l (a) < k with k XS and {K,a} USC(f) C Ha(a).
Then Hq(a) Nk C a.

Proof. We see 5 € H,(a) NQ = 8 < a = ¢q(a) by induction on the lengths
L3 of B. Lemmas 3.41.2 and 3.41.3 are seen similarly using the fact p < a =

In[p] < a for a € {y(a),f(a)}. 0o

Proposition 3.42 LetS € SSt, and p = ! (a) < k with s =S and H,(k)NS C
k for v < a. Then H,(p) NS C p.

Proof. If k = S, then H,(p) NS C Ha(p) NS C p by v < a and Lemma
3.41.3. Let k = ¢9(b) < S. We have k € H,(p) by (7), and hence b < a by
S > k > p. We obtain H,(p) NS C H,(k) NS C k. v < a with Lemma 3.41.3
yields H~(p) NS C Hy(p) Nk C Halp) N K C p. O

Lemma 3.43 Let p € Ug for an S € SSt.
1. Hy(Mp) C M, if v < po(p).
2. M,NS=pandp¢g M,.
3. If o < p and po(c) < po(p), then My C M,.
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Proof. Lemmas 3.43.2 and 3.43.3 are seen readily.
3.43.1. Let v < b = po(p). We show oo € M, = H;(p) by induction on Lo
for € Hy(M,). Let k(o) C H(M,) N Ha(a) be such that a < v < b and
a=1yi(a) € H,(M,). IH yields k(a) C M,. We obtain o € Hy(p).

Other cases are seen from ITH. o

Definition 3.44 (Mostowski uncollapsing)

Let o be an ordinal term and p < S with § € §St. If there exists a 8 € M,
such that o = B[p/S], then a[p/S]~! := B. Otherwise a[p/S]~! := 0. Let
Xp/S|7t :={a[p/S]7! : @ € X} for a set X of ordinal terms.

We see that ordinal terms p and 8 € M, with p < a = B[p/S] < T'(Ix[p]) are
uniquely determined from «, when such 5 and p exist.
4 Operator controlled derivations

We prove Theorem 1.1 assuming that the notation system (OT (Iy), <) is a well
ordering. Operator controlled derivations are introduced by W. Buchholz[9],

which we follow. In this section except otherwise stated, «, 8,7,...,a,b,¢,d,. ..
and &, ¢, v, i, . .. range over ordinal terms in OT (Iy), f, g, h, ... range over finite
functions.

4.1 Classes of sentences

Following Buchholz[9] let us introduce a language of ramified set theory RS.

Definition 4.1 RS-terms and their levels are inductively defined.
1. For each o € OT(In) N1y, L, is an RS-term of level .
2. Let ¢(x,y1,...,yn) be a set-theoretic formula in the language {€}, and
ai,...,a, RS-terms of levels<a € OT(Ix) N1y.
Then [z € L, : ¢-=(2,a1,...,a,)] is an RS-term of level a.

Let us identify the individual constant My in the language of Sy, with the
RS-term Lgq.

Definition 4.2 1. |u| denotes the level of RS-terms u, and T'm(c) the set
of RS-terms of level< a € OT(In) N (Ixy +1). Tm = Tm(Iy) is then the
set of RS-terms, which are denoted by u, v, w, ...

2. RS-formulas are constructed from literals v € v,u ¢ v and st;(u), —st;(u)
for 0 < ¢ < N by propositional connectives V, A, bounded quantifiers
dzx € u,Vz € u and unbounded quantifiers 3z, V2. Unbounded quantifiers
Jx,Vx are denoted by 3z € Ly, Va € Ly, resp.

It is convenient for us not to restrict propositional connectives V,A to
binary ones. Specifically when A; are RS-formulas fori < n < w, AgV---V
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A, _1and AgA---NA,_1 are RS-formulas. Even whenn =1, AgV---V Ay
is understood to be different from the formula Ay. For ' = {4; : i < n}
we write \/ T = (4o V-V A,_1)and AT = (Ao A~ AN Ap_1).

For RS-terms and RS-formulas ¢, k(¢) denotes the set of ordinal terms «
such that the constant L, occurs in ¢, and |¢| = max(k(¢) U {0}).

Also let B(k(r)) := U{B(«a) : a € k(¢)}, cf. Definition 4.10 and (19) in
Definition 4.14.

Let k(n) = B(k(n)) = 0 and |n| = 0 for natural numbers n.
L;={e}uU{st;:0<j<i}.

Ao (L;)-formulas, 31 (L;)-formulas and X(L;)-formulas are defined as in [6].
Specifically if ¢ is a X(L;)-formula, then so is the formula Vy € z 1. 6%
denotes a Ag(L;)-formula obtained from a 3(L;)-formula 6 by restricting
each unbounded existential quantifier to u.

For a 31 (L;)-formula t(x1,...,2my) and vy, ..., uy € Tm(k) with £ <
In, D& (uy, .. ug) is a 21(L; ¢ K&)-formula. Ag(L; : k)-formulas and
Y(L; : k)-formulas are defined similarly

For 0 = &) (uy, .. uy) € B(L; = k) and A < &, with ug,...,u, €
Tm(\), 0% = ) (uy, .. uy).

In what follows we consider only sentences without free variables. Sentences
are denoted A, C possibly with indices.

For each sentence A, either a disjunction is assigned as A ~ \/(A4,),cs, or a
conjunction is assigned as A ~ A(A,),es. By st;(u) we understand that there
is a successor i-stable ordinal S such that Lg = u.

Definition 4.3 1. For v,u € Tm(Iy) with |v| < |u], let

AN

-y Alv) Hfu=slrely:Alx))
(veu) ':{ v Ly ifu=Ly

and (u=v) = (Vo € u(x € v) AVz € v(z € u)).

When A ~\/(4,).,cs, let ~A ~ A(A,).cJ-

(v €)=\ (Ap)wes for Ay = (wEu) A (w =v)) and J = Tm(|ul).
(AgV -~V A,_1) = V(A).es for J:=n.

For w € Tm(Iy) U {L1y}, 3z € uw A(x) 1= V(Ay)vey for A, = ((v€Eu) A
A(v)) and J = Tm(|u|), where Tm(|L1|) = Tm(Ixy) = Tm and (vé€ly,) :
(v & Lo).

sti(u) =~ V(Ls = w)ieq, with J; = {Ls : |u| > S € SSt;}, where st;

denotes the predicate symbol in the language L1, while SSt; C OT (Iy)
in the definition of J;.
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7. For A~ \/(A,)es let [p|J ={t € J : k(r) C M,}.

It is clear that k(A,) C Ho(k(A) Uk(s)).
The rank rk(:) of sentences or terms ¢ is defined slightly modified from [9]
so that the following Proposition 4.5 holds.

Definition 4.4 1. rk(—A) :=rk(A4).
2. tk(Ly) = wa.

. tk(Ag V-V Ap_1) = max({0} U {rk(A4;) + 1:¢ < n}).

=~ D ot [ w
=
=
)
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~
~—
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. tk(3z € v A(z)) = max{rk(u),rk(A(Lo))} + 2 for u € Tm(In) U {Ly, }.
For finite sets A of sentences, let rk(A) = max({0} U {rk(d) : § € A}).

Proposition 4.5 Let A be a sentence with A ~\/(A,).es or A~ N(4,).cJ-
1. tk(A) < Iy +w.

rk(V/T) = max({0} U {rk(4) +1: A e T'}).

wlu| < 1k(u) € {wl|u| +1i:7 € w}, and w|A| < 1k(A) € {w|A| +7i:i € w}.

rk(st;(u)) € {rk(u) +i:i < w}.

For v e Tm(|u]), tk(v€u) < rk(u).

S v o e

Ve e J(rk(4,) < rk(A4)).

Proof. 4.5.5. Let a = |u|. We obtain rk(v) < w(|v| + 1) < wa by Proposition
4.5.3. First let u be L. Then (véu) = (v € Lo), and tk(v € Lo) = max{rk(v) +
4,1} < wa = rk(u).

Next let u be an RS-term [z € L, : A(z)] with A(z) = (¢ (z,u1,...,up))
for a set-theoretic formula ¢(x,y1,...,y,), and RS-terms uy,...,u, € Tm(a).
Then (véu) = (A(v)). If ¢ is a bounded formula, then we see from Proposition
4.5.3 that 1k(A(v)) < wa. Otherwise rk(A(v)) = wa + i for an i < w. Hence
tk(A(v)) = rk(A(Lo)) = rk(u).

4.5.6. First let A be a formula v € u, and w € Tm(a) with o = |u| >
Then rk(w€u) < rk(u) by Proposition 4.5.5. Moreover max{rk(Vz € w(z
v)),tk(Vz € v(z € w))} = max{rk(w),rk(v),tk(Lyg € v),tk(Ly € w)} +
We have max{rk(w),rk(Lo € w)} +2 < wa < rk(u), and rk(Ly € v)
max{4,rk(v) + 1}. Hence max{rk(wéu),rk(Vz € w(zr € v)),rk(Vz € v(z
w))} + 2 < max{rk(v) + 3,rk(u)}. Therefore rk(4,,) < rk(A).

> 0.

€
2.
€
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Next let A be a formula 3z € u B(x), and v € Tm(a) with o = |u|. Then
rk(v€u) < rk(u) by Proposition 4.5.5. Moreover either rk(B(v)) < w(|v| +1) <
wa < rk(u) or tk(B(v)) = rk(B(Lg)). This shows rk(A4,) < rk(A4).

Finally let A be a formula st;(u), and A, = (L, = u) with a < |u| and « €
SSt;. In particular 0 < o < |u|. We obtain max{rk(Vz € L,(x € u)),rk(Vz €
u(r € Ly))} = max{rk(Ly),rk(u),3} + 3, where rk(L,) = wa < rk(u). Hence
rk(Ay) = rk(u) + 4 < rk(A4). a

Definition 4.6 Let p < S € SSt; for an 0 < ¢ < N, and k(v) C M, for
RS-terms and RS-formulas ¢. Then ¢[°/5 denotes the result of replacing each
unbounded quantifier Qz by Qz € Ly, and each ordinal term a € k(¢) by
alp/S) for the Mostowski collapse in Definition 3.33. ¢[?/5] is defined recursively
as follows.

L (Lo)lP/S = Lypse with o € M,. When {a} U U{k(w;) : i < n} C
M,, ([z € Lg : ¢ (z,uq,. .. ,un)])[p/s} is defined to be the RS-term [z €
La[p/S] : ¢LO[D/§H (Iv (ul)[p/S]’ ceey (un)[p/S])]

2. (—\A)[p/S] = —Ale/S] (u € U)[p/S] = (u[p/S] c U[p/S]). (ApV-- .\/An_l)[p/S] =
(Ap)P/Slv oo v (A, )8 (32 € wA)PS = (3 € ulr/SIAlP/AT),
(FzA)P/8 = 3z € Ly, AP/E).

The following Propositions 4.7, 4.8 and 4.9 are seen from Lemma 3.40.

Proposition 4.7 Let p < S.

1. Let v be an RS-term with k(v) C M,, and o = |v|. Then vl?/%! is an
RS-term of level a[p/S], [vP/5)] = a[p/S] and k(v[P/5) = (k(v))[p/s],

2. Let o < Iy be such that o € M,. Then (Tm(a)PS = {le/sl o €
Tim(a),k(v) C My} = Tm(alp/S)).

3. Let A be an RS-formula with k(A) C M,. Then AlP/Sl is an RS-formula
such that k(AP/S)  {a[p/S] : o € k(A)} U {In[p]} N Hs(k(A) U {p}).

Proof. 4.7.1. We see easily that v[?/5] is an RS-term of level a[p/S).

4.7.2. We see (Tm(a))[p/s] C T'm(alp/S]) from Proposition 4.7.1. Conversely let
u be an RS-term with k(u) = {8; : ¢ <n} and max{8; : i <n} = |u| < alp/S].
By Lemma 3.40 there are ordinal terms v; € OT(Ix) such that v; € M, and
~ilp/S] = B;i. Let v be an RS-term obtained from u by replacing each constant
Lg, by L,,. We obtain vl?/Sl = u, v € Tm(a), and k(v) = {v; : i < n} C M,,.
This means v € (T'm(a))?/*,

4.7.3. We see readily that k(AP/S) C {a[p/S] : @ € k(A)} U {Ix[p]}. From this
and Proposition 4.11.2, k(AP/S) ¢ Hg(k(A) U {p}) follows. O

Proposition 4.8 For RS-formulas A, let A ~ \/(A,).c; and assume k(A) C
M, with p < S. Then AlP/Sl ~\/ ((AL)[’J/S])LE[,)N for [p]J = {t € J: k() C
M,}.
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Proof. This is seen from Proposition 4.7.2. o
Proposition 4.9 Let k(1) C M, with p < S. Then rk(:l?/S) = (vk(1)) [p/S].

Proof. We see that rk(:) € M, from Proposition 4.5.3. The proposition is
seen from the facts (wa)[p/S] = w(alp/S]) and (a + 1)[p/S] = «[p/S] + 1 when
a€ M, ]

4.2 A preview of elimination procedures of stable ordinals

Let us explain briefly our elimination procedures of stable ordinals in this section
and section 5. In the previous paper [5], we analyzed an axiom Lg <y, L proof-
theoretically. The axiom is a schema 3z B(z,v) Av € Ls — 3z € Ls B(z,v) for
Ap-formulas B. The schema says that S ‘reflects’ Ilg+-formulas in transfinite
levels for a bigger ordinal St > S such that L = Lg+. In order to analyze
the reflections, Mahlo classes Mh{ .(§) are introduced in Definition 3.8.2. 7 €
Mhg (§) reflects every fact m € Mh{y(gc) = ({Mh{4(g(d)) : ¢ > d € supp(g) }
on the ordinals 7 € Mh?.(£) in lower level, down to ‘smaller’ Mahlo classes

MA(f) = (MR, (F(d)) < ¢ < d € supp(f)).

This apparatus would suffice to analyze reflections in transfinite levels. We
need another for the axiom Lg <y, L, i.e., a (formal) Mostowski collapsing:
Assume that B(u,v) with v € Lg for a Ap-formula B. We need to find a
substitute v’ € Lg for w € L such that B(u',v). For simplicity let us assume
that v = 8 < S and u = « are ordinals. We may assume that a > S. Let p < S
be an ordinal, which is bigger than every ordinal< S occurring in the ‘context’
of B(«, 5). This means that 6 < p holds for every ordinal § < S occurring in a
‘relevant’ branch of a derivation of B(a, ). Then we can define a Mostwosiki
collapsing o — «[p/S] for ordinal terms « such that S[p/S] = f for each relevant
B < S and S[p/S] = p, cf. Definition 3.33. Then we see that B(a[p/S], 5) holds.

Let M, denote a set of ordinal terms « such that every subterm 5 < S
of a is smaller than p. It is shown in Lemma 3.43.1 that H.,(M,) C M, if
Hy(p) NS C p. Let Hy[O] FE T, and assume that {v,a,c} Uk(I) C H,[O].
Moreover let us assume that © C M, holds. Then we obtain {v, a,c} Uk(I") C
H~y[©] C Hy(M,) C M,. This means that k(I') C M, holds as long as © C M,
holds, i.e., as long as we are concerned with branches for k(v) C M, in, e.g.,
inferences (A): A~ A(A,).es

{H,[O]Fee T A A} e N {H,[0] F2° T, A, A} e s ven,

H O] Fe T, A ~ HyO]FOT, A (AN

(14)
and dually k(¢) C M, for a minor formula A, of a (\/) with the main formula

A ~\/(A,),es, provided that H~(p) NS C p. The proviso means that y; > =y
when p = ng('yl). Such a p is in H,[O] only when p € ©. Let us try to replace

the inferences for the stability of S
H,[0]F T, B(u) {H,[0U{o}]FT,-B)"S}ecn,
H, O] -T

(stbl)
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by inferences for reflection of p with © C M,: If B(u)l*/5) holds, then B(u)/]
holds for some o < p.

Hy[0U {p}] - TV, B(w)/ {#H,[0 U {p, o} F T, —Bw)" Y ec, o<,
Hy[©U {p}] - TP/

(rfl)

In analyzing the inferences for reflections in transfinite levels, formulas I'[?/S]
are replaced by T'9/5]. This means that afo/S] is substituted for each a[p/S].
Namely a composition of uncollapsing and collapsing «[p/S] — a — afo/S]
arises. Hence we need o € M, C M, for 0 < p. However we have 0 ¢ M,
although o € M,, and we cannot replace [p/S] by [0/S] in the upper part of
T/ B(u)lP/8]. The schema seems to be broken.

Instead of an explicit collapsing [*/5!, formulas could put on caps p, o, ... in
such a way that k(A(®)) = k(A). This means that the cap o does not ‘occur’
in a capped formula A(?). If we choose an ordinal 7, big enough (depending on
a given finite proof figure), every ordinal ‘occurring’ in derivations (including
the subscript v < o in the operators M) is in H., (0) for the ordinal ~o, while
each cap p exceeds the threshold vy in the sense that p & H.,(p) NS C p. Then
every ordinal ‘occurring’ in derivations is in the domain M, of the Mostowski
collapsing a — a[p/S].

The ordinal ~q is a threshold, which means that every ordinal occurring in
derivations is in H.,(0) and the subscript v < 7o in H,, while each p € Q for a
finite set Q of ordinals, exceeds vy in such a way that pg(p) > 7o for the ordinal
po(p) in Definition 3.30.2. This ensures us that H,(M,) C M,. In the end,
inferences for reflections are removed in [5] by moving outside #.,(0).

Now we have several (successor) stable ordinals S, T, ... € dom(Q) for a finite
collection dom(Q) of successor stable ordinals, cf. Definition 4.22.1. Inferences for
stability and their children for reflections are eliminated first for bigger S > T,
and then smaller ones T. Therefore we need an assignment dom(Q) > S — 7§
for thresholds so that 78 <~ if S > T in Definition 4.36.4.

We define two derivability relations (H.,©;Q) ¢ I'; I} and
(H+,0,Q) Fe d.ep 1 1n subsections 4.4 and 4.5, resp. In the former relation, c is
a bound of ranks of the inference rules for stability and of cut formulas as well as
successor stable ordinals collected in dom(Q). In each an operator H, together
with a finite set © of ordinals and a finite family Q C []g s controls ordinals
occurring in derivations, where dom(Q) is a finite set of successor stable ordinals
S and Q(S) is a finite set of ordinals p € s for each S € dom(Q). Furthermore
in the latter relation, Q carries thresholds.

The role of the former calculus |} is twofold: first finite proof figures are
embedded in the calculus, and second the cut rank c in -} is lowered to Iy.
Then the derivation is collapsed down to a § < Iy using the collapsing function
wJIN (a)

The standard requirement k(I') C #.,[©] in operator controlled derivations is
weakened to (22) and (28) in Definitions 4.23 and 4.39. These say the following:
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Assume that, e.g., (H,,0;Q) Fi* [; 111} holds, and an ordinal « occurs in a
formula A € I'. Then « is in the set H,[O(Q)], where ©(Q) = © U JQ(S).

The weakened condition comes from a proof of Tautology lemma 4.24.2 as
follows. Let 0 € Ug, A ~ \/(A,),e; and I = {1l9/8) ., € [0]J}, where ¢ € [0]]
iff ¢ € J and k(¢v) C M,. Let rk(A) > S. Otherwise we don’t need to collapse
the formula A. Then Al°/S ~ V(By)ver with B, = AEU/S] for v = (lo/8],
rk(Al/Sl) = rk(A)[o/S] and k(:17/5) = k(1)[“/5] by Proposition 4.8. A standard
proof of the tautology —Al?/SI, Al°/S] runs as follows:

N [k( Alo/S] YUK [J/S])] 2d. [o/S] AEU/S] AEU/S]
. - V)
AT U ) BT (N
H [k( Al /S]] 27 /8)  ple/S) Alo/S] (15)

where d = rk(A) and d, = rk(4,) with ¢ € [0]J, and S € dom(Q) with o € Q(S).
Here k(Al°/S)y ¢ M,.

We obtain k(Al7/5) c Hs[k(A)U{c}] and k(:[7/5]) € Hs[k(1)U{c}] by Propo-
sition 4.11. For every ordinal a[o/S] occurring in Al7/5] either o € Hs[k(A)] or
there exists a 8 € Hs[k(A)] such that a = S[o/S]. Thus we arrive at the weak-
ened condition (22), and obtain k(Al/Sl) € Hg[k(A) UQ(S)]. In Definition 4.23
of the *-calculus, the operator H, controls ordinals occurring in derivations of
(H+,0;Q) F:* T II0) using ordinals in © with the help of the family Q. Instead
of a standard one, we prove the tautology —Al7/Sl, Al7/5] a5 follows:

(o KA UKOQ) FE AP A
(Hiy K(A) Uk(2),0) HE ! A7/, AL/
(Hiy, k(A), Q) F24 ~Al/5] AL/ (N\) "

where 2d € Holk(A)] C Hi, [k(A)] for (21). Observe that the derivation in (16)
is obtained from the standard one in (15) by uncollapsing a[o/S] — a.

Let B(Lg) be a formula with rk(B(Lg)) < S and u an RS-term such that
k(B(u)) € M,. We have B(u)l?/Sl = B(ul°/%). From the derivation of the
tautology —B(u)l?/5l, B(u)l?/3]] the axiom -3z B(z),3x € LsB(z) is derived
in Lemma 4.26 using an inference (stbl) for the stability of a successor stable
ordinal S as follows.

=B(u)/5, B(ulo/5)
~B(u), Bw) {~B(w)"", 3 € LsB(2) hpu)cm

—B(u),3x € LsB(z)
—|3:1:B( ), 3z € LgB(x) N

V)
= (stbl)

where ul?/5l € Tm(S) and o ranges over ordinals such that k(B(u)) C M,. The
inference says that ‘if B(u), then there exists an ordinal ¢ such that B(u)"/5),

In Capping lemma 5.1 of subsection 4.5 the relation F:* is embedded in
another derivability relation ¢ ; . 5 by putting caps p on formulas. Let o < p.
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Then k(B(ul?/%)) c M,. In the above derivation each formula puts on the cap
p except ~B(u)l?/5l. An inference (rfl) for reflection says that ‘if B(u)®), then
there exists an ordinal o such that B(u)(®)’. Therefore the above derivation
turns to the following.

—-B(u)le/5l B(ulo/81)(#)

—B(u)?, B(uw)?) {=B(w)l"/%, (3 € LsB())" }(B(u))cM,.0<p Ell/cl))
-B(u)®), (3z € LgB(x))®

In doing so, it is better to distinguish —B(u)l/5l from B(ul"/%) formally.
The latter B(ul?/%l) puts on a bigger cap p as B(ul?/5)(?)| while the former
- B(u)!?/ changes to —B(u)(®) with a smaller cap o < p. Let us replace the col-
lapsed formula —B(u)!?/S by an uncollapsed —B(u){°}, and collect uncollapsed
formulas to the right of the semicolon as ;II{}. This results in the *-calculus
(H,0;Q) 3@ [;I{7, and a derivation of —A[/S]; A{e} runs as follows.

(Hry, k(A) Uk(1); Q) H24 = AL/ Alod
(Hry, k(A) UK(1); Q) F24H —Al/5; Afod
(H]IN> k(A);Q) "i‘f ﬁA[a/s];A{a}

(V)
(AN

The derivation (17) turns to the following:

B(ulo/SH#): = B(u)(®)

=B(u)®), B(u)®);0 {(3z € LsB(z))®); ﬁB(u)(U)}k(B(u))CM”,U<p E:Q)
(=32 B(z))®), (3x € LsB(x))); 0 (18)

k(A) C M, should be satisfied for each capped formula AP and this would
follow from k(A) C #H,[©(Q)] and ©(Q) C M,. However p ¢ M, for p €
Q(S). Looking back the derivation (16) and k(Al7/5l) ¢ Hs[k(A) UQ(S)], we see
that the extra part (JgQ(S) in ©(Q) is needed to capture the ordinals o < p
in the derivation (18). Thus we arrive at a classification of ordinals in the
set [UsQ(S): The temporary part denoted by 0Q and the fized part by Q° in
Definition 4.36.2. Ordinals p in 9Q are caps on which formulas B(u) put, while
the formulas —=B(u)(?) in derivations (18) puts on caps ¢ in Q°, cf. Capping
lemma 5.1. Ordinals in (Jg Q(S) might occur actually in derivations only when
these are in Q°. See the conditions (27) and (28) in Definition 4.39.

(27) says that ©(Q°) = © U UJsQ°(S) C Mag = [,coq Mp, while k(I') C
H,[9(Q°)] is imposed in (28). One of the reasons for the constraint (27) is to
ensure the condition (12) in Definition 3.31.6, which says that every ordinal
occurring in the finite function m(p) has to be in M,. A cap p € 0Q of the
capped formula A®) is replaced by another cap x to A®*) in the main lemma
of Recapping 5.4, and the rank of the reflected formulas B(u) in inferences (rfl)
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is lowered. In doing so, a new ordinal k = 1/)2(04) ‘enters’ in derivation. Here
a finite function h = m(k) is constructed from the function m(p) and some
ordinals b, d, a, where ordinals b and d are ranks of formulas in derivations, and
a the ordinal height of the derivation. Two constraints yield {b,d,a} C M,, and
the ordinal & is chosen so that a specified finite subset of M, is a subset of M,,
cf. Definition 4.38.

The ordinals in the temporary part Q° are finally removed from 0(Q°) in
Lemma 5.11 as follows. For this we need another constraint (29), which says
that Q(S) C Hoany [O(Q°]S)], where Q° [S denotes the restriction of Q° to S.

In Lemma 5.7 we show that the largest successor stable ordinal S in dom(Q)N
ST as well as caps p € Q(S) can be removed from derivations in the following way:
Let rk(Z) < S and each cap p in Zisin Q[S. If (#,,0,Q) l_gf,S*,S*,B =, then
(H+,,0,QTS) Fg,s,s,ﬁ = holds for an ordinal @ and vy =3 + Iy if S € dom(Q).
This is done as follows. First Recapping 5.4 yields (%, ©, Q) l_gj,g,%ﬁ 5 Z, and we
obtain a derivation in which the rank of each reflected formula A in inferences
(rfl) is less than S. Then we obtain (H.,, ©,Q) l_g,S,ST,B E for a = gt (S+wa) by
Cut-elimination 4.44. Thus we obtain a derivation in which the rank of every
formula is less than S. Then the formula A(®) takes off the cap p € Q(S), and
the set Q(S) no longer helps operators 7. Now we have Q(S) C H,,[©(Q° [ S)]
for v = 7§ + 1y by (29). By lifting the threshold ¢ < Wg to a larger one 7;, we
obtain Q(S) C H,,[©(Q° [S)] and H,[O(Q° [ST)] C H.,[O©(Q° IS)]. This explains
the constraint (29).

The reason of the introduction of trail and the set By(a) of ordinals a in
Definition 4.14 are two fold. For a stable ordinal S and its next stable ordinal
St, we see that if By(ST) € H,[0O], then S € By(S) C H,[0O] since the set H.[O]
is closed under T — TT. The fact is used in Lemma 5.7. On the other side, in
proving the axiom (2) in Lemma 4.26 we need the fact that if both of a limit
i-stable ordinal T and an ordinal o < T are ‘captured’ in H.[0)], then so is
a successor i-stable ordinal S such that @ < S < T. Or in other words, such
an S should be constructed from data included in ordinals T and . The data
we need are trails, cf. Proposition 4.16. Then the finite sets © should satisfy
B(©) C O, cf. Propositions 4.15.2, 4.17.3, 4.15.6 and 4.15.9. As we said above,
the addition of Eg(«) to B(«) is to construct the collapsed ordinals a[p/S] from
Es(a) and p.

Now details follow.

4.3 Sets M,, trails and stepping-down

In this subsection some facts on sets M,, ordinal terms and finite functions are
established. These facts are needed in this and next secrtion 5.

Definition 4.10 For o« € OT(Iy) and S € SSt, a finite set Eg(a) C S of
subterms of « is defined recursively as follows.

1. Es(a) = Es(SC()) == U{Es(B) : p € SC(a)} if a & SC(av).
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In what follows let SC(a) = {a}.

2. Es(a) ={a} if SC(a) > a <S.
In what follows let SC(a) > a > S.

=|H{Es(c) : S € SSt}.

Proposition 4.11 1. SC(a) C E(a) = E(E(a)), where E(X) = |J{E(B) :
B € X} for stes X of ordinals.

2. Leta € M, with p € Us. Then a[p/S] € Hs(Es(a)U{p}) and E(a[p/S]) C
E(a)U E(p) U SC(alp/S)).

3. VB € E(a)3y € SC(a)(B < 7).

Proof. 4.11.1. Let 8 € Es(«). By induction on fa we show Ep(8) C Er(a) U
Es(a). By IH we may assume SC(a) 3 a < S, Es(a) = {a} and g = a. If
a < T, then Er(a) = {a} C Es(a). Let T < a. Then Ep(8) = Er(a). Hence
E(E(a)) C E(a).

Conversely let 8 € SC(a) and 8 < S € SSt. Then Es(f) = {8}, and
SC(a) C E(a). Hence E(a) = E(SC(a)) C E(E(a)).
4.11.2. By induction on fa. afp/S] € Hg(Es(a) U {p}) follows from the facts
M,NS = p and a[p/S] < S. For each T we show Er(alp/S]) C Er(a)U Er(p)U
SC(afp/S]). T > S, then Ex(alp/S]) € SC(afp/S]). Let T < S < «. Then
T < a[p/S]. Er(alp/S]) C Er(a) U Et(p) is seen by induction on fa.
4.11.3. By induction on fo. By IH we may assume that o € SC(«). Let
B € Er(a). If a <T, then $=c«. Let T < a. Then § < T < «. m]

Proposition 4.12 Let « be a strongly critical number such that Q < a < Iy.
There exists a unique sequence (o, )n<m such that ag = Y1, (a) for ana, e, = «
and each a1 is one of the forms ¥f (b), a}?, In[an], Sﬁ[an/S] for some f,b,i
and'S. The sequence (cun)n<m is said to be the trail to o, and denoted by trail(c).
For a term au, in the trail to o, if a,, < a, then o, < ay forn < k < m,
and Er(ay,) C Er(a) for every SSt2 T < au,.
Furthermore ag < a, and Er(ag) C Er(a) holds for every SSt> T < ap.

Proof. This is seen by inspection of Definitions 3.31 and 3.33. If oy, > a1,
then we would have a,,+1 < oy, and a < «,, by Definition 3.35. ]
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Proposition 4.13 Let p € Us with a successor stable ordinal S. Assume S <

Ui (7), In < v < polp), @ € Hy(¢1y (7)) and Es(a) C p € ¥s. Then o €
My = Hpy () (P)-

Proof. By induction on fa. By IH we may assume that S < a < Iy. Let
a = 1, (a). Then a € H (Y1, (y)) Ny and Es(o) = Es(a). IH yields a € M,
and o € M, by a <y < po(p). ]

Definition 4.14 For o € OT(Iy), a finite set By(a) is defined recursively as
follows.

1. Bo(a) = Bo(SC(a)) := U{Bo(B) : B € SC(a)} if a & SC(av).

2. By(a) = {a} if SC(a) 2 a < Q.

3. Bo(a) = {a} U (trail(e) NSt Na) if @ < a € SC(a).
Let Bo(X) = {Bo(8) : B € X} for sets X of ordinals, and

B(a) = Bo(E(a)) (19)

Proposition 4.15 1. SC(a) C Bo(a) and E(a) C B().

2. SC(a) C B(a) and B(a) = B(SC(q)).
Bo(Bo()) C Bo(av).
VB € Bo(a)Fy € SC(a)(f <) and VB € B(a)Fy € SC(a)(B < 7).
E(By()) C E(a) U By(e).
B(B(a)) = B(a).
Let p € Ug with S € SSt. Then B(ap/S]) € B({e, p,S}) U SC(a[p/S]).
For a = y}(a), B(a) C {a} UB({o,a} USC(f)).

Let B(©) C © for a finite set © of ordinals, and o € H[O] with v > In.
Then B(a) C H[O].

© ® R T

Proof. 4.15.1. We have SC(«) C By(a). Hence E(a) C Bo(E(a)) = B(a).
4.15.2. By Proposition 4.11.1 we have SC(a) C E(«), and hence SC(a) C B(w)
by Proposition 4.15.1.

4.15.3. This is seen by induction on ¢o using the fact that trail(S)NS C trail(«)
for S € trail(a) N St N a.

4.15.4. By induction on fo we show V3 € By(a)Iy € SC(a)(B8 < 7). VB €
B(a)3y € SC(a)(B < «) follows from this and Proposition 4.11.3. By IH we
may assume that Q < a € SC(a). For 5 € By(a) we see 8 < a.

4.15.5. By induction on fo. By IH we may assume that Q < o € SC(«a). For
B € By(a), we show E(8) C E(a) U By(a). Let S € trail(a) N St N a. Then we
obtain E(8) C E(a) by Proposition 4.12.
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4.15.6. By Propositions 4.11.1 and 4.15.1 we obtain E(«) = E(E(a)) C E(B()),
and B(a) = Bo(E(a)) C Bo(E(B(w))) = B(B(«)). Conversely we obtain
E(By(a)) C E(a) UBgy(a) by Proposition 4.15.5. Hence E(By(E(a))) C E(a) U
By(E(«)) by Proposition 4.11.1. Therefore B(B(«)) = Bo(E(Bo(E()))) C
Bo(E(a)) UBy(Bo(E(x))) C B(a) by Proposition 4.15.3.

4.15.7. By Proposition 4.11.2 we have E(a[p/S]) C E(a) U E(p) U SC(a[p/S])-
On the other side, we see By(a[p/S]) C Bo(a) U Bo(S) U SC(«[p/S]) by induc-
tion on fa. When S < a € SC(«a), we obtain trail(a[p/S]) N St N (a[p/S]) C
trail(S) N'S.

4.15.8. We have E(a) C {a} U E({o,a} U SC(f)), and B(ar) C Bp(ar) U
B({o,a} USC(f)). On the other hand we have By(a) C {a} U By(c). Hence
B(a) C {a}UB({o,a} USC(f)).

4.15.9. By induction on {a. |

Proposition 4.16 Let T € SSt;11 be a successor (i + 1)-stable ordinal, and

a < T an ordinal. Then there exists a successor i-stable ordinal « < S < T such
that B(S) C Ho(B(a,T)) for B(a, T) = B(a) UB(T).

Proof. By induction on the lengths fa of ordinal terms «. By IH we may
assume that Q < a < Iy and o € SC(a). Let T = U0+ with U € St U {Q}.
Then trail(U) C trail(T) and B(U) C Ho(B(T)).

Case 1. There exists a k& > 0 such that o < UT", where UT""” = U and
Ut = (UTi(k))”: Pick a k > 0 such that o < S = U™ We obtain
B(S) C Ho(B(T)), and S < T is seen from T € LSt;.

Case 2. Otherwise: Then we see from Definition 3.35 that there exists a
p € By(a) such that p < T. We obtain p < « and trail(p) C trail(«). Pick a
k > 0 such that & < S = pT"™ < T. We obtain trail(S) = {S} U trail(p) and
B(S) C Ho(B(a)). O

Proposition 4.17 Let o € OT(Iy) and p € Us with S € SSt.
1. If o« € M, then E(a) C M,.
2. If a« € M, then By(a) C M,,.
3. If a« € M, then B(a) C M,.

Proof. Proposition 4.17.3 follows from Propositions 4.17.1 and 4.17.2, each of
which is shown by induction on fa. By IH we may assume that Q < o < Iy
and o € SC(a). Let M, = Hy(p) with b = po(p).

4.17.1. Let € Er(a). T < S, then 8 < T < p. If o < T, then § = a. We may
assume that p < S < T < . For example let o = 9f(a) € M, = Hy(p). Then
Er(a) = Er({o,a} USC(f)) and {o,a} USC(f) C M,. IH yields Er(a) C M,.
Other cases are seen similarly.

4.17.2. Let (an)n<m be the trail to a. First let oy, € trail(o) Na. If o < S,
then a,, < o < p by Proposition 4.15.4. Let p < S < oy = o € M,. Let
k' =min{k : n < k < m,oq, > p}. If n < k, then o, < p and a € M,,.
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Otherwise we obtain p < a,, < aj, for every k with n < k < m by Proposition
4.12. Hence o, € M, = Hs(p). O

The following Definition 4.18 is needed in subsection 5.2.

Definition 4.18 Let s(f) = max({0} U supp(f)) for finite function f, and
s(p) = s(m(p)). N

Let A < Iy be a strongly critical number, which is a base for §-function. Let
f: A= pa(0) be a non-empty and irreducible finite function. Then f is said to
be special if there exists an ordinal a such that f(s(f)) = a + A. For a special
finite function f, f’ denotes a finite function such that supp(f’) = supp(f),

f'(e) = f(e) for ¢ # s(f), and f'(s(f)) = a with f(s(f)) = a + A.

A special function h®(g;a) is defined from ordinals a, b and a finite function
g as in [5].

Definition 4.19 Let A < Iy be a strongly critical number, which is a base for
f-function. Let f, g be special finite functions.

1. For ordinals a < A, b < s(g), let us define a special finite function h =
h®(g;a) as follows. s(h) = b, and hy = g,. To define h(b), let {b = by <
by < -+ <bp =5(9)} = {b,s(g9)}U((b,s(g)) Nsupp(g)). Define recursively
ordinals «; by o, = a+a with g(s(g)) = a+ A. a; = g(b;) + e, (ip1; A)
for ¢; = b;y1 — b;. Finally let h(b) = o + A.

2. fp*g® denotes a special function h such that supp(h) = supp( f)Usupp(g®),
1 (c) = f'(e) for ¢ < b, and h'(c) = ¢'(c) for ¢ > b.

The following Proposition 4.20 is seen as in [5].

Proposition 4.20 Let k be a finite function, f,qg special finite functions such
that fqg = gq and f <~d g'(d) for a d € supp(g), and p € Vg with g = m(p).
denotes the function 0,(&; A) in Definition 3.1 with base A.

1. Forb<d and a <A, fy = (h*(g;a))p and f <® (h*(g;a))'(b).

2. Letb<e<d,ap < a< A, and h = (h®(g;a0)) * ftL. Then hy =
(hb(g;a))p and h <b (h*(g;a)) ().

Proof. 4.20.1. Let h = h%(g;a). We have hy, = g, = f;. Let b+ €
supp(f) N'd C supp(g) Nd. Then f(b+2z) = gb+ ) < 6_,(h'(b)) and

g'(d) < 0_(a—p)(h'(b)). Proposition 3.6 yields the proposition.

4.20.2. Note that h = (h°(g;ag))’ * f¢T'. We have hy, = g, = (h"(g;a))s. For

b+ € supp(g) Ne, h(b+x) = (h(g;a0))(b+x) = g(b+x) < O, ((h*(g:a)) (b)),

and h(e) = (h®(g;a0))(e) < 0_(c—p)((h*(g;a))' (b)) by ap < a. Fore < e+ €
supp(f)Nd, we obtain h(e+x) = f(e+z) = gle+z) < é,(eﬂ,b)((hb(g;a))’(b)).

For d-+a € supp(f), we obtain h(d+z) = f(d+z) < 0_,(g'(d)) < 0_(ara_s)((h*(g; @) (b))
Therefore h <® (hb(g;a))’(b). a
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4.4 Operator controlled x-derivations

Let H,[0] := H,(©) and H., := H,(0). By a successor stable ordinal we mean
ordinals in SSt = Jy.;<y S5t;, and St := ST, In this section and the next
section 5 let us fix an ordinal Iy < 9 € Hg. The ordinal vy depends on a given
finite proof figure in St,, and is specified in the end of section 5.

Definition 4.21 By an uncollapsed formula we mean a pair {A4,p} of RS-
sentence A and an ordinal p < S for a successor stable ordinal S such that
k(A) C M,. Such a pair is denoted by AP} When we write I'1P}, we tacitly
assume that k(I') C M,,.

B(a) denotes the set defined in (19) of Definition 4.14. For ordinals «,
we see B(a) C M, iff « € M, from Propositions 4.15.2 and 4.17.3. Hence
B(k(t)) € M, iff k(t) C M, for RS-terms and RS-formulas ¢. On the other
hand we have max({0} U B(«)) < max({0} U SC(«)) by Proposition 4.15.4.

Definition 4.22 1. A finite family for an ordinal 7y is a finite function
Q C [[g ¥s such that its domain dom(Q) is a finite set of successor stable or-
dinals and Q(S) is a finite set of ordinals x in Ug for each S € dom(Q) with a
special finite function m(x), and vo < po(k), where Mg = (s gom(q) Ma(s)
with Mgs) = N,eqe) Mo and My = OT(Ly). Let Q(T) = 0 for T ¢
dom(Q).

2. Let © be a finite set of ordinals and Q a finite family. Let
0(Q):=0UB (U{Q(S) 'S¢ dom(q)}) (20)

We define a derivability relation (., ©;Qm) F: T; II{"} where ¢ is a bound
of ranks of the inference rules (i—stbl(S)), one of ranks of cut formulas, and
of dom(Qr). The relation depends on an ordinal 7y, and should be written as
(H~,0;Qm) Fi% T 111}, However the ordinal o will be fixed. So let us omit

¢,7o

it. Note that if v9 < po(c) for 0 < S, then H,,(c) NS C o by Proposition 3.42.

Definition 4.23 Let O be a finite set of ordinals such that B(©) C ©, a, ¢ ordi-
nals, and Qqq a finite family for vo such that dom(Qr) C ¢. Let IT = U(S,U)GQH I,
be a set of formulas such that IT C Ag(Ly+1), k(Ily) C M, for each (S, o) € Qm.
3 {c}
Let T = U g oy cqn 15
(H~,0;Qm) Fe e I; TIt} holds for a set T of formulas if Iy < v < 7o,

{7, a,¢,7} Udom(Qu) C H,[O] (21)

k(T UID) C #,[0(Qn)] (22)

and one of the following cases holds:
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(V) There exist A ~\/(A4,),cs, ¢t € J, and an ordinal a(:) < a such that A €T
and (H,,0;0n) Fe* T, A,; 1103,

(V)t} There exist Al7r € TI{} A ~\/(A,).cs,t € [0]J, and an ordinal a(:) < a
such that (H~, ©;Qm) Fral) ot alet,

(A\) There exist an A ~ A\(A,),es such that A € I'. For each v € J, (H,,©OU
B(k(¢)); Qm) el ', A,; 1%} holds for an ordinal a(:) < a.

(A)¥} There exist At} € TI{} such that A ~ A(A,),cs. For each ¢ € [0]J,
(H+,© U B(k(¢)); Qo e I Afg},H{'} holds for an ordinal a(:) < a.

(cut) There exist an ordinal ap < @ and a formula C such that (#., ©;Qm) F:%
I, -C; 11} and (M, 0;Qm) Fio O,1; T4 with 1k(C) < .

(3(St)-rfl) There exist ordinals as,a, < a and a formula C' € E(Lpy41) such
that (H,,©;Qn) F:o T, C; 4} and (H,, ©;Qn) Fior =32 @) T, 1l
where ¢ > I .

(2(2)-rfl) There exist ordinals as, a, < a and a formula C € (L : Q) such that
(4, 0;Qn) 3 T, C; I and (M, ©;Qn) H3* -3z < QCE=D T 11,
where ¢ > (.

(i—stbl(S)) Let 0 < 4 < N. There exist an ordinal ag < a, a successor i-stable
ordinal S € §St; N¢, a formula B(Ly) € Ag(L;) with tk(B(Lo)) < S, and
au € Tm(Iy) such that S < rk(B(u)) < ¢ for which the following hold:

S € H,[0] (23)

and (H.,O;Ry) F:% T, B(u); I} for dom(Rpy) = dom(Qm) U {S} and
Ri(S) = Qu(S).

For every o € Ug such that RG] = Ry U{(S, o)} is a finite family for v, and
©(Qm) C M, (24)

(H., ©;RE) F2% T; = B(u) {7 T} holds, where dom(RE) = dom(Ry) and
(Rf1) (S) =Ru(S) U{o}.
(H., ©;Ryp) F2% T, B(u); IV {(H,, O;RG) i T =B(u)loh 111},
(H,0;Qu) Fpe T; I

Note that in (24) we have S € M, by Proposition 3.38. Let B(©) C ©. By
Propositions 4.15.6 and 4.15.9 we have B(a) C H,[O] if a € H,[O]. In particular
B(k(t)) C H~[©] holds when k(¢) C H,[©].

We will state some lemmas for the operator controlled derivations. These
can be shown as in [9].
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Lemma 4.24 (Tautology) Let d = rk(A), Iy <~ < and {v,7} C H,[k(A)].
1. (Hy, B(k(A)):0) F22, —A, A 0.

In,v0
2. (Hoy B(k(A) U {S}): {(S,0)}) 724, —Al/SL Al if o € Wg, k(A) C M,
and A € AO(L:N—H)-

Proof. Each is seen by induction on d = rk(A). Let us consider Lemma
4.24.2. Let © = B(k(A) U {S}), Qu = {(S,0)} and B = Al°/5l. Then ©(Qn) =
B(k(A)U{S,o}). We have {v,2d,In,v} Uk(A) C H[O]. For (22), we obtain
by Proposition 4.7.3, k(Al°/S)) ¢ Hs(k(A)U{c}) € H,[0(Qn)] with S < Iy < v
if B# A, and k(Al/8) C H,[k(A)] else. Moreover S € H.,[O)] for (21).

Let A~ \/(A4,).,cs. We obtain B ~ V(AEU/S])LG[U]J by Proposition 4.8.

Let ©, = ©UB(k(¢)) and ¢ € [o]J. For d > d, = rk(A,) with d, C H,[©,]
we obtain (H., 0,;Qm) Hff]dL ﬂAEU/S];A;{U} by IH.

IH
(., 0,;Qn) Fi2d - AL/ 4l
* a/S P
{(Hy,0,5Qn) 20+ Al /f Atohy 5
(Hy, 0;Qn) F2d ~Ale/8); Alo}

A
(A)

and

IH
(., 0,;Qnr) Fi2d Al/S) Al

(M, 0,5Qu) F2450 Ale/Sl = Al s
(H+, ©;Qn) 324 Alo/8]; ~Alo}

<

(N
O

Lemma 4.25 (Equality) Let d = rk(A(Lo)), v > In, B(k(A,u,v)) = B(k(A))U
B(k(u)) UB(k(v)) and {~,70} C H,[B(k(A,u,v))].
Then (., Bk(A, u,v)); 0) Fre U #D#2 ) o0 - A(w), A(v); 0.

In,v0

Proof. This is seen by induction on d = rk(A) as in [9, 3].
First show that (., B(k(u,v,w));0) % u#v,u & w,v € w;0,

1
(Hn, B(k(u, v,w));0) =5% u # v, u # w,v :N’{AYJO; 0 and
(Hoy, Bk(u,v,w));0) H< 0w # v,w € u,w € v;() simultaneously by induction
on the natural sum |u|#|v|#|w|, where o = w(|u|#|v|#|w]|). Then the lemma
is seen by induction on d = rk(A(Ly)). |

Lemma 4.26 (Embedding of Axioms) For each aziom A in Sp, there is an
m < w such that (Hiy,0;0) F2 2™ A holds.

In+m,vo0

Proof. In the proof, let us suppress the operator Hy, , the second subscript vy,

: * N +m
and write H* for FHN"‘"%’Y(J for an m < w.

39



We show first that the axiom (3) follows from an inference (i—stbl(S)). Let
o(y) = (Fx6(x,y)) be a X1 ({st;};<;)-formula such that rk(6(Lo,Lo)) < w. Also
let u,w be RS-terms, S a successor i-stable ordinal, and B(x) = 0(z, w).

Let ky = k(B(Lo)) = k(w), ky, = k(u), and © := B(ky Uk, U {S}), where
S € H,[0©] for (23). We show

B(ky) UB(S); 0 H* w & Lg, »3z B(x), Iz € LsB(x); (25)
First assume |w| < S. Then rk(B(Lg)) = rk(6(Lo,w)) < S. We obtain by
Tautology 4.24.1, ©;Q ;24 =B(u), B(u); §, where d=rk(B(u)), dom(Q) = {S}
and Q(S) = 0. We may assume that Iy > d > S with |u| > S.

Let ¢ € ¥g be an ordinal such that © C M, and 79 < po(c). Tautology
4.24.2 yields ©;{(S,0)} Fi2¢ B(w)l*/Sl,=B(u)i}. Then for 3z € LgB(x) =~
V(B(v))ves we obtain ul?/Sl € Tm(S) = J with B(ul*/l) = B(u)l°/5l. When
|w| <'S, (25) is seen as follows:

0:{(8,0)} Fiy* B(ul”/®); ~B(u) )
©;Q Hi3! ~B(u), B(u); {©;{(S,0)} F2¥*" 3z € Ls B(z); =B(u){},
©; 29! =B(u), 3 € Ls B(x);
B(kw) U B(S); H 22 -3z B(x), 3z € Ls B(x);
Assume |w| > 'S, and let v € Tm(S). Then |v| < S and (v€lLs) = (v & Ly). We
obtain by (25)

V)
(i—stbl(S))

(N

Bk(v))UB(S); 0 +* =3z 6(x,v), 3z € Lsb(z, v);
We obtain
B(k(w,v)) UB(S); 0 H* ~(vé€ls), w # v, 3z O(x,w), Iz € Lsb(z, w);

by Equality 4.25 followed by (cut)’s with |v], |w| < Iy and rk(3z 0(z, w)) = Iy +
2. Then a (V) followed by a (A) yields (25), where (w € Lg) ~ A(—(v€Ls)Vw #

U)vETm(S)‘
Let v be an RS-term with |v| > S. We obtain by (25) and Equality 4.25

B(k(w,v))UB(S);F* Ls £ v,w & v,~3x (z,w), Iz € v(z,w);
We have —st;(v) ~ A(Ls # v)y with J = {Ls : [v]| > S € S5t;}. A () yields
the axiom (3)
B(k(w, v)); " =sti(v), ~o(w), w & v, " (w);

Next we show the axiom (1). Let u be an RS-term and 8 = af" for a = |u|.
Then 3 € Holk(u)]. We obtain B(k(u));0 F* v = u;0 and B(k(u));0 H* Lg =
Lg; 0. Hence

B(k(u)); 0 " u = u; 0 V) B(k(u)); 0" Lg = Lg; 0 )
B(k(u)); 0 - u € Lg; 0 B(k(u)); 0 F* sty (Lp); 0
B(k(u)); 0 =* uw e Lg Astn(Lg); 0 ) N
Bl{u):0 - 3y (€ g Aot () (1)
0;0 H* VaIy (x € y A sty (y)) ;0

40



Third we show the axiom (2). Let T € SSt;+1 be a successor (i + 1)-stable
ordinal. We obtain B(T);® +* 6(Lt) for 8(z) = (st;(z) ALg € x AVy € 2Vz €
y(z € z)) with Lo = M,.

For a given o < T pick a successor i-stable ordinal @« < S < T such that
S € Ho[B(a, T)] by Proposition 4.16.

Let |v| = o < T. We obtain (Lg€LT) = (Ls € Lo), B(v);0 H* v = v; 0, and
B(k(v) U{T});® * Ls = Ls;0. Hence B(k(v) U{T});0 +* v € Ls A st;(Ls); 0,
and B(k(v) U{T});0 * 3z € Lr(v € 2 A sti(2)); 0. Let w and u be RS-terms.
Equality 4.25 yields B(k(w) U {T});® F* w & Ly, 3z € Lr(w € 2z A st;(2)); 0, and
B(k(w,u) U{T});0 F* u # Ly,w € u,3z € u(w € z A st;i(2)); 0. A (A) yields
B(k(w,u)); 0 H* =stip1(u),w € u,3z € u(w € z A sti(2)); 0.

Ag(Ln+1)-Collection follows from an inference (X(St)—rfl), and the Ag-
collection for the set My = Lg follows from an inference (X(Q2)—rfl). Other
axioms in KPw, i.e., axioms for pair, union, Ag-Separation and foundation are
seen as in [9, 3]. |

Lemma 4.27 (Embedding) If S1, T for sets T of sentences, there are m,k <
w such that (M, 0;0) 2% 100 holds.

In+m,vo0

Proof. This follows from Lemma 4.26 as in [9, 3]. O

Lemma 4.28 Let (H.,0;Qm) F: T; 11}, 4 <4y < o with v € H,[01] and
© C B(©1) C ©1. Then (H,,,01;Qn) i [; Y holds.

Proof. By induction on a. We need to prune some branches at inferences
(i—stbl(S)) for (24) with ©(Qr) C ©1(Qm). a

Lemma 4.29 Let (H.,0;Qn) F: T; 1Y, and S < Iy < ¢ be a successor stable
ordinal and o € ¥s. Assume P = Qu U {(S,0)} is a finite family for ~y, and
S € #,[0]. Then (H.,O;P) o ;11T holds.

Proof. By induction on a. By the assumption (21) is enjoyed in (H,, ©;P) F3°
[; TI1 '}, We need to prune some branches at inferences (i—stbl(S)) for (24) with
©(Qm) C O(P). a

Lemma 4.30 (Inversion) Let (H.,©;Qq) F: T; T4 with A ~ \(A,),e5, A €
I', and v € J.
Then (H,©,;Qm) F:2 T, A; 11 holds for ©, = © U B(k(1)).

Proof. By induction on a. We obtain (., ©,;Qm) F:* I; TI{"} by Lemma 4.28.
O

Lemma 4.31 (Reduction) Let C ~ \/(C,),es and ~(Q < ¢ < Iy) with rk(C) <

c. Assume (M, 0;Qn) 2@ Lo, ~C; 114} and (M., 0;Qn) F2b C,Ty; 1. Then
(M, ©;Qm) F30+0 T, Iy I
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Proof. By induction on b.

Case 1. Consider first the case when (H-,©;Qm) b O Ty 1t} follows from a
(V) with its major formula C. We have (H,, ©;Qmn) o) C,,C,Ty; 11t} for an
L€ J. H yields (H,,0;Qn) Fi*™") ¢, T, T'y; 11D,

Let ©, = © U B(k(t)). We obtain (H,,0,;Qn) F: Ty, ~C,;TI{} by In-
version 4.30. On the other hand we have B(k(C,)) C H,[©(Qm)] by (22) and
Propositions 4.15.6 and 4.15.9. #,[(©,)(Qmn)] = #H,[©(Qm)] follows provided
that k(¢) C k(C,). Hence (H, ©;Qm) F:° Fo,ﬁCL;H{'}

A (cut) with the cut formula C, yields (H.,0;Qm) it To,T'y; T} for
tk(C,) < rtk(C) < c.

Case 2. Second assume that (H., ©; Q) 2 C,T'y; I} follows from an (i—stbl(S)).
We have an ordinal by < b and a formula B(u) such that for dom(Rp) =
dom(Qr) U {S} and Rg =R U {(S,0)}

(Hy, ©:Brr) 2 O Ty, B(u): I {(H,, ©:Rf) ki C.Th; - B(w)} 10},
(H~,0;Qm) F2° C,Iy; 1t}

where S € H,[©] and ©(Qn) C M, by (24). By Lemma 4.29 we obtain
(H., ©;RE) F22 T, ~C; 1T} for each o. TH followed by an (i—stbl(S)) yields

(H., O;Ryy) F2otbo T Ty, B(u); I {(H,, ©;R7) Fiotbo Ty Ty; = B(u)io}, T},

(H,©;Qn) Fiot To, Ty T
Other cases are seen from IH. O

Lemma 4.32 (Cut-elimination) Let ¢ € H,[0] and (H,,©;Qu) ¢, T,
where either ¢ > Iy or =(c < Q < c¢+b). Then (H,0;Qm) prev(@ ;i

Proof. By main induction on b with subsidiary induction on a using Reduction
4.31. |

Lemma 4.33 (Z-persistency) Let A € X(Lyy1) with rk(A) < Iy, dom(Qm) C
a< B, B€M,[O]NIy, and (H,0;Qn) F:o T, Aletn) i},
Then (M, 0; Q) F:o T, ABIN) T}

Proof. This is seen by induction on a. (22) follows from 3 € H,[©)]. O

Lemma 4.34 (Collapsing) Assume (H-,©;Qn) Fiy . T; ¢} forT € 2(Lny1).
Assume © C H(Y1y (7)) and @ := v+ w* < 0.
Then (Hat1,0;Qn) F57 TG holds for B = 1y, ().

Proof. By induction on a as in [9]. Let us omit the second subscript v in the
proof.

We have {v,a} Udom(Qu) C H,[O] by (21). We obtain f € Hz41[0)],
and dom(Qm) C H~ (Y1 (7)) NIn = Y1y (y) C B by the assumption. This
yields Qu(S) C S C ¥, (7) for every S € dom(Qm), and ©(Qm) C H~ (Y1, (7).
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B = 1, (a) needs to be in LSty due to the axiom (1). On the other hand we
have k(' UII) C H,[O(Qn)] by (22). We obtain

k(TUTD) C 4y (y) € B (26)

Case 1. The last inference is an (i — stbl(S)): We have S € H,[0]. Let
B(Ly) € Ag(Ln+1) be a A-formula with rk(B(Lo)) < S and a term u € Tm(Iy)
such that (#.,O;Rm) l—ﬁo I, B(u); It} for an ordinal ao € H,[0] N a and
dom(Rn) = dom(Qm) U {S}. (Hat1,9;Rn) Hf}f" TBIN) | B(u); I} follows from
IH with X-persistency 4.33, where Sy = 1, (ag) with ap = v + w®.

We obtain k(B(u)) C H,(8) by (26), and rk(B(u)) < 8 for rk(B(u)) < In
by Proposition 4.5.3.

On the other hand we have (H.,, ©O;Rg) I—]’I"I‘jo I'; =B(u){7}, 11} for every o €
U such that ©(Qr) € M,. TH with X-persistency 4.33 yields (Ha+1, O;RT) F]}f"
TN s B(u)loh T, (Hay, ©;Qn) I—Eﬁ% LI It} follows from an (i —
stbl(S)). ’

Case 2. The case when the last inference is a (X(St)-rfl) on Iy: We have
ordinals as,a, < a and a formula C' € X(Ly41) such that (H.,©;Qm) I—]’fl‘j"
I, C; 1 and (Hy, ©;Qn) Fio7 -3z C@I) T 1,

Let B¢ = 91, (ar) € Ha+1[©(Qm)] N B with @y = v+ w. By < B follows from
ag € H,[©(Qm)] C H,(B) and Proposition 3.17.1. TH with X-persistency 4.33
vields (Hat1,©;Qu) F3 D) ¢l T1{},

Inversion 4.30 yields (Ha+1,©; Q) Fro” —CBetn) T 1

For B, = ¢iy(ay) € Har1[0Qm)] N B with a, = ay + 1 + w?, we obtain
a, < a by ag,a, < a, and §, < § follows from {as,a,} C H,[O(Qn)] C H~(5)
and Proposition 3.17.1. TH with X-persistency 4.33 yields (Ha+1,©;Qm) I—;’@r
—CBetn) TBIN) T, We obtain (Hay1, ©;Qn) Fzﬂ DN T8 by a (cut).
Case 3. The last inference is a (A\): We have an A ~ A(A,).,es such that
A €T C S(Lys1) and (Hy,0,50m) F2® T, A; T with a(1) < a and ©, =
© U B(k(r)) for each ¢ € J.

We obtain k(A) C ¢, (7) by (26). Let ¢ € J. Since A € X(Ln+1), we obtain
k() C 91y (7), and B(k(t)) C 1, (7) by Proposition 4.15.4. Let @, = y+w®®) <
a by a(t) < a. Then a(t) € H,[(0,)(Qn)] C Hy(B) and B, = ¥, (a,) < B.
IH with Y-persistency 4.33 yields (Hai1,©.;Qm) %;ﬁb LGN (A,)BIn). 11
(Ha+1,0:Qn) F5° DO I follows by a ().
Case 4. The last inference is a (\/): We have an A ~ \/(4,),es such that
A eT and (H,,0;Qn) I—]’fﬁ(b) I, A; 1%} with a(:) < a and an ¢ € J. Assuming
k(t) C k(A,), we obtain k(¢) C 5 by (26). IH followed by a (\/) yields the lemma.

Other cases are seen from IH as in [9)]. O

Lemma 4.35 LetT' C X(Lo : Q) be a set of formulas. Suppose © C H(Va(7))
and (H,,0;0) Fg, T30, Let B = va(a) with & = v+ w* < v. Then
(Hat1,0:0) }_Zm B0 holds.

Proof. By induction on « as in [9]. O
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4.5 Operator controlled derivations with caps

Let (8 be the ordinal in Collapsing 4.34, and A := I'(8). A is the base of the
f-function 05(§) = 0,(&; A) in Definition 3.1. Definitions 4.36.4, 4.38 and 4.39
depend on the ordinals 7, A.

Definition 4.36 1. For a finite set I' of formulas let rk(I') = max({0} U
{rk(4) : A€T}) and rk(VYT') = max({0} U {rk(4) +1: A €T}).

2. For a finite family Q C [[g ¥s in the sense of Definition 4.22.1 let
aQ := {(S, max(Q(S))) : S € dom(Q),Q(S) # 0}

and

Q°:=Q\9Q={(S,0) € Q: 0 <max(Q(S))}.
Let Mag := (s, p)coq Mp: and ¢ € [0Q]J 1 k(¢) C Mg for ¢ € J.

3. By a capped formula we mean a pair (A, p) of RS-sentence A and an
ordinal p < S with a successor stable ordinal S such that k(A4) C M,.
Such a pair is denoted by A(®). Tt is convenient for us to regard uncapped
formulas A as capped formulas A®™ with its cap u, where [u]J = J with
M, = OT(HN) Nly.

A sequent is a finite set of capped or uncapped formulas, denoted by
Fépo), ., T 11 where each formula in the set Fgm puts on the cap
pi- When we write T'(*), we tacitly assume that k(I') C M,.

A capped formula A() is said to be a ¥(L; : 7)-formula if A € X(L; : 7).
Let k(A®) := k(A).

4. A pair Q = ((Q)o,7") is said to be a finite family for vo with thresholds
if (Q)o is a finite family in the sense of Definition 4.22 and the following
conditions are met. Let dom(Q) = dom((Q)o), A(S) = (Q)o(S), and |JQ =
U{Q(sS) : S € dom(Q)}.

(a) 7% is a map dom(Q) > S + ~d such that 7o + (In)% > 78 > 70 + I,
78 > 42 + Iy for {S < T} C dom(Q).
Q is said to have gaps 1 if 7§ > 3 +1y -1 holds for {S < T}  dom(Q),
and 78 > 4o + Iy - for S € dom(Q).

(b) For each p € Q(S), m(p) : A — 4 (0) is special, and 78 < po(p).

The thresholds function ~? is uniquely extended for S € {Q} U St by
78 := 12 for T = min{T € dom(Q) : T > S} if such a T exists. Otherwise
let 7§ =0-

For an ordinal e, let Qe denote the restriction of Q to e. Namely dom(Q]
e) = {S € dom(Q) : S < e} and 131 = 42 for every S € dom(Qe).
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5. For a finite family Q for o with thresholds and a pair (S, p) such that
(Q)oU{(S, p)} is a finite family for vo, QU{(S, p)} =R = ((R)o,"*) denotes
a finite family for ¢ with thresholds enjoying the following:

(a) dom(R) = dom(Q)U{S}, R(T) = Q(T) for T # S and R(

S)

(b) 7* extends 7 in such a way that 4% = 42 for T € dom(Q),

for every S < T € dom(Q), 'y% > A% + Iy for every S >
and 7§ > o + In.

= A(S)U{p}-
g >

% 2> ity
U € dom(Q),

A pair Q = ((Q)o,?) is simply denoted by Q when A2 is irrelevant.

Lemma 4.37 Let p € 9Q(S) for a finite family Q for vo with thresholds function
7. Assume © Udom(Q) C M, and VT € dom(Q) (Q"(']T) CHoyey,[0@Q° [T)])
for a finite set © of ordinals, cf. (29). Then Upejomq) Q°(T) € M, holds.

Proof. Let S,T € dom(Q) with p € 9Q(S). We show Q°(T) C M, by induction
on the cardinality of the finite set {U € dom(Q) : U < T}. First let S > T
and 0 € Q°(T). If S > T, then 0 < T < p € ¥s. 0 € M, follows. Otherwise
o € Q°(S) C p follows from p € 9Q(S). Next let S < T. We have © C M, and
Q°(T) C Hony [©(Q° [ T)] by the assumption. For dom(Q) > U < T we have
Q°(U) € M, by IH, and hence ©(Q° [ T) C M,. On the other hand we have
8 +In <48 < po(p). Lemma 3.43.1 yields Q°(T) C Hop, () (M,) C M,,. m

Definition 4.38 Let p € U5 and O, ©; be finite sets of ordinals.

L k€ L3(0,0,)iff k € UsNp, ©UO1 U{po(p)} USC(m(p))UR°(S) C M,
7§ < po(k) <polp), k € HWSHN [O(Q°[S)], and m(k) is special.

2. H3(f,©,01) denotes the resolvent class defined by x € H(f,©,0,) iff
5 € L3(0,61) and f < m(x), where f < g -6 Vi(f'(i) < g/ (1)) for special
finite functions f,g.

Let T be a sequent, © a finite set of ordinals< Iy, {v,a,¢,d,e} C OT(Iy),
and Q a finite family for o with thresholds.

We define another derivability relation (H,,0,Q) F¢,,. I, where c is a
bound of ranks of cut formulas, d a bound of ranks in the inference rules
(i—rfls(p, f,©1)), and e a bound of ordinals S. The relation depends on or-
dinals $,70, and should be written as (H,,0:;Q) F2,, 5. I'. However the
ordinals 3,7y will be fixed. So let us omit it.

Definition 4.39 Let Q = ((Q)g,~") be a finite family for vy with thresholds,
© a finite set of ordinals such that B(©) C ©, and a, ¢, d, e ordinals such that
dom(Q) C e. Let 8 < v, (70) be a fixed ordinal in Collapsing 4.34 and A = T'(3).

Let T = U{ng) :p € {u} UUQ} be a set of formulas such that k(I',) C
M, N Mpq for each cap p € {u} UJQ.
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(H+,0,Q) F¢, . T holds if v < v, each of the following (27), (28) and (29)

&y

holds, cf. (21) and (22), and one of the following cases (\/), (A), (cut), (X(92)-rfl)
and (i—rfls(p, f,©1)) holds:

O(Q°) C Maq (27)
{S, fyg :Sedom(Q)}U{y,a,cd, e B,v} UkI) C H,[OQ")) (28)

VS € dom(Q) (Q(S) C Mo, [O@ [S)}) (29)

(V) There exist an A ~ \/(A,),es, acap p € {u}uUUQ, ¢ € [p]J, and an ordinal
a(t) < a such that A®) € T and (H,,0,Q) . T, (4,)".

c,d,e
(A\) There exist an A ~ A(A,),cs and a cap p € {u} U{JQ such that A®) €T.
For ¢ € [p]JN[AQ]J, there is an ordinal a(:) < a such that (¥, ©,,Q) }—Z(;?e
T, (A)% holds for ©, = © U B(k(1)).
(cut) There exist p € {u} UJQ an ordinal ag < a, and a formula C with

rk(C) < ¢, for which (H,,©,Q) 2, T, -C®) and (H,,0,Q) 2, C),T
hold.

(X(2)-rfl) There exist ordinals ay, a, < a and an uncapped formula C € X(Lg :
Q) such that ¢ > Q, (H,,0,Q) F%, I',C and (H,,0,Q) F27, . —Jz <
7O T,

(i—rfls(p, f,©1)) There exists a successor i-stable ordinal S < e such that
S e#,[0@")] (30)

p € Ug is an ordinal such that p = max(Q~°(S)), i.e., p € 9Q°(S) and
© C M, & SC(p) U{po(p)} C Mag&ep € H o [O@QIS)]  (31)

where Q” = QU{(S, p)}, cf. (27) and (29), and s € supp(m(p)) is an ordinal,
f is a special function, ag < a is an ordinal, D is an £;-formula, which is a
finite conjunction with D = A(Dy)n<m, and O is a finite set of ordinals
such that ©1 C Mg, enjoying the following conditions (r1), (r2), (r3) and
(rd).

(r1) rk(D) < min{s, d}.

(r2) For g = m(p), SC(f) C H4[O@°)] and f, = gs& f* <} ¢'(s),
cf. Definition 3.31.6.

r3) For each n < m, (H,,0,Q°) %, T D%p) holds.

( ) ) ( REENE) c,d,e

(rd) (H4,0,07) I—Z"’d}e I, D) holds for every o € ng(f, 0, 0,), where

(@) = (@)o U{(S,0)} and 7¥"" ="
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In this subsection the ordinals 5 and 7y will be fixed, and we write Hede for

Fe de.p.0- Note that Q(S) C H[O] need not to hold.
Lemma 4.40 (Tautology) Let Q be a finite family for ~o with thresholds ~9,
b, e,y be ordinals, and p € {u} UJQ such that k(A) C M, for a formula A.
Assume that B(©) C O, and ©,Q,b,¢,3,7%,7,7 and A enjoy (27), (28),
and (29).
Then (H~,0,Q) F34, . 5., 7AW, AW holds for d = rk(A).

Proof. By induction on d = rk(A). By (28) we have k(A) C H,[©(Q°)]. Let
A~ \/(A,),es and ¢ € [0Q]J N [p]J. Then k(r) C Masg N M, for (27). On the
other hand we have d, = rk(A,) < rk(A) = d and d, € Holk(A,)[C Ho[k(A,¢1)] C
H4[0,(Q°)] for ©, = © U B(k(t)). Hence (28) is enjoyed in (H.,©,Q) gdb B0

_|A£p)7 AEP) . 0

Lemma 4.41 Let (H,,0,Q) F2, . I'. Let p € WUs be an ordinal such that

R=QU{(S,p)} is a finite family for vo with thresholds, {S,~g } C H,[0(Q°)],

O U dom(@) € My, SC(p) U {polp} © Mag and p € Hogs, [O@ 18], . (31).
Then (H~,0,R) F T’ holds.

cde

Proof. By induction on a as in Lemma 4.29. Let p € OR(S). By © C M, and
Lemma 4.37, (27) holds in (#,,0,R) F I'. Also we have Q° C R° for (28).
O

cde

Lemma 4.42 (Reduction) Let C ~ \/( e, and rk(C’) < cuwithQ <c<lIy.
Assume (H4,0,Q) ¢ .0 5. Lo, ~C) and (H.,0,Q) - L deBi O Ty,

Then (H.,0,Q) }—gﬁbe 5 Lo,T'1 holds for the natural sum a#tb of ordinals a
and b.

Proof. By induction on a#b. In the proof let us write =2 for F¢ , . 5 .

Case 1. The last inference in (H,,©,Q) F¢ T, =C(™) is a (A) with its major
formula =C(7), and one in ('H,Y7 0,Q) F2 ¢ Ty is a (\/) with its major formula
C™: We have (1,,0,Q) H2) (€)™, ™ Ty for an ¢ € [r]J and a b(1) < b.
We obtain (H.,©,q) He# ) (€)™ Ty, Ty by IH.

We obtain k(C,) C ’H ~[©(Q°)] by (28). On the other hand we have ©(Q°) C
Mpq by (27). Hence k(¢ ) C Moy, ie., ¢ € [0Q]J provided that k(:) C k(C,).
H4[0.(Q°)] = H,[0(Q°)] follows by Proposmons 4.15.6 and 4.15.9 for ©, =
© U B(k(v)). Moreover Q(S) C Ha,1, [©(Q°[S)] for every S € dom(Q) by (29).
On the other hand we have (H,,0,,Q) Fa) Ty, =C ™), -(C,)™) for an a(L) <
a. (H,,0,Q) 2 Ty, ~C, ~(C,) follows. IH yleldb (H,,0,Q) Fe#
To,T'1,-(C,)(". We obtain (H,,0,Q) F#® Ty, Ty by a (cut) with rk(C’)
rk(C') = c. Suppressing the part (H.,©,Q), let us depict it as follows.

pa) Lo, ~C(™, -(C) oy, Fo T, ~C™) IO) (CL)(T) ,C) 1y
a(e)#b () a#b(L) (™) IH
l_c F07F17_'(CL) l_c (CL) 7F07F1
(H+,©,Q) F&#P To, Ty

(cut)
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Case 2. One of (H,,0,Q) 2 Ty, ~C(™) and (H,,0,Q) 2 C(") T follows from
a (cut): For example let for rk(D) < ¢ and by < b

(H'Y’ 0,Q) |_20 C(T)’Fhﬁp(p) (Hvaqu) }—20 0(7)711171)(9)
(H,,0,Q) F2 Cc) Ty

(cut)

We obtain (H.,,©,Q) F¢#% 'y, T';,~D®) and (H,,0,Q) F¢#bo Ty, Ty, D) by
IH. (H,,0,Q) F¢#b Ty, Ty follows by a (cut).

Case 3. Otherwise: Consider the case when the last inference in (#,,©,Q) F¢
Lo, ~C) is an (i — rfls(p, f,©1)) with an ordinal S < e. We have © C M,
by (31) and D is a finite conjunction D ~ A(D,)n<m. For n < m and each
o€ ng(f,@,@l) we have

(7_[%@’[39) a0 FO,ﬁC(T),DSL”)
and
(H’Ya 63 on) Fgo FO; _'C(T)a _‘D(U)

Lemma 4.41 yields (H,,0,0°) Fb O 'y and (H,,0,Q°7) F2 C() Ty, By IH
we obtain (H,,©,Q°) F2#b Ty Ty, DY) and (H,,0,Q°7) Feo#b T Ty, ~D()
for each 0. An (i — rfls(p, f, ©1)) yields (H, 0, Q) F&#b Ty, Ty.

Other cases are seen similarly. |

Remark 4.43 In the Case 3 of the proof of Reduction 4.42, e.g., when (H,, ©,Q"7) FZOd,eﬁ
Ly, ~C("), =D is derived from a () with ©, > ©

{(H’W em ng) l_Z:)d(,];:g FOv _'C(T)7 _'(CL)(T)a _'D(a)}LE[aQ””]Jﬁ[T]J
(H,,0,0°7) ond’eﬁ To, ﬁc(T)7 —D()

(A)

it is not possible to exchange the inference (A) with (i — rfls(p, f,©1)) since
there may exist a o € HY (f,©,,01) such that o ¢ ng(f,@, ©1). Specifically
How i1y O@°1S)] ¢ Hoee oy, [©,(Q° I'S)], cf. Definition 4.38. This means that

an Inversion lemma does not hold for the derivability relation F.

Lemma 4.44 (Cut-elimination) If (H,,0,Q) Fo, . 4.5, [ with Q@ < c €

H,[0(Q°)] and ¢+ c1 < Iy, then (H,0,Q) Fiii,g;,% T.

Proof. By main induction on ¢; with subsidiary induction on a using Reduction
4.42. O

5 Elimination of stable ordinals

5.1 Capping and recapping

In this subsection the relation H* is embedded in F by putting caps on formulas,
and then caps are changed to smaller caps.

48



Lemma 5.1 (Capping) Let TUII C Ag(Ly11) be a set of uncapped formulas
with tk(T UTL) < B, where 5 < 1, (v0) is a fixed limit ordinal in Collapsing
4.84 such that a,f < Iy and dom(Qn) C B. Let (H,0;Qmn) F5 INSIAES
where Iy < v <7, L =T, U Ugedom(qn) I's, and 11} = U(&o)emn H({;U}' Let
A=T(5).

For each S € dom(Qn), let ps = ¥ (ds) be an ordinal with a ds and a
special finite function gs = m(ps) : A — @a(0) such that supp(gs) = {8} with
gg(ﬁ) =as+ A, A2a+1) < ag + A, SC(gg) = SC(B,aS) C 'Ho(SC((Ss)),
cf. (11), and {as, ds} C H~[O].

Let @ = ((Q)0,7Y) be a finite family for ~vo with thresholds such that the
following holds.

1. The thresholds function v enjoys 78 < ds < 7@ +1In for each S € dom(Q).
2. Q(S) =Qu(S) U{ps} forS € dom(Q) = dom(Qm).

Let f = Fu U USEdom(Qn){A(pS) : A e FS}, and H() = U(S,O’)

Assume the following:

1. © C Hyy(1y (70))-

2. 73 € H,[0], ©UQn(S) € M,, and Qu(S) C Hosyiy [OQm [S)] for every
S € dom(Qm).

).

3. po(o) < polps) = ds for each (S,o) € Q.
4- Q has gaps (pp11(B) +1) - 27
Then (H,,0,Q) F2% 4 5.0 T,1IO) holds.

Remark 5.2 We have {v9,a, 3} C H,[0] by (21). Let fySQ =vo+In-(pp+1(8)+
1)-2% .k for k = #{T € dom(Q) : T > S}. Then 1§ € H,[0] for (28). 1 is a
threshold function in Definition 4.36.4a.

For the gap wp+1(8) + 1, see Lemma 5.11.

Proof of Lemma 5.1. This is seen by induction on a. Let us write -3 for
Fg,ﬁ,ﬁ,ﬁ,w in the proof.

We have dom(Qm) C 5, {v,a,8,7%} U dom(Qn) C H,[©] by (21), and for
each A € T UIL k(A) C H,[©(Qm)] by (22).

The assumption Qr(S) C M,, means that ps = max(Q(S)) and ps € 9Q(S).
Hence Q° = Q. We have VS € dom(Qn) (78 € H[O]) by the assumption.

On the other hand we have VS € dom(Qn)(Qu(S) C Hopny [O(Q° S)]) by
the assumption, and {S, 8, as,ds} C H,[0] with dg < 78 + Iy by (21) and the
assumptions. Hence by Proposition 4.15.8 we obtain ps € H, 9., [©], and (29)

is enjoyed. Therefore (28) and (29) are enjoyed in (H,,©,Q) F3% 5 5., L, 0.
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We have ©(Q°) = ©(Qn) = O U B (U{Qu(T) : T € dom(Qmn)}) with Qu(T) =
Q°(T) and Moaq = (Nseaom(q) Mpe- We obtain © C My, and for T € dom(Q),

Qu(T) € Hoa g, [OQ°T)] by the assumption. Hence Lemma 4.37 yields
O(Q°) C Maq (32)

and (27) is enjoyed.

We obtain k(I' UII) C Myq. Furthermore when A € II,, k(4) C M, is
assumed. We obtain k(II) C Maq N M,
Case 1. First consider the case when the last inference is an (i—stbl(S)): We
have a successor i-stable ordinal S such that S € H,[0] by (23), a formula
B(0) € Ag(L;) with rk(B(0)) < S, an ordinal ag < a, and a term v € Tm(Iy)
with S <rk(B(u)) < 5.

For every ordinal ¢ € Wg such that ©(Qn) C M, and po(o) > o, the
following holds for dom(Rr) = dom(Qmu) U {S} and RG =Ry U {(S,0)}.

(Hy, ©;R) H5™ T, B(u); T} {(H,, ©;RG) H5% T; ~B(u) (7} 110,
(H,0;Qu) H3 T; I

When S ¢ dom(Qm), let R = QU{(S, ps)}, and ordinals & and pg are defined as
follows. First let 4& = A3 for T € dom(Q). If there is no S > T € dom(Q), then
B =7+ In - (ppr1(8) + 1) - 270, Assume there is a largest S > T € dom(Q).
Then let ’yg =2 +1In-(pa1+1(B)+1)-2%. In each case we obtain /& € H.,[0] by
{70, 8,73, a0} C H[O]. Suppose that there is a least S < U € dom(Q). Since Q is
assumed to have gaps (pg+1(8)+1)- 2“ we obtain o +1In-(pa11(8)+1)-2% < 48
and VT +1In - (pp1(B) +1)-2% < 'yU We see from ag < a that R has gaps
(pp41(8) +1) - 2%,

Let as = A(2a) > A(2ap) and ds = YE#a#S#b for b = max({0} U Es(0))
with the set Es(a) in Definition 4.10. We obtain as < Ix < v < 7y < ~& and
{as,ds} C Hol{a, 8,72} UEs(O)] C H[O]. Also §s < A& +1Iy by max{a, 8,S} <
In. Moreover {a,} C Ho(SC(ds)). Hence (11) is enjoyed for ps = 92 (ds),
cf. Proposition 6.6.2.

Next we show © U Qu(S) C M,,. We have Qu(S) = . We obtain b =
max({0} U Eg(©)) € Hs.(ps) NS = ps by (7), and hence Es(©) C ps. On the
other hand we have © C H.,, (¢1, (70)) by the assumption. Also yg <& < ds =
po(ps). Proposition 4.13 yields © C Hp,(ps)(ps) = My,

Let h be a special finite function such that supp( ) = {B} and h(B) =
A(2a9 + 1). Then hg = (gg)g = () and h? <A (9s)(B) by h(B) = A(2a9 +
1) < A(2a) < ag = (gs)'(B). Let 0 € H} (h,0,0). We have © C M, and
0 € Hynypy [O(R[S)] by Definition 4.38.

For example let 0 = ¢ (Js+b+1). We obtain, cf. (12), SC(h)U{pO(U)}
{Po(p2)} U SC(m(ps)) = 8C({ao, 0, 3)) UOU {5, 05} € H, 0] C Hs, (o) =
and po(0) = po(ps). We see o € Hol[{ps, B, a0,0s} U @] - HWSRHIN[@] from
Proposition 4.15.8. Therefore o € Hy (h,©,0).

Since Q is assumed to have gaps (¢g+1(8) + 1) - 2%, we may assume that R
as well as R” has gaps (pg+1(8) + 1) - 2%.
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We obtain by IH for ps > o € M, and rk(B(u)) < f for (r1), (., O,R) I—%ao
T, B(u)®), 110, and (H,,,0,R%) F2% T, 110, = B(u)).

Let D = A(B(u)) with D ~ A(Dy,)n<1 and Dy = B(u). We obtain rk(D) =
tk(B(w)) +1 < B and (Hy,,0,R) F5" T, DY 1O and (Hao, ©,87) F5F!
I, 110, =D by a (\/). An (i—rfls(ps, b, 0)) yields (H,,,0,Q) H3* T, 110

(Hro, O,R) 50 T, DY IO (H,,,0,R7) F3° ! T, 110, ~D(@)
(H’}’O? @7 Q) F%a f? H<>

(i—rﬂg(ps, h'7 @))

Case 2. When the last inference is a (cut): There exist ag < a and C such
that tk(C) < B, (H,,0;Qu) F; T',=C; 1 and (H,,0;Qn) H* T, C; 1T,
TH followed by a (cut) with an uncapped cut formula C™ yields the lemma.
Case 3. Third the last inference introduces a \/-formula A.

Case 3.1. First let A € I's be introduced by a (\/), and A ~ \/(4,),c,.
Then As) e T'(#s). There are an ¢ € J and an ordinal a(:) < @ such that
(H,,0:Qn) F5"“) T, A1) We obtain k(1) C H,[O(Q°)] C Maq by (22)
and (32) provided that k(:) C k(A4,). Hence ¢ € [0Q]J C [ps]J. IH yields
(Hy5,0,0Q) 3 T, (4,)), 110, (H,,,0,Q) F2* T, 11O follows from a (V).
Case 3.2. Second A7} e IT}”) is introduced by a (W)t with A~ \/ (A4,),c,-
Then A € TI0). There are an ¢ € [0]J and an ordinal a(t) < a such that
(H,,0:Qn) F5" T3 ALY 0. TH yields (H,,,0,0) H5* T, (4,)), 110 We
obtain (H,,©,Q) F3* [, 10 with A©) e IIO) by a (V).

Case 3.3. Third the case when A € T, is introduced by a (\/) is seen from IH.
Case 4. Fourth the last inference introduces a A-formula A.

Case 4.1. First let A € I's be introduced by a (A), and A ~ A (4,),.,;. For
every v € J, (H,0,;Qmn) }—EQ(L) I, A,; I} holds for an a(t) < a and ©, =
© UB(k()). Let ¢ € [0Q]J. We obtain ©, C Maq C M, for every S € dom(Q).
On the other hand we have rk(A) < 8 < ¥r, (70). Hence ©, C H, (Y1, (70))-
IH yields (Hy,,0,,Q) F5" T, (4,)%) 0O, (#,,,0,0) F3* T, 1I0) follows by a

(N)-
Case 4.2. Second A7} e I} is introduced by a (A){} with (S,0) € Q.

Let A ~ A\(A,),c; For each ¢ € [o]J there is an ordinal a(t) < a such that
(H,,0,:Qn) F5" T; AL, 1100,
For each ¢ € [g]J N [0Q]J, IH yields (H,,0.,Q) I—Za(k’L) T, (AL)(U) 100,
(H+,,0,0Q) F3* [, 110 follows from a (/) with A) e II0).
Case 4.3. Third the case when A € T, is introduced by a (/) is seen from IH.
The lemma follows from TH when the last inference is a (X(€2)-rfl). ad

Definition 5.3 For a finite family Q = ((Q)o,7?) for 7o with thresholds, let
ki € L3.(0,0) with a (T;, p;) € Q for each i.

Qlr/Pl = ((Ql*/*1)g,~4?) denotes a finite family for 4o with thresholds defined
as follows. dom(Q*/?l) = dom(Q), and Q"/?(T) = {k,; : T; = T} U {u € Q(T) :
pé{pi: T; =T}H}
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Lemma 5.4 (Recapping) Let Q be a finite family for vy with thresholds, b and d
ordinals, and T < b a stable ordinal such that b € H,[©(Q°)]. Let = = U{E;Tj)}j
be a set of formulas, T = U{ngi)}i a set of formulas such that tk(\/T;) < b <
s(p;) for each i, and II = U{H,(;\k)}k a set of formulas such that rk(Tly) < d for

each k.
Suppose {p;}: U{ A\ }r C UOQ, max{a,b,d} <A, d>b and

(H"m @7 Q) Fg,df]l‘tﬁ’rm Ea H7 r (33)

For each i, let k; € HS, (h*(gi;2b + wa),0,0) C LY (©,0) with g; = m(p;),
and o, € L3 (©,0) for each k. Let Ty = U{T )} and 11, = U{H,(f’“)}k. Q
denotes a finite family obtained from Q by replacing p; by k;, and A\ by oy,
cf. Definition 5.3. Then

(H+,0,Q0) B2, 200, T (34)

holds.

Proof. By induction on a. The third, fourth and fifth subscripts T%, 8 and
7o are fixed, and omitted in the proof. We write ¢ ; for =72 ; B A special

finite function h®(g; a) is defined from ordinals a, b and a function g in Definition
4.19. Note that [k;]J C [p;]J holds by k; < p;.

Let & = ; € LY(O,0) with g = m(p), p = p; € 0Q(S) and T' > S € dom(Q).
By Definitions 4.22 and 4.38 we obtain © U {po(p)} U SC(m(p)) UR°(S) C M,,
Kk € Ho0,q, [O(Q°[S)] and 78 < po(k). Then x € 0Q;(S) and © C Mpg,. On the
other hand we have {a,b,d} C H,[©(Q°)] by the assumption, where Q° = Q5.
Moreover we have SC(m(x)) U {po(k)} C M, by Proposition 3.38. Hence (27)
and (28) are enjoyed in (H,,0,Q) I—Zf’;%’ffﬁﬁo =, 10,1y,

We have Q(S) U {x} C M0, [0(Q° [S)] by (29) and x € L}(©,0). This
together with Q° = Q7 yields Qu(S) C H. o,y [©(Q3 'S)]. Hence (29) is enjoyed
for Q;.

By Lemma 4.37, (29) and © C M, we obtain ©(Q°) C M, for x € 9Q;(S).
From {a,b} C H,[0(Q°)] and © U SC(m(p)) C M, we see SC(h®(g;2b+wa)) C
M, by Lemma 3.43.1 and v < 7§ < po(k). Also po(p) € M, by k € L3(8,0),
cf. (12).

Case 1. First consider the case when the last inference is an (i—rfls(p, f, ©1))
for an S < T: We have {S,T} C H,[©(Q°)] by (30) and (28). We have © C M,
by (31). Let T, = T\*") if p = p;, and T, = §) else.

Let ¢ = m(p) and s € supp(g). D is a finite conjunction with D ~
NA(Dn)n<m and rk(D) < min{s,d} by (rl) with s < s(p), and ap < a is an
ordinal such that for R=QU {(S, p)} and each n < m

(H,,©,R) F3%, E,ILT, DY) (35)
where p € OR(S).
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On the other side for each o € H}(f,©,01) we have
(H,©,R7) 52, ~D\?) = T,T

f is a special finite function such that fs = gs, f* <® ¢'(s) and SC(f) C
H,[©(Q°)]. We obtain by TH

(H’Ya 67 R’L{) '731,)1:’_“)@0 _'D(U)7 E’7 H17 Fl (36)

Let ¢ =rk(D) < d. Then ¢ € H,[©(Q°)] by (28).
Case 1.1. ¢ < b: Then rk(D,,) +1 <rk(D)+1<c¢+1 <band rk(\/(T', U
{D,})) < b. It b > s(p), then let Kk = p. If b < s(p), then let OF = O, U
SC(m(p)) U {po(p)} and % € HARY(g;2b + wa), ©,0) for g = m(p).

IH with (35) yields for n < m

(H’Ya (—)a Rl) l_i?ljwao Ea Hla Fla Dgf) (37)
Case 1.1.1. b > s(p): Then p # p; for every i, and 'y = . By (36) and (37)
an (i—rfls(k, f,01)) yields (34) with k = p and rk(D) < min{s, b}.
Case 1.1.2. b < s(p): We claim for the special finite function h = h®(g;2b +
wa) < m(k) and s; = min{b, s} that if b < s(p)
for = hsy & f*1 < W (s1) (38)

If s = s < b, then hy = g5 = fs and ¢'(s) = g(s) < h'(s). Proposition 3.6
yields the claim. If s; = b < s, then Proposition 4.20.1 yields the claim.

Let 0 € HY (f,0,07). Then ©UOT = QUO; USC(m(p))U{po(p)} C M,.
Therefore o € HY(f,0,0;).

By (38), (37) and (36), an (i—rfls(k, f, ©T)) yields (34), where rk(D) < s1 <
b, ¢ < b and s; € supp(m(x)).

Case 1.2. b < ¢ Let 0 € L := HM(h,0,07) for ©F = 0, U SC(m(p)) U
{po(p)} € My and h = (h°(g;2b + wap)) * f*'. We obtain L C L%(©,0) N
H}(f,0,01) and SC(h) C H,[0(Q°)].

IH with (35) for 0 € L C L%(©,0) and tk({DY'} UT,) < ¢ < d yields
(H,,©,Ry) F25F«a0 = 11, T DY) (T\T,); for each n < m, where 2,11, T, DY) =
= 1Tu {Dép)} url,,(I'\T',), and each AlP) ¢ I', is replaced by A9 in Ry, while
B e (I'\T,) by B%) in (I'\T',);. A (A) with Lemma 4.41 yields

(1,0, (Ry)7) F3, %™ 2,1, T, D) (I\T,), (39)

where (R1)” =R; U{(S,0)} =R U{(S,k)}.
On the other side, IH with o € L C H}(f,0,01) yields (36).
A (cut) with rk(D) < d, (39) and (36) yields

(H, 0, (R1)7) FgY 2,104, Ty, T

for 2b < a3 = 2b 4 wag + 2 < 2b + wa. Several (\/)’s yield for a p < w

Vo € L|(H,,0,([®)7) 947 10, Ty, \/FE)")} (40)
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where \/ T, = (Ao V-V Ap—1) with n =0 when ', = 0.
On the other, Tautology 4.40 yields (#.,©,R1) I—(Q)f’b I'y, =6 for each () ¢
I',. We obtain

(H+,0,R1) Ho5 P Ty, = \/ T4 (41)

Let k = h®(g;2b + wa). Then hy = g, = ky and h <® k' (b) for h = (h°(g;2b +
wag)) * f¢+1 by Proposition 4.20.2.

By (41), (40) with max{2b,a:} + p < 2b + wa, rk(\/T',) < b, (34) follows
from an (i—rfls(x, h, ©T)) with the resolvent class L = H (h,©,07).
Case 2. Second consider the case when the last inference introduces a formula
B() ¢ T: For example let B ~ A\(B,),es. For each ¢ € [k]J C [p].J, we obtain
rk(V(T'U{B,})) =rk(VT). IH followed by a (/) yields (34).
Case 3. Third consider the case when the last inference is a (cut) with a cut
formula C(?): We have rk(C') < d, and TH followed by a (cut) with the cut
formula C'*) yields (34).

Other cases are seen from IH. |

5.2 Eliminations of inferences (rfl)

In this subsection, inferences (i—rfls(p, f,©1)) are removed from operator con-
trolled derivations of sequents of formulas in 3(€2) U II(€2).

Definition 5.5 We define the S-rank srk(A(®)) of a capped formula A()
follows. Let stk(p) = S € SSt for p € Wg, and srk(u) = 0. srk(A®) = srk(p).
stk(T") = max{srk(A()) : AP) € T}.

Proposition 5.6 Let (H.,,0,Q) &g« 870 2,10 with a finite family Q for v

with thresholds, where T() = U{F((,U) : (S,0) €Q} for T =U{Ts : (S,0) € Q}.
Assume that max{stk(Z),tk(EUT)} < S. Let v = 43 + In if S € dom(Q),
and 1 = v else. Then (H,,,0,R) |_§7GS7S}B,"(U 2,T®™ holds for R = QS and
rw ={cw.cer}.

Proof. By induction on a. The fourth and fifth subscripts 3,7y are omitted
in the proof. If S € dom(Q), then we have Q°(S) C M+, [©(R°)] by (29), where
R® = Q°[S. Hence (28) is enjoyed in (H,,,0,R) 3% 5 5.+, E,TW,

Case 1. First consider the case when the last inference is a (N\) with its ma-

jor formula C@) € ZUTO) with C ~ A(C,),es: We have (H,,0,,Q) S;ST

2,10, ¢ for each 1 € [9Q]J N [0]J. IH yields (H.,,O,,R) Faa o =,T™, O

Let 09 = o if stk(o) < S, and 0p = u else. We claim that L 6 [6(3].] Nlo ]J
iff © € [OR]J N [og]J for each ¢ € J. We may assume that k(¢) C k(C,). By the
assumption and Proposition 4.5.6 we have rk(C,) < rk(C) < S for each ¢+ € J.

Let p € 9Q(S) and ¢ € [0R]J N [op]J. First let C@) € T'C). We show ¢ €
[o]JN[p]J. We obtain k(C') C My;NS = o < p, and hence k(v) C o C M, C M,,.
Next let C(©) € Z. We show ¢ € [p].J. We obtain k(C) C M, NS = p, and hence
k(t) C p C M,. The claim is shown.
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A () yields (H,,,0,R) F3% s E,T™ with C® e T,
Case 2. Second consider the case when the last inference is an (i—rfls(p, f, ©1)):
We have a finite conjunction D = A(Dy)n<m and an ordinal ag < a such that
rk(D) < srk(p) = srk(o) =S by (rl), and
{(H,,0,0°) F2 o, 21O, DV} {(H,,0,07) F2 o, 5,10, ~D)},

(H4,0,Q) Fg g =10

We have X = © U ©; U{po(p)} USC(m(p)) UQ°(S) C M, for p € 9Q°(S).
Pick a 0 € ng(f,®,®1). For example o = (o 4 1) for p = 9 (a) and
n =max({1} U Es(X)). IH yields

{(H, 0,R) F2% E,T™ DM} e
(H’Yl I @7 R’) F;?SD’—S‘FI Ea F(u)a D(u) (H’h I 67 R‘) Fé?SO,S Ea F(u)
(H4,,0,R) F3% s 2, TM

where Q° [S=Q°? [S=Q[S =R.
Case 3. Third the last inference is a (cut) with a cut formula C(?) with srk(o) =
S: Then rk(C) < S = stk(o) for the cut formula C(®). TH followed by a (cut)
with the cut formula C™ yields the proposition.

Other case are seen from TH. m]

~D®

7

(cut)

Lemma 5.7 (Elimination of one stable ordinal)
Suppose (H~,0,Q) P&t st st gy = With a finite family Q = ((Q)o,7Y) for o,
where S € St, and max{rk(Z),srk(Z)} < S.

Let v = 7§ + Iy if S € dom(Q), and 71 = 7 else.

Then (H+,,O,R) g 5., E holds for & = ¢si (S +wa) and R =QTS.

Proof. We have B({Sf,a}) C H,[©(Q°)] by (28) and Propositions 4.15.6 and
4.15.9 with B(©(Q°)) € ©(Q°). We see E(S) C {S}U E(ST) and By(S) c {S} U
Bo(ST) with S € trail(ST). Hence B(S) C B(S"), and B({S,a}) C H,[©(Q°)]. On
the other hand we have Q°(S) C #H.,[O(R®)] by (29) when S € dom(Q), where
R° = Q°[S. Therefore {S,a} C H.,[O(R°)].

(H4,0,Q) pStwa = follows from Recapping 5.4 for S = 2S. Cut-

S1,5,8t,8,70 -
elimination 4.44 yields (#+,0,Q) F E. We obtain (H,,,©,R) F§ g5 5.,

= by Proposition 5.6 with 2a = a.

a
S,8,8%,8,7

Definition 5.8 Let Q be a finite family for 7o with thresholds 7, and v an
ordinal. Let
s(7,Q) := min{S € SSt : v > 43 + In}

if there exists an S € SSt such that v > ’yg +1Iy. Otherwise s(7,Q) := 3 for the
fixed ordinal f.

We say that a non-zero ordinal v is a multiple of Iy if v = Iy - « for an
a # 0. For a multiple v of Iy we obtain for s = s(v,Q)

VS € dom@Q)(S<s= 7<) &VT € dom(Q)(s <T =13 +In <7) (42)
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Definition 5.9 Let Q = ((Q)o,7?) be a finite family for vy with thresholds
function %, W a successor stable ordinal, and v an ordinal. Let W < e and
s = 5(7,Q). 63(7) denotes an ordinal defined as follows. If [W, s) Ndom(Q) = 0,
then 63, () = . Otherwise 63 (7) = 7% = ~J, for the least U € [W, s) Ndom(Q).

Proposition 5.10 Let Q = ((Q)o,"Y) be a finite family for vy with thresholds
function v8, and W < S < e successor stable ordinals. Then v < 63(v) < 63(7)
for a multiple v of Iy .

Proof. Let s = s(’y,Q). If [W,s) N dom(Q) = 0, then d%(y) = 63(y) = .
Otherw1se 6 (v) = 43 = 4, for the least U € [W,s) N dom(Q). By (42) we
obtain 7% > . If S < U, then 63(7) = 3. Assume U <S. If[S,s)Ndom(Q) = 0
then 03(y) = v < 7. Otherwise let 53(7) = 43 for the least T € [S,s) Ndom(Q).
Then U < T, and v < 7% < ’y% by Deﬁnltion 4.36.4&. O

Y

Lemma 5.11 (Elimination of stable ordinals)

Let Q = ((Q)g, Y be a finite family for o, and f(e,a) = pei1(a). Suppose
(H4,0,Q) F2, . 5.4, E for amultiple v of Iy, and max{rk(Z),srk(Z)} < W <,
where e is a stable ordinal, a,e < A < Iy, W is a successor stable ordinal such
that W € Hsa ()41, [©(Q° TW)].

Assume that Q has gaps f(e,a) + 1. Then (Hy,, O, Qw) I—{W(ew}l%&, By = holds
for yw =85 (7) + Iy - (f(e,a)) <o + (In)* and Qw = QW

Proof. By main induction on e with subsidiary induction on a. In the proof
let us omit the fourth and fifth subscripts 3, vg.

Let W <'S € dom(Q). We have Q(S) C Hoainy [O(Q° [S)] by (29). We see
78 < 63,(v) from Definition 4.36.4a and (42). Hence Q(S) C H 53 () 415 [O Q)]
and H~[©(Q°%)] C Hé&(v)ﬂzv [©(Q%y)], where Q = Q° [W

By the assumption and (28), {W, f(e,a),yw} C 7—[50 )41 [©(Q5y)] follows,
and (28) is enjoyed in (H,,, O, Qw) I—QW%\W By 2

We see yw < 74 for every S € dom(Q) N'W from the assumption that Q has
gaps f(e,a) + 1 as follows. If 63,(7) = 70 = 7, then yw = 70 + In - (f(e,a)) <
Yo +In - (f(e,a)+1) < ~3. Otherwise let o3,(7) = g for S < W < U € dom(Q).
Then 7 =8 + Iy - (f(e,a)) < 43+ In(f(e,a) +1) < 8.

Case 1. Consider the case when the last inference is an (i—rfls(p, f, ©1)) for a
successor i-stable ordinal S < e such that S € H,[©(Q°)] by (30).

Let R = QU {(S,p)}. ao < a is an ordinal, and D = A(Dyp)n<m is a
finite conjunction such that (H.,O,R) 29, . E,D,&p) for each n < m, and
(H,,0,R7) k&, . =,-D) for every ¢ € L = H;”(f,@,@l) and rk(D) <
min{s, e}. Since (f(e,a0)+1)-2 < f(e,a), we may assume that the finite family
R for 7 has gaps f(e, ag)+1. We have stk(D®)) = stk(D(?)) =S < ST < e € St.

Let UT = max{W,rk(D),ST}. We obtain U" < e. We claim that Uf ¢
Mt ()11 0085, )], where 03, (7) = 0% (1) = 6%(3) by U > 5. We may

assume that UT # W by the assumption. First let UT = ST. We see E(ST) C
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{STYU E(S) with Es(ST) = 0. Moreover By(ST) C {ST}UBy(S) since trail(ST) C
trail(S) U {ST}. Hence B(ST) C {ST} U B(S). Therefore St € H5§f ()+1x [©(Q51)]
by S € B(S) C H,[©(Q°)] and v < (SgT (7). Next let UT = rk(D)" > max{W,S'}.
Then 63, () = 7§ for V.= min{V € dom(Q) : tk(D) < V < s(7,Q)} if such a V
exists. Otherwise 5%1 (v) =~.

By (28) we obtain k(D) C #H,[©(Q°)], and k(D) C stgf(v)ﬂzv[@(a%f)]'
Hence rk(D)" € H&;T (1)+1x [©(Qp¢)] follows from Proposition 4.5.3. Thus the
claim is shown.

Let a1 = f(e,ap) and yyr = 6& (v) +In - (f(e,a0)). For each n < m, SIH
yields (M, ,,0,Qut) P& g e S DY), and (Hs .0, Qui) Fik i g B D for
each o € L. We obtain by an (i—1fls(p, f,©01)), (H~;,©,Qut) Rt g B0 IF
Ut = W, then S < W. We are done. Assume W < Uf. Then W < U € St.

Let az = pyi (U+w(ar +1)) < f(e,a). Lemma 5.7 yields (H,,, ©,Qu) Hyy
=, where v = 'yI[Qj + Iy if U € dom(Q), and 3 = ~yr else. In each case 71 is a
multiple of I.

Claim 5.12 42 = 6% (1) + In - f(U,a2) < 6%(7) +In - f(e,a) = yw.

Proof of Claim 5.12. Let s = s(7,Q), § = (5&,(7), s1 = s(m,Qu) and &; =
5&/}(%)-
Case 1. U € dom(Q): Then v, = fy[% + Iy and s; < U.
Case 1.1. s < U: Then v < ~. First let [W,s) Ndom(Q) = 0. In this case
we show that §; < v = §, which yields the claim by f(U,a2) < f(e,a). If
[W,s1) Ndom(Qu) = 0, then §; = v; <. Otherwise let V € [W, s1) N dom(Qy)
be the least one. Then s <V, and §; = yg, < *yg, + Iy <7

Second let § = 43 for the least V € [W,s) N dom(Q). From v < v we see
s1 > s. Hence V € [W,s1) N dom(Qu) and d; = 73. The claim follows from
f(U,az2) < f(e,a).
Case 1.2. U < s: Then U € [W,s)Ndom(Q) and § = +J with V< U. If V < sy,
then §; = 73 = 6. The claim follows from f(U,az2) < f(e,a). Let s; <V < U.
Then 6; =1 =3 + In and 73 <43 1+ f(U,a2) < f(e,a) yields the claim.
Case 2. U & dom(Q): Then v, = vyt = 6& (v) + Iy - f(e,ap).
Case 2.1. [W,s)Ndom(Q) = 0: Then § = v = 63,(y) by W < U', and
m = v+ Iy - f(e,ag). We have either §; = vy, or §; = 75, foras <V e
dom(Q). In each case we obtain 6; < v+ Iy - f(e,ap). The claim follows from
f(e’ aO) + f([Uv 0,2) < f(e7a)'
Case 2.2. Otherwise: Let § = 43 for the least V € [W,s) N dom(Q). If
V < sy, then §; = 43 = §. The claim follows from f(e,ap) < f(e,a). Let
s1 <V <s. Then §; = ;. We show (55JT (7) < 6 + Iy, which yields the claim
by f(e,ap) + f(U,az) < fle,a) =1+ f(e,a). If U <V, then 5&(’7) =13 =5
If 63, (7) = 73 for an V < UT < X <'s, then 73 < ~J. Otherwise &3, (y) =7 <
YW +In=6+Iy by V<s. O
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We have as = f(U,a2) = puti1(az) < f(e,a), and hence Q has gaps as +
1 < f(e,a). By MIH with U < e we obtain (H.,,©O, Qw) I—&?,W,W = for 75 =
5& (71) +In - f(U,a3). On the other hand we have v < 4w by Claim 5.12 and
as < f(e,a). Therefore (H,,O,Qw) vaizva%/v E.
Case 2. Next consider the case when the last inference is a (cut) of a cut
formula C(?) wth max{rk(C),srk(c)} < e. We have an ordinal ag < a such
that (#,,0,Q) F2, , ~C(®),Z and (H,,0,Q) F, , C@) =
We may assume that rk(C) > srk(o) by Proposition 5.6. Let UT = max{W,1k(C)t}.
We obtain UT < e. We see Ut € 7-[50 +1x ©(Q71)] as in Case 1. Let yyr =

5Q (V) +In-aq for ag = f(e,ap) = <pe+1(a0). SIH yields (H;,©,Qut) Fii pr ui
ﬁcm, Zand (Hy,,,0,Qut) Fit g g O 2 A (cut) yields (o, ©, Qur) i 1
E. If U = W, then we are done. Assume W < Ut. Then W < U € St. Let
az = ¢yt (U+w(ar +1)) < f(e,a). Lemma 5.7 yields (H,,,0,Qu) Fyy E,
where 71 = 4 + Iy if U € dom(Q), and 71 = 7pr else. In each case v is a
multiple of Iy. We have ag = f(U,az2) = put1(az) < f(e,a), and hence Q has
gaps az + 1 < f(e, a).

By MIH with U < e we obtain (H.,,©,Q) Fj g w = for 72 = 6% (y1) + Iy -
f(U,a2) < ~yw by Claim 5.12.

Other cases (\/), (/) and (X—rfl) on Q are seen from STH. O

Let us prove Theorem 1.1. Let Sy, - 0%2 for a ¥-sentence 6. By Embedding
4.27 pick an m > 0 so that (Hy,,0;0) Ffﬂﬂfn"’m 6L2;(. Cut-elimination 4.32
yields (Hiy,0;0) F;o 052:0 for a = w(Iy -2+ m) < wmy1(Iy +1). Then
Collapsing 4.34 yields (Hat1,0;0) 5 0F2;0 for 8 = vy, (a) € LSty with
a=1Iy+w= wm_H(HN 24+ m) > 8. Now let 79 = G + Iy. Capping 5.1
then yields (H.,,0,0) - ,6 88,6 6L where 28 = 8, 82 = (9L2)® and 0 is
a finite family for 7o with thresholds and gaps ¢gy1(8) + 1. For the empty
family () this means that each finite family Q with thresholds 'yg have gaps
wp+1(8) +1 in a sequent (H,,0,Q) F3 5 5 5. I occurring in the derivation of
(Ho0:0,0) Fp 55,65, 07

Let 8 < A = I'(8) < Iy be the next strongly critical number as the base
of the f-function. In what follows each finite function is an f : A — I'(A). Let
a = ¢p11(B) and Sy = QF be the least stable ordinal with B(Sy) = {So} C Ho[0)].
By Lemma 5.11 for the multiple ~q of Iy we obtain (H7§0 ,0,0) 8, So.50.8.70 gLe
for s, = 5& +1In - f(B,8) =7 + Iy -a < 5 + (Ix)? Cut-elimination 4.44
yields (H,0,0) Fo's, 50540 6L for a; = pg, ().

In a witnessed derivation of this fact, there occurs no inference (i—rfls(p, f, ©1))
since there is no successor stable ordinal § < Sy, cf. Definition 4.39. Hence
(Hog, ,0;0) '_;2(11 0Lo; 0 for v = s, + a1 + 1. (H,0;0) l—;fm 6Ls: () follows
from Collapsmg 4.35, where § = ¥q(vs, + 1) with the epsilon number «;.
Cut-elimination 4.32 yields (H, 0;0) *ﬁé(é) 6Ls: 0. We see that 675 is true by
induction up to ¢s(d), where 0 < Yo (wmt2(In + 1)) < Ya(ery+1)-
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6 Some ordinals in well-foundedness proof

In this section we introduce some ordinals needed in our well-foundedness proof.

In [4] the following Lemmas 6.2 and 6.3 are shown. Lemma 6.2 is used in
showing the finiteness of the sequence pg > p1 > p2 > -+, cf. Definition 3.28
and Lemma 6.15. Lemma 6.3 is needed in showing Corollary 7.38.

Definition 6.1 Let A < Iy be a strongly critical number.

L. For £ < A (0), aa(€) denotes an ordinal defined recursively by ax(0) = 0,
and ax(§) = D2« Ob, (W - an(&); A) - ai when & =np 3o, O, (S5 A) - aq
in (6).

2. For irreducible functions f : A — @A (0) with base A let us associate
ordinals ox(f) < ¢a(0) as follows. oa(0) = 0 for the empty function
f=0. Let {0} Usupp(f) ={0=co <c1 <+ <en}, flei) =& < pa(0)
for i > 0, and { = 0. Define ordinals ; = oa(f;¢;) by (n = w-aa (&), and
G=w-anr(&) +0c 1 —c,(Cir1 + 1;A). Finally let oa(f) = Co = oa(f;co)-

3. For d & {0} Usupp(f), let oa(f;d) = 0 if f? = 0. Otherwise oa(f;d) =
Oc—a(oa(f;c) + 1;A) for ¢ = min(supp(f?)).

Lemma 6.2 Let f : A — @x(0) be an irreducible finite function with base
A defined from an irreducible function g : A — ©a(0) and ordinals c¢,d as
follows. f. = g, ¢ < d € supp(g) with (¢,d) Nsupp(g) = (¢,d) Nsupp(f) = 0,
fle) < g(e) + Oa_c(g(d);A) - w, and f <% g(d), cf. Definition 3.31.6. Then
oa(f) < oa(g) holds.

Lemma 6.3 For irreducible finite functions f,g : A — ©a(0) with base A,
assume f <9 g. Then oa(f) < oa(g) holds.

6.1 A preview of well-foundedness proof

To prove the well-foundedness of a computable notation system, we utilize
the distinguished class introduced by W. Buchholz[7]. Also cf.[11] for a well-
foundedness in terms of a maximal distinguished class.

Let OT be a computable notation system of ordinals with an ordinal term
Q. Q) denotes the least recursively regular ordinal w{'®. Assume that we
are working in a theory in which the well-founded part W (OT) of OT exists
as a set. A parameter-free I1}” +CA suffices to show the existence. Then the
well-foundedness of such a notation system OT is provable. When the next
recursively regular ordinal €25 is in OT', we further assume that a well-founded
part W(C%1(Wy)) of a set C1(W,) exists, where Wy = W(OT) N €, and
a € C1 (W) iff each component<(); of ais in Wy. Likewise when OT contains
a-many terms denoting increasing sequence of recursively regular ordinals, we
need to iterate the process of defining the well-founded parts a-times.

Let us consider a notation system OT for recursively inaccessible universes.
There are a-many ordinal terms denoting recursively regular ordinals in OT
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with the order type a of OT. The whole process then should be internalized.
We need to specify a feature of sets arising in the process. Then distinguished
sets emerge. D[P] denotes the fact that P is a distinguished class and defined
by

D[P]:&Va(a < P—W(C*(P)nat =Pnat)

where « < P & 36 € P(a < ) and o™ denotes the next recursively regular
ordinal above « if such an ordinal exists.

Wo = W(OT)NQy is the smallest distinguished set, and Wy = W (C% (Wp))N
5 is the next one. Given two distinguished sets, it turns out that one is an
initial segment of the other, and the union Wy = |U{P C OT : DI|P]} of
all distinguished sets is distinguished, the mazimal distinguished class. The
maximal distinguished class W; is Z%f—deﬁnable, and a proper class without
assuming Y3~ —CA.

Assuming the maximal distinguished class Wy exists as a set, the well-
foundedness of OT for a single stable ordinal is provable in [4]. Consider now a
notation system OT for several stable ordinals Sg,Sq,.... We then need several
maximal distinguished sets Wy, Wi, ... to prove the well-foundedness. W is
the maximal distinguished set in an absolute sense as for the well-founded part
Wo =W(OT)N Q.

A moment reflection on the emergence of distinguished sets shows that W;
could be a mazimal distinguished set relative to Wy and Sy. Specifically cf. (46),
a set P is said to be a 0-distinguished set for v and X, denoted by D7[P; X], iff
P is well-founded and

PNy t=XnyT&Va>T (a<P—oW(EC*P)Nnat =Pnat)
where 7~ = max{S € St U {0} : S < 4}. Then let, cf. (47)
Wy (X) = | J{P c OT : D"[P; X]}.

Observe that W{ (X) is a 33-definable class, and hence a set assuming %3 —CA.
We see in Lemma 7.8.2 that W' (X) is the maximal 0-distinguished class for
and X provided that X N~ is well-founded.

Assume that there are a-many stable ordinals with the order type « of a
notation system OT of ordinals. Then we have to introduce distinguished sets
in the next level. In the higher level the recursive regularity is replaced by the
stability, and the IIi-sets W (C*(P)) by Zi-sets W] (X).

A set X is a 1-distinguished set, denoted by D;[X] iff X is well-founded and

Yy (<X = WI(X)NAT =X NAT).

where af = min{S € St : a < S} if such a stable ordinal S exists. We see that
Wo = W2(0) is the smallest 1-distinguished set, and Wy = W° (W) is the
next 1-distinguished set, and so forth. In Lemma 7.10 it is shown that if D;[X]
and v € X, then X is a 0-distinguished set for v and X, i.e., D7[X; X], and
v € W(C'(X)) Nyt = X Nyt, where v € W (X) NyT = X N4T. This crucial
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lemma allows us to prove facts by going down to the lowest level, i.e., to the
well-foundedness.

W = J{X C OT : D;[X]} is then the 1-maximal distinguished class, which
is a E},}‘—deﬁnable class. Although W is a proper class in a set theory with
I1;-Collection or equivalently in $1—~DC + BI, the theories proves that if S € W
for S € StU{0}, then ST € W), cf. Lemma 7.20. In showing that a limit of stable
ordinals is in W, we invoke X}—DC in Lemma 7.22: if @ € G", then there
exists a 1-distinguished set Z such that Z is closed under S + ST and o € GZ
for a II}-set GZ in Definition 7.14 of subsection 7.2.

By iterating this ‘jump’ operators, we arrive at a Xyyi-formula Dy[X]
denoting the fact that X is an N-distinguished set for positive integers N,
cf. Definition 7.4. The maximal N-distinguished class | J{X C OT : Dy[X]} is
Zjlv_+2—deﬁnable proper class in Il -Collection or in E}V+2—DC + BI.

Up to this, everything seems to go well. But as long as we have an infinite
increasing sequence {S,}, = {So < S; < ---} of successor stable ordinals, a
technical difficulty is hidden as follows. Above a successor stable ordinal Sy,
there are increasing sequence S; = Sg < Sy = SJ{ < - of successor stable
ordinals. Let p, < S,,. Let us define ordinals x,; and o, ; for ¢ < n recursively
by Knn = Sp, Rn,i = fin,i+1[ﬂi/§i]7 Onmn = Pn and o; = Un,i+1[pi/Si]- Let
Kn = Kp,0 and o, = 0y 0. Then we see that og < 01 <09 < -+ < Ky < K1 < Ko.
This might yield an infinite decreasing chain {x, }, of collapsed ordinals.

For simplicity let p; = ¢§l (). Then M,, = Ha,(p;). In order to collapse
Kn,i+1 Dy pi, pj € M,, has to be enjoyed for j > i. Since p; > p;, this
means that a; < o;. Namely there must exist an infinite decreasing chain
ag > a1 > ag > --- in advance to have another chain kg > k1 > kg > -«
Here «; is the ordinal po(p;) in Definition 3.30.2. Let n € L(S) be an ordinal
in the layer L(S) of a successor stable ordinal S, cf. Definition 3.34. A pair
(g1(n),g2(n)) of ordinals is associated with such an ordinal n in Definitions 6.7
and 6.14, and we show in Lemma 6.15 that (g1(7),g2(7)) <z (g1(n),82(n))
when v € R(n) for the set R(n) in Definition 6.12. It turns out that this suffices
to prove the well-foundedness in Lemma 7.32.

6.2 Props

In this subsection an ordinal ps(«) and a pair g(a) = (g1(a), g2(a)) are intro-
duced for ordinal terms . These are needed to show that there is no infinite
sequence {pnafin}n such that py < So, Kk, € {HN[pn]} U {piLin7SIL’in [pn/Sn]}
and either p,11 < an [on/Sn] = kKn oOr ppi1 < rtin for < In[pn] = Ens
cf. Proposition 6.10, Lemmas 6.15 and 7.32.

Recall that o € SStM iff either o is a successor stable ordinal in SSt or
a = B[p/S] for a B € SStM and a successor stable ordinal S, cf. Definition
3.31.8.

Definition 6.4 For p € Ug with S € SStM, let N(p) = {Iny[p]}U{p!, St [p/S) :
i #0yNOT(Iy) if S ¢ SSt. Otherwise N(p) = {Inx[p]} U {St[p/S] : i #
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0} NOT(Iy).

Note that p'" € S5t when S € SSt, and N(p)Nn¥ = 0. Recall that,
cf. Definition 3.34, L(S) denotes the layer of S, and a € L(S) iff a < S iff
there are ordinals {p;, k;}; such that kg = S, p; < ki , Kkiy1 € N(p;), and
a € {po} U{pi,Kitiso-

Definition 6.5 Let S € SSt; and T € St U {Q} be the least such that S = TT%,
For a € OT (Iy), the prop ps(a) of a denotes an ordinal term defined recursively
as follows.

1. pg(]IN) = pg(a) =0ifa S T

In what follows assume Iy # a > T.

a) = max;<m, ps(a;) if a =ao+ - + am.
max{ps(b),ps(c)} if a = @be.

=ps(k)ifae N(k) forarx € L(U)NT with a U > T.

2. Ps )
ps(a)
)

P.W

(
(
ps(a
ps(UT) = ps(U) for T < U € St.
ps(

Y1y (a)) = ps(a).
6. For ps(SC(f)) = max{ps(b) : b € SC(f)}, let

max{ps (), ps(a),ps(SC(f))} ifx>S
ps(1f(a)) = { max{a,ps(a)} ifr=S
ps (k) ifk<S

Proposition 6.6 Let S € SSt and a = wg(a), B = i(b) with {a,B8} C
OT(Iy),

1. Let ¢ € Hp(B) with ps(c) # 0. Then there exists a subterm v € Hp(B) of
¢ such that v < 'S and ps(y) = ps(c).

2. ps(SC(f)) < ps(@) = max{a, ps(a)} holds.

3. ps(B) <ps(a) if B <a.

4. Let 6 < a< B with § < 5. Then ps(B) < ps(«).

5. Let {v,0} C OT(Ix). Then ps(vy) < ps(d) if v < 6.

Proof. 6.6.1. By induction on fc.
6.6.2. By (11) in Definition 3.31.5 we obtain SC(f) C H.(SC(a)).
By induction on ¢b, we see b € H,(SC(a)) = ps(b) < max{a,ps(a)}.

We show Propositions 6.6.3 and 6.6.4 simultaneously by induction on ¢3 + fa.
6.6.3. If a = b, then ps(8) = ps(a). Let b < a. We can assume a < ¢ = pg(b).
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By Proposition 6.6.1 pick a shortest subterm v € Hy(8) NS C B of b such that
v < S and ps(y) = ps(b) = ¢ for b € Hy(B). Then v < & = ¥ (c) for some h
and v < 8. If § < «, then IH yields ¢ = ps(d) < ps(a). Assume v < « < § with
~ < §. IH for Proposition 6.6.4 then yields ¢ < pg(«).

Next let a < b. Pick a subterm 7 of a term in {a} U SC(f) such that

B<ne€Hya) and n < S. Let n < f(d) = o for some h and d. Then we
obtain 8 < o, and TH yields ps(8) < ps(c) = ps(n). On the other hand we have
ps(n7) < max{a,ps(a)} by Proposition 6.6.2. Hence ps(8) < ps(c).
6.6.4. Pick a subterm 7 of a term in {a} U SC(f) such that § < n € H,(),
n < S and ps(n) < max{a,ps(a)} by Proposition 6.6.2. Let n < 1{(d) = o for
some h and d. Then we obtain § < o. If § < o, then IH for Proposition 6.6.3
yields ps(8) < ps(o) = ps(n) < ps(a). Otherwise we obtain § < o < 8 with
6 < . IH yields ps(B) < ps(0) < ps(a).

6.6.5. This is seen by induction on ¢y-+£§ using Definition 3.35, and Propositions
6.6.3 and 6.6.4. m]

The set Cr of strongly critical numbers in OT (Iy) is divided to Cr = LSty U
SStUU{L(S) : S € SSt}U(Crn(Q2+1)), where LSty = {¢14(a) : a € OT(In)},
cf. Definition 3.34.

Definition 6.7 Let S € SSt and « € L(S). Let us define ordinals go(a), g&(«)
and go(«) as follows.

1. go(a) = ga(a) =0 for a ¢ V.

2. If p <'S, then let go(p) = 5(p) = 80(Y1x()(b)) = &5(Y1y(p)(b)) = Ps(p)
for every b. Also ga(p) = o1, (m(p)) + 1 for m(p) : Iy — ¢1, (0) with base

HN, and gQ(’l/}]IN[p](b)) =0.

3. Let p < S and a < 7 € N(p), where o # vy, (b) for any b if 7 = In[p].
Let gi(a) = go(p) = ps(p). Let f € M, be such that a = B[p/S]. If
ac VU, let g;(o) = g;(B) for i =0,2.

Proposition 6.8 Let b = po(a) for a« € L(S) NV with S € SSt. Then
SC(ga(a)) C 4ny (b). Moreover po(a) < gh(a).

Proof. By induction on fa. Cf. Definition 3.30.2 for po(«).

Case 1. First let o < 4§ (b) with an S € S5t and f = m(a). By Proposition
3.32.2 let T € LSt U {Q} be such that S = T for a sequence 7. We obtain
SC(ga(a)) € SC(f) for ga(a) = o1, (f) + 1. By (12) in Definition 3.31 we
obtain SC(f) C M, NIy = Hp(a) NIx. On the other hand we have po(a) =
b < ps(a) = gi(a).

We claim that o < 41, (b). SC(ga(e)) C Hp(Y1y (D)) NIn C ¥r, (b) fol-
lows from the claim. For the claim it suffices to show S < 4, (b). Let
{(Tm,Sm,fm)}mgn be the sequence such that Ty € LSty U{Q}, S, = Tgm
and T,11 < Sy (m < n), and S = S,,, cf. the trail to S in Proposition 4.12. If
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To =, then S < Sy < 1, (b) € LStn. Let To = 91, (c¢). Proposition 3.32.3
yields ¢ < b, and Ty = 1, (¢) < 91y (b) € LSty. Hence S < Sy < 4, (b) €
LSty.

Case 2. Next let LSt; > p < S € SSt, a < 7 € N(p) and o = B[p/S] for a
B € M,. Then b = po(c) = po(f), and IH yields SC(g2(cr)) = SC(g2(8)) C
iy (0) for g>(0) = ga(B), and po(B) < g3(8).

On the other hand we have gi(a) = go(p) = ps(p) > po( ) = ¢ with M, =
Hc(p). Thus it suffices to show gf(d) < po(p) for p < 6 € H(p) by induction
on £8. If & < f(d) with a S < T € SSt, then g;(8) = go(d) = pr(d) =
max{d, pr(d)}. We obtain d < ¢ and d € H.(p). IH yields pr ( ) <

Next let 6 = ~[7/T] with a v € M,. Then g;(d) = gj(7) and 7 € M,. IH

yields g5 (7) < po(p)- 0

Proposition 6.9 Let 7 € L(S) U {S} and S € SSt.
For p,n <7, 1f p <, then go(p) < go(n).

Proof. By induction on ¢p.

Case 1. 7=S: Letn 2 o = wg(a) and p = B = ¢{(b). Then go(n) =
ps(n) = ps(a) and go(p) = ps(p) = ps(B). If 8 < «, then Proposition 6.6.3
yields ps(5) < ps(a). Suppose p < a < f with p < 5. We obtain ps(8) < ps(«@)
by Proposition 6.6.4. )

Case 2. 7 # S: Let k < S be such that either 7 <% ST[k/S] or 7 <% Iy[x].
Then go(p) = go(p1) and go(n) = go(m) for p1 = plw/S]™" and m = nlw/S]~!,
cf. Definition 3.44 for uncollapsing. We obtain p; < 11, p1 < 7 and 11 < 71 for

7 = 7[k/S]7L. TH with £p; < £p yields go(p1) < go(m1)- O
Proposition 6.10 Let S € SSt, p < 7 € (L(S)U{S}) N SStY, and o < o €
SStM | where o <1 k € N(p). Then go(a) < go(p).

Proof. We may assume that either 0 = K = ST’[p/S] or k = Iy[p|&

Y1y (v ))TZ for a v and an 7. By induction on fo we show go(r) < go(p)

Case 1. p < S: Let p < 8 = ¢Z(b). Then go(p) = ps(¥L(b)). From
b e H(0d(5) we sce pr(b) < pr(n(h) = b < po(UE(B) = golp) for any

S <TeSSst.

Case 1.1. o = Sﬁ[p/S] : Let a < YMi(cy) = ( gﬁ(c)) [p/S], where hy =

Blo/S] #0, 1 = clp/S] and o = S[p/S] = (S)[p/S]. Then go(@) = pgrr(vf:(c)).
We have p < @bgﬁ(c) € M, = Hy(p), and hence ¢ < b. We obtain pg:(c) <
psi7(b) by Proposition 6.6.5.

Case 1.2. 0 = (Y[, (71))12 for ayi: Let a < 9hi(cy) = ( gﬁ(c)) [p/S], where
h1 = hlp/S] # 0, c1 = c[p/S] and o = T[p/S] with T = ¢y (v) and 71 = ¥[p/S].
Then go(o) = quﬁ(ﬂ)%;(c))- We have ’(/JTh(C) € M,. Asin Case 1.1 we see
¢ < band ppi(c) < ppyr(b) from S < T', ie., from S < T = iy (v) € LSty.
Case 2. p <7 # S: Let A < S be such that either a« <% SV[\/S] or
a <B® Iy[A. Then go(a) = go(a1) with a = a1[\/S] and go(p) = go(p1)
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with p = p1[A/S]. We have p; < 7[A\/S]7! and oy < o[A/S]! with o = ng[p/S]
or o = (Yry(e (7 ))“ for a . If 7[\/S]~! € SSt, then we obtain go(ay) < go(pl)
by Case 1. Otherwise IH with fa; < fa yields the proposition.

Proposition 6.11 Let {a, 8} C L(S) with an'S € SSt. If o < 3, then gf(a) <
go(8)-

Proof. Let p,n < S be such that either o = p or a < k € N(p), and either
B=mnor B =F o e N(). Then p < n by a < 3. Proposition 6.9 yields
g6(c) = go(p) < go(n) = g5(B)- =

Definition 6.12 A set R(n) C ¥ is defined.

1. Let n < Iny. v € R(n) holds iff there exists an 5SSt > S < 7 such that
vyeLS)NY.

2. Let n € L(S) with an S € SSt. v € R(n)NL(S) holds iff y € ¥, v < n and
one of the following holds:

(a) v <.
(b) There exist 7 € L(S) and j,7 such that 7 < 717 and one of the
following holds:
iy <R 717 and i <ig ]
i,y < TTz n= 717 and i :j.
i, v <R Iy[r] .
v <R St[r/s].
(¢) There exist 7 € L(S) and 7 such that n < Iy[r], and and one of the
following holds:

iv.

<

i. v <R lIy[r] and n = Iy][7].
ii. v <2 stir/s).

(d) There exist 7 € L(S) and 7,4 such that n < ST;[T/S] , and and one of
the following holds:

iy <R STZ[T/S} and i <, J.
ii. v <R Sti[r/S), n = St[r/S] and 7 = j.
(e) There exist 7 € L(S), p and i such that 1,p < Ix[r], p < 7 and
v =B ptt,
(f) There exist 7 € (L(S) U {S}) N SStM, p and k such that n,p < T,
p<n,v="reN(p).

Proposition 6.13 Letn,v € L(S) for an' S = T* € SSt with T € {Q}U(LStN
U). Assume n > v & R(n), and let T be mazimal such that v < 7 <. Then
n>teWv.
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Proof. This is seen by an inspection to Definition 3.35. o

Definition 6.14 Let S € SSt and a € L(S).

Let i = (i > 41 > -+ > imy) be a weakly descending chain of positive
integers with ig < N. Then let 0(7 ) := w1 + wit =1 4 ... 4 wim=1 < N,

Let us define ordinals g} (o) and g; () as follows. Let A = w™*1.

1. Let p < S. Then g} (p) = \() and g;(p) = \eo(P)+1

2. Let p € L(S) be such that p < T € SStM N (L(S) U {S}), @ < K €
N(p) U{(¢ryp)(a)? : 7 # O}, where a # 9y, (,)(b) for any b if & = Iy[p)].
Let g1(a) = g} (a) + A&,

(a) gi(TT]p/T]) = g} (p) + A&®) - (o(7) +1).

(b) a= T“[p/T] g1 () —gl( ) + X&) o(7).

) =gi(p) + A& (wN+1)
(a) = gi(p >+Ag0<ﬂ>
i) = g/ (p) + A&o() . (WN +o(§)+1).
) < %o gi(o) = gi(p) + X&) - (N +0(7)).
(2) & (o) =ga<p>+A &) (N +wN +o(7) +1).
) a (@) = g (p) + A8 - (WN + WM + 0(7)).

) g

Let g(a) = (g1(), g2()).

Lemma 6.15 Let n € L(S) with S € SSt. Then gi(v) < g5(n), g(v) <iz g(n)
and SC(g2(7)) C Yy (b) for v € R(n) and b= g5(n)-

Proof.

Case 1. v < n: We have gi(y) = gi(n). If n € U, then g1(n) = g1(y) and
g2(7) < g2(n) by Lemma 6.2. Otherwise g1 () < g1(n). In what follows assume
~v A n. We claim that g1(v) < g1(n).

Case 2. ) < 11, v < 7 with {m < 7} C N(7) for a 7 € L(S), cf. Definitions
6.12.2b, 6.12.2(b)iii, 6.12.2(b)iv, 6.12.2¢, 6.12.2d: We have gi(n) = g (1) +
2o (T). (a+1) for an a < w™N T Ify < 79, then g1 (7) = g} (1) + A& (7). (B+1) with
B < a. Otherwise let ¢ < 75 be such that v < o1 € SStM, 0y =% k; € N(0).
We obtain go(c) < go(7) by Proposition 6.10, and g () = g} (1) + X&) . 34§
with § < \eo(@)F1 < \eo(m),

Case 3. p,n <7 € N(7), p < nand v < k € N(p), cf. Definitions 6.12.2¢
and 6.12.2f: We have g{(p) = gi(7 )+ 2eo(™) o for an a < wNTL g(n) =
gl (p) + &) and g1 (v) = g} (p) + for § < \& (") by Proposition 6.10.

Case 4. p,n <SS, p< 17 and < /{ € N(p), cf. Definition 6.12.2f: We have
g1(n) = XM+ and g (p) = /\g ), where go(p) < go(n) by Proposition 6.9.
On the other hand we have g;(y) = g’l (p) + 6 with § < \go(P)+1
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Thus g(v) <iz g(n) is shown. In each case ¢ = po(y) < gh(y) < gh(n) = b
holds by Proposition 6.8. We obtain v, (¢) < %, (b) by ¢ € H.(¢1,(c)) and
b € Hp(¢r1, (b)). On the other hand we have SC(ga2(v)) C 1, (¢) by Proposition

6.8. Hence SC(g2(7v)) C ¢y (b). O

Proposition 6.16 Let {a1,8} C L(S) for an S € SSt, ay = ¥l (a) < Yl(c) =
B and B € Ho(ar). Then c < a and gi(B) < gilar).

Proof. By induction on ¢5. We have ¢ € K,,(8) < a, and {o,c} C Hq(aq).
We show gi(8) < gi(ay). First let 8 < S. We show gi(8) = ps(8) < gi(aq).
We can assume 0 = S by IH. Let v = ¢Z(b) be a proper subterm of 3. If
v € Kq,(B), then b < a. If v < aq, then gi(v) < gf(a1) by Proposition 6.11.
Second let p < S and 8 <% k € N(p). Then gi(8) = ps(p). If a1 < p, then
p € Ha(ar) and ps(p) < gh(a1) by the first case. Let p < a3 < 8. Then we

obtain gf(a) = ps(p) = g5()- 0

6.3 Coefficients

In this subsection we introduce coefficient sets £(«), Gs(a), Fx (), kx () of
a € OT(Iy) for X C OT(Iy), each of which is a finite set of subterms of
a. These are utilized in our well-foundedness proof. Roughly £(«) is the set
of subterms of the form 1 (a), and Fx(a) [kx(a)] the set of subterms in X
[subterms not in X], resp.

Let us write for a < Iy, af® = min{oc € Reg : ¢ > a} for the next
regular ordinal ot above a. Let o’ = o0 if @« > Iy. For 0 < i < N, let
a~t:=max{o € St; U{0} : 0 < a} when a < Iy, and a~ % := Iy if a > Iy.

Although a~! looks alike the Mostowski uncollapsing a[p/S]~! in Definition
3.44, no confusion likely occurs.

Since St;;1 C St;, we obtain af? < af(*1D) and 10 < g if B <0 € StNIy
since each o € St is a limit of regular ordinals.

Note that R(n) C L(S) if n € L(S), and v~ = = for every v,n € L(S).

Definition 6.17 For terms a,d € OT(Iy) and X C OT(Iy), finite sets £(a),
Gs(a), Fx(a), kx(a) of terms are defined recursively as follows.

E(a) =0 for a € {0, In}. E(am + -+ an) = U<y, E().

E(p
E(BYUE(). EInp]) = E(p1T) = E(ST[p/S]) = E(p). E(W](a) = {¥
E(¢ry (@) = {¢ry (a)}-

Ala) = ULAB) : B € E(a)) for A € {Gs, Fx, kx 1.

3. Gs(vry(a)) = Gs(a). Fx(¢ry(a)) = Fx(a)ify (a) € X, and Fx (¢, (a)) =
{thiy (@)} if iy (a) € X kx (Yry(a)) = {d1y(a)} Ukx(a) if Y1y (a) € X,
and kx (Y1 (a)) =0 if ¥1, (a) € X.

By) =
¥4 (a)}-

custin = { G4z vs o<
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{vi(a) Yi(a) € X

kx (v (a)) = { éw (a )}ka({7T a} USC(f)) gﬁg@i?

{ Fx({m, a}USC( ) Yi(a) € X
7

3%,
)
S~—

4. For a € N(p)

{a} a<d
Gs(a) = { Gs(p) <o

Fx(a) = Fx(p) and kx (o) = kx(p).

For A € {K;,Gs,Fx,kx} and sets Y C OT(Iy), A(Y) := U{A(a) : a €
Y}

Definition 6.18 S(7) denotes the set of immediate subterms of 7. For example

S(eBv) = {B,7}. S(n) == 0 when n € {0,Q,Ix}, S(a) = {p} for a € N(p),
S(n) = {n} when n € .

Proposition 6.19 For {a,d,a,b,p} C OT(Iy),
1. Gs(a) < a.
2. a € Ho(b) = Gs(a) T Ha(b).

Proof. These are shown simultaneously by induction on fa. It is easy to see
that
Gs(a) 3> =B <&l < la (43)

6.19.1. Consider the case a = ¥/ (a) with § < 7. Then Gs(a) = Gs(SC(f) U
{m,a}). On the other hand we have SC(f)U{m,a} C H,(a). Proposition 6.19.2
with (43) yields Gs(SC(f) U{m,a}) C Ho(a) N C o. Hence Gs5(a) < a.

Next let o € N(p) with 6 < a. Then Gs(a) = Gs(p). By IH we have
Gs(p) < p < a. Hence Gs(a) < a.
6.19.2. Since Gs(a) < a by Proposition 6.19.1, we can assume « > b.

Consider the case a = 9f (a) with § < . Then SC(f)U {m,a} C H(b) and
Gs(a) = Gs(SC(f) U {m, a}). TH yields the lemma.

Next let a € N(p) with 6 < a. Then Gs(a) = Gs(p) and p < a. b< a €
Ho (D) yields p € H,(b). TH yields the lemma. O

Proposition 6.20 If 8 &€ H.(Y) and Kx(8) < a, then there exists a v €
Fx(B) such that Ho(Y) F v € X.

Proof. By induction on (8. Assume 8 ¢ H,(a) and Kx(8) < a. By IH we
can assume that 8 = ¥/ (b). If 8 € X, then 3 € Fx(3), and v = 3 is a desired
one. Assume 5 ¢ X. Then we obtain Kx(8) = {b} UKx({b,x} USC(f)) <a
In particular b < a, and hence {b,x} U SC(f) ¢ H.(Y). By IH there exists a
v € Fx({b,k} USC(f)) = Fx(p) such that H,(Y) Z v € X. O
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7 Well-foundedness proof with the maximal dis-
tinguished sets

In this section working in the second order arithmetic E}VH—DC + BI, we
show the well-foundedness of the notation system OT(Iy) up to each o < .
The proof is based on distinguished classes, which was first introduced by
Buchholz[7]. Each ordinal term oo € OT'(Iy) is identified with its code [a] € N,
cf. Lemma 3.36.

7.1 Distinguished sets

In this subsection we establish elementary facts on distinguished classes.

X,Y,Z,... range over subsets of OT (Iy), while X, ), ... range over classes,
which are definable by second-order formulas in the language of arithmetic.
Following [10], we define sets C*(X) C OT(Iy) for « € OT(Iy) and X C
OT(Iy) as follows.

Definition 7.1 For o, 8 € OT(Ix) and X C OT(Iy), let us define a set C*(X)
recursively as follows.

1. {0,Q,In}U(X Na) C CHX).

2. Let (aq + -+ ap) € OT(Iy) with {aq,...,a,} C CX). Then (a1 +
e ap) € CHX).

3. Let B~ € OT(In) with {8,v} C C*(X). Then pfBvy € C*(X).
4. Let ¢r, (8) € OT(Iy) with 8 € C*(X). Then ¢r, (8) € C*(X) if Iy > a.
5. Let 9f(B) € OT(Iy) with {0, B}USC(f) C C*(X). Then ¢/ (8) € C¥(X)

if o > a.

6. Let 5 € N(p) with p € C*(X). Then g € C*(X) if 8 > a.
Proposition 7.2 Assume ¥y > aly € P = v € CY(P)] for a set P C OT(In).

1. a < B = CP(P)c CP).

2. a < B <al®= CPP)=C%P).
Proof. 7.2.1. We see by induction on £y (v € OT(Iy)) that

VB> aly e CP(P) = v e C¥P)U (P NP (44)

For example, if 1/ (§) € C#(P) with 7 > 8 > a and {r,0} U SC(f) C C*(P)U
(PNp), then m € C*(P), and for any v € {0} U SC(f), either v € C*(P) or
vePNB. Ify<a,theny € PNa C CYP). Ifa <~ € PN, then vy € C7(P)

by the assumption, and by IH we have v € C*(P) U (P N~), i.e., v € C¥(P).
Therefore {m,§} U SC(f) C C%(P), and ¥1(8) € C(P).
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Using (44) we see from the assumption that V3 > aly € C#(P) = v €
ce(P)).
7.2.2. Assume a < 8 < af®. Then by Proposition 7.2.1 we have C?(P) C
C*(P). v € C*(P) = v € CP(P) is seen by induction on £y using the facts
70 =a"9 and B0 = af?. o

Definition 7.3 1. Prg[X,Y]:eVae X(XNaCY - a€Y).

2. For a definable class X, TI[X] denotes the schema:
TI[X] :< Prg[X, Y] — X C Y holds for any definable classes Y.

3. For X ¢ OT(Iy), W(X) denotes the well-founded part of X.
4. WolX] & X C W(X).
Note that for & € OT(Iy), W(X)Na =W (X Na).

Definition 7.4 For P, X C OT(Iny) NIy and o,y € OT(Iy) with v < I,
define W*(P) (0 <4 < N) and D][P; X](0 < i < N) recursively on i < N as
follows.
Wg(P) = W(C*(P)) ‘ (45)
D}[P;X] & Wo[P|& PNyt = x Ny i+ g (46)
Va < Iy (ff(i“) <a< P WAP)Nali=Pn a“‘)

W, (X) = | J{P cOT(Iy)Nly : D][P; X]} (i < N) (47)

where y~(N+1) = 0. Obviously D}[X;Y] < DY[X;Z] for every v,4,Y, Z.
From WY} (X) define

& WolX] &Yy (v < X > W(X)ny™ =X nytY)
Wy = (J{X CcOT(In) NIy : Dy[X]}

A set P is said to be an i-distinguished set for v and X if D][P; X], and a set
X is an N-distinguished set if Dy[X].

Observe that in Sy, W (P) as well as DJ[P; X] are A;. Assuming that
D] [P; X] is Ajp1, W (X) is Biq1, and D/ [P; X] is Aj;o. Hence Dy[X]
is Ayy1, and W = Wy is a Xy -class. In Sy, each W (X) is a set, ie.,
Yy € OT(In) NINYX C OT(Iy)3Y[Y = W (X)] for 0 < i < N, and Wi, is
a proper class.

Proposition 7.5 Let DJ[P; X] and v~! < a € P. Then V3 > vy l[a €
C'ﬁ(P)].
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Proof. Let DJ[P; X] andy~! < a € P. We obtain a € PNaf® = W(C*(P))N

af® ¢ C*(P) by (45) and (46). Hence V6 > 4~ 1(§ € P = § € C°(P)), and
a € OB(P) for any y~! < 3 < a by Proposition 7.2.1. Moreover for > a we
have a € PN 3 C CP(P). i

Proposition 7.6 If PNa = QNa, then WH(P) = W (Q).

Proof. For i > 0, this follows from (46) and o~ < a. F r ¢ = 0, we obtain
C*(P) = C*(Q) by PNa = QNa. Hence W (P) = W(C*(P)) = W(C*(Q)) =
We(Q) by (45). O

Lemma 7.7 a < P&a < Q= Pnal =Qnal if D][P; X] and D][Q; X).

Proof. Suppose a < P, a < Q, D][P; X] and D] [Q; X]. We have PNy~ (+1) =
XNy~ 04D = Qny~ 0+ We may assume that v+ < o since af? < 4~ 0+
when a < =041,

By (46) we obtain W2 (P) Na'* = PNal® and WH(Q) Nal® = QNall. We
obtain Wo[P U Q] by Wo[P] and Wo[Q]. We show 5 € PN Q by induction on
Be(PuR)nal. Let e (PUQ)Naland PN =QNA. If § < O+,
then € PNQ by PNy~ = Q Ny~ 04D Let =0+ < 5.

If a < 3, then PNa = QNa, and W (P)Nal® = W (Q)Na'? by Proposition
7.6. Hence g € PN Q.

Let v~ (+1) < 8 < a. We obtain W’ (P)NgT = WP (Q)ngti by Png = QN
and Proposition 7.6. By (46), 3 < P and 3 < Q, we obtain PN AT = Wf(P) N
Bt = WH(Q) N BT = QN BT Hence B € PNQ. O

Lemma 7.8 (X}, ,-CA)
For each i < N, Vy < IyVX3IY(Y = W (X)). Let v < Iy.

1. Fori < N, W (X) is a well order: Wo[W; (X)].

2. For i < N, W (X) is the mazimal i-distinguished set for ~ and X if
Xn 7_(“'1) is a well order: Wo[X N~~(*tV] = DI[W},,(X); X]. In
particular W1 (X) Ny~ 0 = X Ny~ 0D holds.

Proof. 7.8.1. Clearly W/ (X) = W(C"(X)) is a well order. We show Wo[W,! ; (X)].
Let {8 < o} € W} (X). Pick a P and a @Q such that D][P;X], a € P,
D][Q; X] and B € Q by (47). Lemma 7.7 yields B € Q N 87" C P. We obtain
Wo[W} 1 (X)Na] by WolP].

7.8.2. Assuming that X Ny~ 0+ is a well order, we see that X Ny~ 0+D ig
the minimal i-distinguished set for v and X: D] [X N ~~@+Y; X]. We obtain
W (X) Ny~ = X Ny~(+D, Lemma 7.8.1 yields Wo[W[,, (X)].

Let v~(F) < o < W], (X). We show We(W7,, (X))Nat = W (X)Nal.
Pick a P such that D] [P; X] and a < P. We obtain W2(P)Nall = Pnal C
W (X) Nal by (46). Let DJ[Q;X] and 8 € @ Na'’. Lemma 7.7 yields
Be@npti=PrnpT for i < afi.
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Therefore we obtain W(P) Na' = Pnal’ = W (X) Nnaf, a fortiori
Pna =W} (X)Na Hence W), (X)Nal" = Pnal = WHP)nal® =
W(W7 (X)) Nl by Proposition 7.6. O

Lemma 7.9 1. Let X and Y be N-distinguished sets, and v < In. Then
YT<X&YLY = XNV =y Nyt

2. Wny1 is the N-mazimal distinguished class, i.e., Dn[Wn41]-

3. For a family {Y;}jes of N-distinguished sets, the union Y = J;c;Y; is
also an N -distinguished set.

Proof. 7.9.1 is seen as in Lemma 7.7. 7.9.2 and 7.9.3 follow from Lemma 7.9.1
as in Lemma 7.8. O

Lemma 7.10 Let Dy[X] and v € X C Iy. Then for each 0 < i < N, v €
W) (X) N~ = X N~ and D] [X; X] holds. In particular v € C7(X).

Proof. By induction on N —i. We obtain v € WY (X) Nn~™ = X nAiN
by Dn[X] and v € X. Lemma 7.8 with Wo[X] yields DY, _,[W(X); X], and
D}_,[X; X] follows.

Assuming D], [X; X], we obtain W/ ; (X)NyT0+D) = Xy f D By 4=+ <
v € X, and D] [W}, | (X); X] by Lemma 7.8. Hence D] [X; X] and v € W] (X)N
ATt =X nAatt. O

Proposition 7.11 Let Dy[X], a <v€ X and a € C7(X). Then a € X.

Proof. Lemma 7.10 yields v € W(C7(X)) N1 = W (X) N~ = X Nn4T0,
7> a€CV(X) yields a« € WJ(X) N~ = X n4f0. i

Proposition 7.12 Let Dy[X] and o, 8 < In.
1. Let{a,5} C X witha+=a#0 anda>0. Theny=a+ € X.
2. If {a, B} C X, then paf € X.

Proof. Proposition 7.12.2 is seen by main induction on o € X with subsidiary
induction on 8 € X using Proposition 7.12.1. We show Proposition 7.12.1. By
Lemma 7.10 we obtain a € X Naf® = W§(X) N af®. We see that a + 3 €
W§(X) = W(C*(X)) by induction on 5 € X N (a+ 1) C C*(X). a

Lemma 7.13 1. O~ (WN+1) NIy =Wy NIy = W(CHN(WN+1)) Nly.

2. (BI) For each n < w, TI[C™ (Wy 1) Nw,(Iy +1)], i.e., for each class X,
Prg[C]IN (WN+1), X] — C~v (WN+1) N wn(]IN + 1) CcX.

3. Foreach n < w, C™ Wn1) Nwn(Iy +1) C W(C™ (Wn1)). In partic-
ular {In,w,(Iy + 1)} € W(C™ (Wn11)).
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Proof. 7.13.1. a € C'™ (Wx,1) NIy = a € Wy is seen by induction on
lac using Proposition 7.12 and Lemma 7.9.2. Since Wy is well-founded, we
obtain C™ Wy41) NIy = W(C™ Wpy1)) Nly.
7.13.2. We show TI[C'~ Wy 1 1) Nw,(Iy + 1)] by metainduction on n < w. Let
Dy[Y]. We obtain Wo[Y], and TI[Y] follows from (BI). We have C'~ (Wy 1) N
Iy = Wni1 NIy, and Wy NN =Y N4t for v € Y NIy by Lemma 7.9.1.
We obtain TI[Wx 41 NIy], from which TI[C™ (Wx 1) N (I + 1)] follows.
Assuming TI[C™ Wyi1) Nw,(Iy + 1)], TIC™ Wxi1) Nwpi1 (Iy + 1)) is
seen from the fact that Prg[C™ (Wi 1), A] — Prg[C™ Wy41), j[A]], where for
a given formula A, j[A](«) denotes the formula
VB € C'™ (Wn+1) [V € C'™(Wnt1)NBAMRY) = Vy € C'W Wni1) N (B + w*)A(7)]-
O

7.2 Sets G¥X

In this subsection we establish a key fact, Lemma 7.25 on distinguished sets.
Definition 7.14 G¥X := {a € OT(Iy) NIy : @ € C¥(X) & C¥X)Na C X}.
Proposition 7.15 Let Dy[X] and o € X. Then o € G¥.

Proof. By Lemma 7.10 we obtain « € W§(X) = W(C*(X)). Hence a €
C*(X). On the other side Proposition 7.11 yields C*(X)Na C X. a

Lemma 7.16 (3} ,-CA)
Suppose Dy[Y] and o € GY. Let Py = W) N a™N. Assume that the
following condition (48) is fulfilled. Then o € Py and Dy[Py]. In particular
o € Wn41 holds.

Moreover if there exists a set Z and an ordinal v such that Y = W (Z) and
a N =~"N then a €Y holds.

VB> a! (Yrm“ <[3&BTO<OLT°%W§(Y)0[3TOCY) (48)

Proof. If Y = W3 (2) with a™ = 47N then Y Na™ = Zna™" and
Wi(Z) = Wg(Y). Hence if « € WR(Y), then a € Y.
Lemma 7.8.2 yields

Vi<N[W.’B

z+1(Y) N 5T(2’+1) -Yn 5T(i+1)} (49)

Let P, = W(Y)Nnal for 0 <i < N. By C*Y)Na CY and Wo[Y] we
obtain for Py = W(C*(Y)) N af®

Pna=YNna=C*Y)Na (50)

Hence o € Fy. On the other hand we have D | [W(Y);Y] for ¢ > 0. This
together with (50) yields for 0 < i < N

PNna'=Yna (51)
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Claim 7.17 o =110&~y € Py = v € C7(Py).

Proof of Claim 7.17. Let af® = 4% and v € Py = W(C*(Y)) naf®. We
obtain v € C*(Y) = C7(Y) by Propositions 7.15 and 7.2. Hence Y N~y C
CTY)Ny=C*Y)Ny. v € W(C*(Y)) yields Y N~y C Py. Therefore we obtain
vy eCVY) C C7(Ry). O of Claim 7.17.

Claim 7.18 D2 [P;Y] and o € Piyq for each 0 <i < N.

Proof of Claim 7.18. Obviously Wo[P;]. (51) yields P;Na~ 0+ =Y a0+,
Let a~0+D) < 8 < P;. We show W/ (P,) n gt = P, n 1.

Case 1. 81" = af’: First let i = 0. We obtain C?(Py) = C%(P,) by Proposition
7.2 and Claim 7.17. Hence the assertion follows from (50).

Next let i > 0. (51) with 8% = o~ yields W’ (P;) = W&(P;) = Wa(Y).
Case 2. 81" < af: For i > 0, (49) yields Wf(Y) N B =Y N BT We obtain
wl(p)npti = WP (y)npti =y ngti = P,n gl by (51).

Let i = 0. We have 810 < a~9. First let Y Naf! < 3. Then the assumption
(48) with a=! < 3 yields Wf(Y) N B c Y. We obtain Wf(Po) N po =
WE(Y)NB c YNio = PynBT0 by (50). It remains to show Y NAT0 ¢ W/ (V).
Let v € Y N B9 We obtain v € W (Y) by Lemma 7.10. On the other hand
we have C#(Y) C CY(Y) by Propositions 7.15 and 7.2. Moreover (50) with
Propositions 7.15 and 7.2 yields v € C*(Y) € CA(Y). Hence v € Wf (Y).

Next let 8 < Y Nnatl. We obtain Y N gt = Wf(Y) N B, and p~t =
a ! < B < afl =gt with g < BT% < o < 1. On the other hand we have
DEW?2(Y); Y] by Lemma 7.8. Therefore Py N A1 =Y N 310 = WP (v)npto =
WG (W7 (V) 0510 = Wi (Po) 0510 by (50).

Thus D}[P;; Y] is shown. From a € Py we see by induction on ¢ < N that
a € PNnaftth ¢ W (Y)n attt) = P for the maximal i-distinguished
set W ,(Y) for a and Y. O of Claim 7.18.

Claim 7.19 DN [PN] .

Proof of Claim 7.19. Let 8 < Py = W(Y) Na™. Then 8 < otV and
BN <a N < atN. We show WE(WL(Y)) N BN = wg(y)n g,
Case 1. oV < B: By Wg(Y)Na=" =Y Na ¥ with Wo[Y], and o=V = g=
we obtain W(Y) = WE(Wg(Y)) = WE(WE(Y)).
Case 2. B < a ™ and 7 < Y: We obtain 81V < a=N. Hence Wg(Y) N
BIN =y NI = WE(Y)N BN by Dy[Y]. Therefore Wi (Y) = Wh(W(Y)).
We obtain Wg(Y) N BN = W(Wg(Y))n iy,
Case 3. B <a N and Y < 7N: Then BV < a=N. (49) yields Y N BTV =
Wﬁ, (Y)NBN. On the other hand we have YNZ™Y = W (Y)NB™ and Wﬁ, Y)n
BIN = WE(Wg(Y)) N BIN. Therefore W5 (W(Y)) N BN = wg(Y) n g,
O of Claim 7.19.
This completes a proof of Lemma 7.16. a
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Lemma 7.20 Assume Dy[Y], Iy >S € Y N (St U{0}) and {0,2} C Y for
0<k<N. Then St* € Wy ;.

Proof. Let us verify the condition (48) in Lemma 7.16 for o = St*. Let a~! <
B. We have a = a~! < 3. Hence af® < 810 and (48) is vacuously fulfilled.
Thus it suffices to show that a = S™ € GY. a € C*(Y) follows from
S € Y Na, cf. Definition 7.1.6. We show v € C*(Y)Na = v € Y by induction
on ¢y. By Proposition 7.12 and the assumption {0,Q} C Y, we can assume
S # v = ¢l(a) < a = S* < o, cf. Definition 7.1.6. Suppose S < . Then
S € Ha(v), and o = St* € H,(y) "o C 7. We obtain v < S. Lemma 7.10 with
S € Y and Dy[Y] yields S € W (Y) NS =Y NS for W§(Y) = W(C5(Y)),
where V5[5 € Y = 6§ € C°(Y)]. We obtain v € C5(Y) by v € C*(Y), S < a and
Proposition 7.2.1. Hence v € W5(Y) NST® C Y follows. Therefore « € G¥. O

Proposition 7.21 {0,Q} C Wx41.

Proof. For each a € {0,Q} and any set Y C OT(Ix) we have o € C*(Y).
First let o = 0. We obtain C°()) N C §, and 0 € G». Moreover Dy/[f], and
there is no 3 such that 810 < a0 since af® = Q is the least in SSty. Hence the
condition (48) is fulfilled, and we obtain 0 € X = W3 (0) N0V with Dy[X] by
Lemma 7.16.

Next let a = Q. Let v € C*(X) N . We show that v € X by induction on
lv as follows. We see that each strongly critical number v € C*(X) N« is in
X from Definition 7.1. Otherwise v € X is seen from IH using Proposition 7.12
and 0 € X. Therefore we obtain « € G¥X.

Let 81 < af%. Then g1 = Q and 8 < Q. Let v € Woﬂ(X) N We
show v € X. We obtain DJ[X; X] by Lemma 7.10, and v € WZ(X) N Q =
W(X)NQ = X NQ. Hence the condition (48) is fulfilled, and we obtain
Q € Wn41 by Lemma 7.16. O

Lemma 7.22 (X}, ,-DC)
If o € GWN+1 then there exists an N-distinguished set Z such that {0,Q} C Z,
a € GZ and VEVS € Z N (St U{Q})[ST* € Z].

Proof. Let a € G™~+1. We have a € C*(Wp41). Pick an N-distinguished set
Xo such that a € C*(Xy). We can assume {0,Q} C X, by Proposition 7.21.
On the other hand we have C*(Wn 1) Na C Wivy1 and VAVS € Wy 1N (St U
{OV)[S™ € Wy41] by Lemma 7.20. We obtain
VnvX3Y{Dn[X] — Dn[Y]
AN VBeOT(In)(UpB) <nApelC(X)Na—LeY)
A VEYS € (St U{Q}) ((S) <nASeX —SFeY)}

Since Dy [X] is Ay 4, B4 o-DC yields a set Z such that Zy = X and

VTL{DN[Zn] — DN[Zn+1]
A Vﬂ € OT(HN) (Z(B) § n/\ﬂ € Ca(Zn) No— ﬂ S Zn+1)
A VEYS € (St U{Q}) (US) <nAS€ Z, - ST e Z,41)}
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Let Z = {,, Zn. We see by induction on n that Dy[Z,] for every n. Lemma
7.9.3 yields Dy[Z]. Let 8 € C*(Z) Na. Pick an n such that 8 € C*(Z,)
and {8 < n. We obtain f € Z,41 C Z. Therefore a € GZ. Furthermore let
S € Zn (St U{Q}). Pick an n such that S € Z, and ¢(S) < n. We obtain
Stk e Z,41 C Z. O

Proposition 7.23 Let Dy[Y] and o € CP(Y). Assume Y N3 < 6. Then
Fs(a) C CA(Y).

Proof. By induction on fa. Let {0,Q,Ix} # o € C#(Y). We have £(a) < «
First consider the case a ¢ £(a). If « € Y N B C GY by Proposition 7.15,
then £(a) C C*(Y)Na C Y C CP(Y) by Proposition 7.5. Otherwise we have
a ¢ &(a) C CP(Y). In each case IH yields Fs(a) = Fs5(E(a)) € CP(Y).

Let o = 9 (a) for some 7, f,a. If a < 4, then Fs(a) = {a}, and there is
nothing to prove. Let o > §. Then Fs(a) = Fs({m,a} U SC(f)). On the other
side we see {m,a} USC(f) C CA(Y) from a € CP(Y) and the assumption. TH
yields Fs(a) € CA(Y).

Finally let o € N(p). Then Fs(a) = Fs(p). If p € CP(Y), then IH yields
Fs(p) C CP(Y). Otherwise we have a € Y, and a € C%(Y). Hence p €
CYY)NacCY c CA(Y). o

Proposition 7.24 Let v < 8. Assume o € C7(Y) and Gg(a) < . Moreover
assume V8[(6 < la& s € CY(Y)Ny =6 € CP(Y)]. Then a € CP(Y).

Proof. By induction on fa. If a <, then o € C7(Y) N~y. The third assump-
tion yields o € C#(Y). Assume a > 7. Consider the case o = 9 (a) for some
{m,a} USC(f) C C7'(Y) and m > . If # < 3, then {a} = Gg(a) < v by the
second assumption. Hence this is not the case, and we obtain 7 > . Then
Gp({m,a} USC(f)) = Gg(a) < v. IH yields {m,a} U SC(f) C CA(Y). We
conclude a € C#(Y) from 7 > f3.

Next let v < oo € N(p) with p € CV(Y). If o < S, then {a} = Gs(a) < 7,
and this is not the case. Let a > 3. Then Gg(a) = Gg(p). IH yields p € CP(Y),
and a € CA(Y) by a > §. O

The following Lemma 7.25 is a key result on distinguished classes.

Lemma 7.25 Suppose Dy[Y] with {0,Q} C Y and VEVU € YN(St,U{Q})[U™ €
Y]. Forn e Vi, UlUscgg; L(S), cf. Definition 6.12,

negy (52)
R N{yeoT(Iy) NIy : YNyt <A}ng¥ cY (53)

and . .
VT € {Q} U (LSt N U)Vk(n € L(T™*) = T € Y) (54)

Then n € Wn41. Moreover if there exists a set Z and an ordinal v such that
Y =W(Z) and n=™ =~~N, thenn € Y holds.
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Proof. By Lemma 7.16 and the hypothesis (52) it suffices to show (48)
VB =n! (Yﬁn“ < B&BO <y s Wl(v)n st c Y) .

Assume Y N7l < B and 510 < 1% We have to show WS (Y) N 10 c Y. We
prove this by induction on « € WOB (Y) N 1. Suppose v € C?(Y) N B9 and

MIH: CA(Y)nyCY.
We show v € Y. We can assume that
YNt <y (55)

since if v < § for some 6 € Y Nnfl, then by Y Nyt < B and v € C8(Y) we
obtain § < 8,y € C°(Y) and 6 € W(C?(Y)) N 610 =Y N6 by Lemma 7.10.
Hence vy € W(C%(Y))Nst0 C Y.
Moreover we can assume v € (Rego \ {Q,In}) N B with Regy = (Reg \ V).
For otherwise v € Y by Definition 7.1.6 and v € C?(Y') N j3.
We show first
vegr (56)

First v € C7(Y) by v € C#(Y) N 87 and Proposition 7.2. Second we show the
following claim by induction on fa:

aeC"¥Y)Ny=>a€eY (57)

Proof of (57). Assume o € C7(Y) N~y. We can assume v/ < 3 for otherwise
we have a € C7(Y) Ny = CA(Y)N~ CY by MIH.

By induction hypothesis on lengths, Proposition 7.12, and {0,Q} C Y, we
can assume that a = ¥/ (a) for some 7 > v such that {m,a} U SC(f) C C7(Y).
Case 1. g < m: Then Gg({m,a} USC(f)) = Gg(e) < a < 7 by Proposition
6.19.1. Proposition 7.24 with induction hypothesis on lengths yields {7, a} U
SC(f) c CA(Y). Hence o € CP(Y) N~ by m > 3. MIH yields a € Y.

Case 2. 3> m We have a < v < m < . It suffices to show that o < Y Nnfl.
Then by (55) we have a < § € Y Nyf! for some § < 7. CO(Y) 3> a < 4§ €
Y Not0 =W (C(Y)) N ot yields a € W(C(Y)) N0 C Y.

Consider first the case v € £(vy). By a = ¥f(a) < v < 7, we can assume
that v € {0,9Q,Ix}. Then let 6 = maxS(y) denote the largest immediate
subterm of 7. Then § € C7(Y) N+, and by (55), Y Nnt < € C#(Y) we have
§ € CP(Y)N~. Hence § € Y Nnf! by MIH. Also by a < +, we obtain o < 4,
ie., a <Y Nyt and we are done.

Next let v & (Rego \ {Q,In}) and v € &(y). This means that v € .
Let v = J(b) for some b,g and k > S by (55) and v € C#(Y). We have
a<y<m<B<k Let m X pandk =<7 with {p, 7} C Regyg. We obtain p =1
by Proposition 3.39.

7w & Hp(y) since otherwise by m < k we would have m < 5. Then by
Proposition 3.27 we have a > b and SC(g) U {k,b} ¢ Hq(a). On the other
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hand we have K,(SC(g) U{k,b}) < b < a, ie.,, SC(g) U {k,b} C Hq(y). By
Proposition 6.20 pick a § € F,(SC(g) U {k,b}) such that H,(a) Z § € 4. In
particular § < 7. Also we have SC(g)U{x,b} C C?(Y), Y C GY by Proposition
7.15, and YNn'! < 7 by (55). Therefore by Proposition 7.23 with MIH we obtain
a<seCl(Y)nyCY.

O of (57) and (56).

Hence we obtain v € G¥. We have v < 819 <5 and v € CV(Y). If v € R(n),
then the hypothesis (53) yields v € Y. In what follows assume v ¢ R(n).

If G, () < 7, then Proposition 7.24 yields v € C"(Y)Nn CY by n € G*.

In what follows suppose G,(y) = {7}. This means v € ¥ by v & (Rego \
{Q,Ix}), and v < 7 for a 7 < n by 7 £ n and Definition 6.17.3. If n < I, then
~v < Iy by v € R(n). Hence this is not the case.

Let n € L(T™*) with T € {Q} U (LSt N V). By (54) we obtain T € Y. On

the other hand we have Y Nnfl < 4 by (55), and T € Y since Y is closed
under U — U, Hence TT? < ~ as long as Tt < n. We obtain v € L(T'*) by
Definition 3.35.4. .
Let 7 be maximal such that v < 7 < . We obtain 7 € ¥ by v € L(T*)\ R(n)
and Proposition 6.13. From v € C7(Y') we see 7 € C7(Y).
Next we show that
Gy(7) < (58)

Let 7 = ¢/ (b) and v < v; = ¥9(a;). Then n < k by the maximality of 7, and
Gy(1) = Gy({k,b} USC(f)) < T by Proposition 6.19.1. On the other hand we
have 7 € Hq, (71). Proposition 6.19.2 yields G, (1) C Hq, (71) N7 C 1. We see
Gy (1) < 7y inductively.

(58) is shown. Proposition 7.24 yields 7 € C"(Y), and 7 € C"(Y)Nn C Y
by n € G¥. Therefore Y Nyt < v < 7 €Y. This is not the case by (55). We
are done. ]

Proposition 7.26 For a; = 91, (a), a1 € G+t = oy € Wyi1.

Proof. Let a; € G+, By Lemma 7.22 pick an N-distinguished set Z such
that {0,Q} C Z, oy € GZ and VEVS € Z N (St U{Q})[S*F € Z].

Claim 7.27 Let SSt>T < a; andy € GZNL(T)NW. Theny < ZNay.

Proof of Claim 7.27. Let p < St* = T < ay for an S € LStU{Q} and a k # 0.

First let v = p. Weobtain T € C7(Z) by y € C7(Z),and S € CV(Z)Ny C Z.
Hence v < T = St* € Z N a; since Z is closed under U + U'?.

Second let v <% x € N(p) for a k. We show p € Z by induction on £7.
First let v = ty,[,](b) for some b and ¢ < k. Then we obtain Iy[o] € C?(Z)
by v € C(Z), and o € CY(Z) N~y C Z. Proposition 7.15 yields o € GZ. If
o =k = In[p], then 0 € C7(Z) yields p € C°(Z)No C Z. Otherwise TH
yields p € Z. Second let v = wiﬁ(b) € CV(Z) for some f, b and ott <R k. We
obtain o € C7(Z)N~y C Z, and o € GZ. We obtain o <% k. IH yields p € Z.
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Third let v = ¥{(a) with 7 = WTJ[J/W]. We obtain v < 7 € C7(Z), and
o€ CY(Z)N~. Hence 0 € GZ. If 7 = WT;[U/W] = I[J‘L;[/)/S}7 then 0 € C7(Z)
yields p € C7(Z) No C Z. Otherwise IH yields p € Z.

Now p € Z yields p € C*(Z), and this yields S € C*(Z)Np C Z. Since Z is
closed under U + U'?, we obtain v < stk e zn Q. Oof Claim 7.27.

Since there isno vy < a1, if v € R(aq), theny € L(T)NY for a SSt > T < oy
by Definition 6.12.1. Also oy € LmS) for any S € SSt, and we have (53) by
Claim 7.27. We conclude o1 € Wy 1 by Lemma 7.25. O

Lemma 7.28 For each n < w, the following holds:
Let a € C' Whyy1) Nwn(Iy +1). Then 1, (a) € W1 holds.

Proof. For each n < w, we have TI[C'~ Wx 1) N (wn(In + 1))] by Lemma
7.13.2. We show the lemma by induction on a € C'™ (Wy1) Nw,(In + 1).
Assume

IH: < Vb e C]IN (WN+1) Na (w]IN (b) S OT(HN) = ’Q/J]]N (b) S WN+1) .

Let aq = 91, (a) € OT(Iy) with a € C'" (Wp41) Nw,(Iy + 1). By Proposition
7.26 it suffices to show aq € GWVN+1,

From a € C'¥ (Wi 1) with ay < Iy we see a3 € C(Wiy1). It suffices to
show the following (59) by induction on £8;.

VB, € C (WN+]_) N Oél[ﬁl S WN+1]. (59)
Proof of (59). Assume 51 € C*'(Wpn1) Ny and let
LIH :& Vy € c™ (WN-H) N Ozl[é’)/ <P =€ WN+1]-

We show 81 € Wi1. We can assume §; ¢ {0,} by Proposition 7.21.

Case 1. 81 & £(B1): Assume 1 € Wny1. Then 81 € N(p) for any p by
B1 € C**(Wn1) Ny and Definition 7.1. We obtain S(31) C C**(Wpy11) Nay.
LIH yields S(31) C Wyy1. Hence we conclude 31 € Wy from Proposition
7.12.
Case 2. In what follows consider the cases when 8; = 2 (b) for some 7, b, g. We
can assume 7 > a;. Then we see 7 = Iy and 81 = ¢y, (b) with b € C** Wn41).
We obtain b < a by Proposition 3.17.1, and b € H(81). By IH it suffices to
show b € C'¥ (Wi 41).

By induction on fc we see that ¢ € Hp(81) = G, (¢) < B1. For example let
c= ’yiri with v1 € LSty U {Q} and Z;é (). Suppose ¢ > 1. Then v1 € Hp(51).
The induction hypothesis on £c yields {71} = G, (71) < 81 € LSty, and hence
{c} = Gy (c) < By

In particular we obtain Gy, (b) < Bi. Proposition 7.24 with LIH yields
b € C'™ (Wy1). This shows (59). ]
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7.3 Layers of stable ordinals

In this subsection we examine ordinals in layers L(S) = {a € OT(Iy) : a <
S} for S € SSt. We show that there is no infinite descending chain in L(S),
cf. Lemma 7.32. Here we need the condition (12) and the fact that o € M, if
« is in the domain of the Mostowski collapsing a — «[p/S], cf. Definition 3.33
and Proposition 7.31.

Let k(pf(a)) = {r,a} USC(f) and h(y{(a)) = {a, g5 (¥{(a))}.

Proposition 7.29 Let Z be an N-distinguished set such that {0,Q} C Z and
VEYS € Z N (St U{Q})[STF € Z]. Assume 1, (b) € Z, and let

MIH(b; Z) = VT € (St U {Q}) N ZVkYy € L(T™) N
[k(v) c C'™(Z)&h(y) cC™(Z)Nb= {7y} UN(y) C Z].

Then for any © C Z, Hyp(©) C C'¥(Z) holds.

Proof. Let © C Z. Assuming v € H(0), we show v € C'¥(Z) by induction
on . Let v ¢ ©. By IH and Proposition 7.12, we can assume v € ¥ U (Regg \
{QaﬂN})'
Case 1. v = ¢f(a) with k(y) C Hp(0): We show {7y} UN(y) C Z. TH yields
{k,a} C k(y) CC™(2).
Case 1.1. xk = Iy: Then we obtain f =0 and v = ¢1, (a) < ¢, (b) =6 € Z
and N(y) =0. a € C™(Z) CC(Z) yields y € C°(Z)Nd C Z.
Case 1.2. xk < Iy: Let v € L(S) with S = T™* and T € St U {Q}. We claim
that T € Z and h(y) C C'™(Z) Nb. We have k € C'¥ (Z) N1y C Z. We obtain
k € GZ. Let p < S be such that either p = x or k <% o € N(p). In the latter
case we obtain p € C"(Z) Nk C Z. We obtain p € Z and p € G#, from which
wesee S€CP(Z)and TeCP(Z)NpC Z.
On the other, IH yields a € C'~(Z) Nb. We show gj(y) € C'V(Z) Nb.
Case 1.2.1. vy < S: Then gj(y) = ps(y0) for v = v = ¥¥(c). IH with
ps(70) € Hp(©) yields ps(yo) € C'¥(Z). On the other hand we have ps(y0) < b
by Yo € Hp(O).
Case 1.2.2. p < S and v <% o € N(p) for some p and o: Then g}(7) = gi(p).
We obtain p € H;(0). From Case 1.2.1 with IH we see gjj(p) € C'¥(Z) N b.
Therefore MIH(b; Z) yields {v} UN(y) C Z.
Case 2. v € N(y;) for a y4 € U: Then 71 € Hy(0), and Case 1 yields
v e N(’yl) c Z. O

Proposition 7.30 1. Let v, = v[p/S]~! be the Mostowski uncollapsing, and
{S,v} C CP(Z). Then v, € CP(Z).

2. v € Hy(p) NCP(Z) = v € Ho(CP(Z) N p).

Proof. Each is seen by induction on ¢v. For Proposition 7.30.1, use the fact
m =0/t = . o
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Proposition 7.31 LetS € SSt, n € L(S) and Z be an N-distinguished set such
that {0,Q} C Z, VkVS € ZN (St U{QN)[ST* € Z]. Assumen € GZ, 1, (b) € Z
and MIH(b; Z) in Proposition 7.29 for a b > gi(n). Then the following holds.

1. go(n) € C™ (2).
2. g1(n) €C™(Z).
3. ga(n) €C™(Z).

Proof. Proposition 7.31.2 is seen from Proposition 7.31.1 by induction on ¢n
as follows. Let n > p € L(S) N ¥ be in the trail to n. We see gi(p) = gi(n)
from Definition 6.7. Moreover we see p € C"(Z)Nn C Z from n € GZ. In
particular p € GZ. By IH we obtain gg(p) € C'(Z). On the other side, we see
gi(n) € C'™ (2) if go(p) € C™(Z) for every n > p € L(S) N V¥ in the trail to n
from Definition 6.14.

7.31.1. Let n € 0.

Case 1. 11 = p or n = ¢y [,(c) for a p < S and a ¢: Then po(p) < golp) =
go(n) = gi(n) < b. We show ps(p) = go(p) € C'¥(Z). By (12) in Definition
3.31.6 we have po(p) € Hu(p), and ps(p) € Hi(p). On the other hand we have
p € GZ. We obtain ps(p) € C*(Z) by p € CP(Z), and ps(p) € Hyp(CP(Z) N p)
by Proposition 7.30.2. Moreover we have C*?(Z) N p C Z. Proposition 7.29 with
MIH(b; Z) yields ps(p) € Ho(CP(Z) N p) C C~ (2).

Case 2. Otherwise: Let p < S be such that n <% 7 € N(p). Let ;1 € M, be
such that 1 = 1:[p/S]. Then go(n) = go(m) and po(p) < go(p) = g;(n) < b.

On the other hand we have n € GZ. n € C"(Z) yields p € C"(Z)Nn C Z.
Hence p € Z. We obtain p € GZ. We see S € C?(Z) from p € C°(Z). Hence
{S,n} C CP(Z). Proposition 7.30.1 yields n; € C(Z), and go(n1) € CP(Z)
by m > p. m € M, C Hy(p) yields go(m) € Hp(p). We obtain go(m) €
Ho(CP(Z) N p) by Proposition 7.30.2. p € GZ yields CP(Z)Np C Z. Hence
Proposition 7.29 yields go(n1) € C'¥ (Z).

7.31.3. By induction on #n. Let n € .

Case 1. n = p < S: Then po(p) = po(n). Let f = m(p). Then g2(p) = os(f)+1
and SC(f) C Hp(p) for b > po(n) by (12) in Definition 3.31.6. Moreover
SC(f) C CP(Z) by p € CP(Z). Hence we obtain SC(f) C Hy(CP(Z) N p)
by Proposition 7.30.2, where C*(Z) N p C Z. Proposition 7.29 with MIH(b; Z)
yields SC(f) € C™(Z), and og(f) € C'V(Z).

Case 2. Otherwise: Let p < S be such that n = n:1[p/S] with 1 € M, N L(Sy)
and go(1m) = go(n), where 1 < (S1[p/S]) and M, C Hy(p) for po(p) < go(p) =
gh(n) < b. Then ln < fn. n € C"(Z) with p < n yields n € C°(Z) and
peCHZ)NnC Z. WeseeS € CP(Z) from p € CP(Z). We obtain 1y € C*(Z)
by Proposition 7.30.1 and n € C(Z), and m1 € Hy(CP(Z) N p) by Proposition
7.30.2. On the other hand we have C*(Z) N p C Z. By Proposition 7.29 we
obtain 1, € C'(Z) NIy C Z. Hence n; € GZ. Moreover we see gij(n;) < b =
po(p) < g5(n) from 1 € Hy(p). TH yields ga(n) = gz2(m) € C'¥(2). O
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Lemma 7.32 Let S = TTF € SSt with T € {Q} U (LStN W), T < n € L(S),
and Z be an N-distinguished set such that {0,Q, T} C Z, VEVYU € Z N (St U
{ON[U™ € Z]. Assumen € GZ, b > gi(n), A =1, (b) € Z, and MIH(b; Z) in
Proposition 7.29. Thenn € Z.

Proof. By Lemma 6.15 we obtain SC(ga(n)) € A = 1, (b). An ordinal
gh(n) = oa(f) + 1 < Iy is obtained from gy(n) = O]IN(f) + 1 in Definition
6.1.2 by changing the base Iy to A. Then for SC(ga2(v)) U SC(g2(d)) C A,
g:(6) < g2(7) < g}(6) < gh(7) by Proposition 3.3, and ga(7) € C¥(2) &
gh(v) € Z by the assumption A € Z.

On the other side, we see Wi (Z)NS = ZNS from T € Z and Dy[Z]. Hence
G¥NS=g?nSforY =Wx(Z)NS.

We see Wo[C¥ (Z)] from C'¥ (Z) NIy = Z N1y as in Lemma 7.13. We show
neZNS=Wg(Z)NS by induction on g*(n) = (g1(n), gl (n)) with respect to
the lexicographic order <;, on C'~(Z) x Z.

Let v € R(n) be such that v € GZ. Then v € R(n) C L(S), TV
7 N =9 Nand T < v < n <S. By Lemma 6.15 we obtain gj(y) <
g5(n), g(v) <z g(n) and SC(ga(y)) € A = 1, (b). Proposition 7.31 yields
{e1(7), g2(7),81(n), g2(n)} € C™(Z). We obtain g"(y) <i, g*(n). IH yields
v € Z, and (53) is shown. On the other hand we have T € Z for (54).

Lemma 7.25 yields n € Z. O

Al

Proposition 7.33 Let Dn[Z] and p € L(S)NZ NV with an S € SSt. Then
N(p) C G7.

Proof. Let a € N(p). We obtain a« € C*(Z) by p € ZNa. We show f €
C*(Z)Na = «a € Z by induction on £8. Let p # 8 € C*(Z)Na. If B < p,
then 8 € C?(Z) N p C Z by Propositions 7.2.1 and 7.15. Let p < 8 < . By IH,
Proposition 7.12 and Definition 7.1 we may assume that 8 = ¥/ (c) with ¢ > a.
Then B < p by Proposition 3.39. o

Corollary 7.34 For each ¢ € C'~ (Wx 1), the following holds:

Let S = TtF € SSt with T € {Q} U(LStN W), n € N(p) with p € L(S), and
{T, p} C Wny1. Assume ¢ > gi(n) and MIH(C; Wh+1) in Proposition 7.29.
Then n € Wn1.

Proof. By gi(n) < ¢ € C'(Wy41) and Lemma 7.28 we obtain vy, (¢) €
Whn+1. Asin the proof of Lemma 7.22 we see that there exists an N-distinguished
set Z such that {0,Q, T, p} C Z, VkVU € ZN (St U{Q})[U™ € Z], ¢, (¢) € Z,
and MIH(¢; Z). Thenn € Z C Wy follows from Lemma 7.32 and Proposition
7.33. |

Definition 7.35 For irreducible functions f let

fed: e SC(f) T Wit

82



For a € OT(Ix) and irreducible functions f, define:

A(C.a, f) & Vo eWny Niy[gs(vl(a) < ¢ = vl(a) € W]
SIH(C,a) & VYbe O™ (Wny1)NaVf € JAD, f).
SSIH(C,a, f) & Vg€ Jlg <j, f= A a,9)]

Lemma 7.36 For each ¢ € C'~ (Wpy41), the following holds:

Assume a € C'™ Wy 1) N (¢ + 1), f € J, SIH(¢, a), SSIH(C, a, f) in Defi-
nition 7.85. Moreover assume MIH(C; Wi y1) in Proposition 7.29. Then for
any S = T € SSt with T € ({Q} U (LSt N ¥)) N Wy and any k €
W1 N (L(S) U {S}) the following holds:

g (¥i(a)) < ¢ = ¥l (a) € Wy

Proof. Let a; = v/ (a) € OT(Ix) with a € C""(Wn11) N ((+ 1), K € Wi N
(L(S) U {S}) and f € J such that S = T™ with T € Wy1, and gi(a;) < ¢.
By Lemma 7.28 we have 91, ({) € Wny1. By Lemma 7.32 and the assumption
MIH(¢; Wary) it suffices to show oy € G+t

By Lemma 7.10 we have {x,a} U SC(f) C C**(Wn4+1), and hence oy €
C**(Whn41). It suffices to show the following claim by induction on £f;.

Claim 7.37 V3, € C* (WN+1) N 041[51 € WN+1].
Proof of Claim 7.37. Assume 1 € C**(Wn41) Ny and let

LIH & V’y e (O™ (WN+1) N Oél[g’y < gﬁl =y E WN+1].

We show 81 € Wy41. We can assume 51 € {0,Q} by Proposition 7.21.
Case 1. (1 & E(B1): Assume 1 € Wpnii. Then 81 ¢ N(p) for any p by
B1 € C**(Wn41) Ny and Definition 7.1. We obtain S(81) C C**(Wn41) Nag.
LIH yields S(81) C Wn41. Hence we conclude 51 € Wy from Proposition
7.12.

In what follows consider the cases when 8, = ¥9(b) for some m,b,g. We
can assume m > oy and {m, b} USC(g) C C**(Wn41). Then either 7 = Iy or
B1 € L(S) for a; € L(S).

Case 2. m = Iy and b < a: As in the proof of Lemma 7.28 we see b €
C'™ (Wn41). We obtain 81 = 91, (b)) € Wx 41 by b < a < ¢ and Lemma 7.28.
Case 3. m <Iy,b<a, f1 <k and {m, b} USC(g) C Hy(a1): Then 31 € L(S).

Let B denote a set of subterms of 3, defined recursively as follows. First
{m,b}USC(g) C B. Let o1 < B € B. If B =nF Ym+-+-+70, then {7y, : i <m} C
B. If B =xF 76, then {v,8} C B. If 8 = 9" (c), then {o,c} USC(h) C B. If
B € N(r), then 7 € B.

Then from {m,b} U SC(g) C C**(Wn4+1) we see inductively that B C
C*(Wn41). Hence by LIH we obtain BN a; C Wy41. Moreover if ay <
Yl (c) € B, then ¢ € K,, ({m,b} USC(g)) < a.
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We claim that
VB € B(f € C'™ (Wny1)) (60)

Proof of (60) by induction on ¢3. Let S € B. We may assume that oy < 3 is
a strongly critical number such that 8 ¢ {Q,Iy} U SSt by induction hypothesis
on the lengths. First consider the case when a; < 8 = 1"(c). By induction
hypothesis we have {o,c} USC(h) C C'¥ (Wy41). On the other hand we have
¢ < aand gi(B) < gi(ar) by Proposition 6.16. STH(C, a) yields 8 € Whx41.

Second let oy < € N(7) for a 7 € L(S). By IH we obtain 7 € Wx41.
We claim that gi(7) < gi(ar) < ¢. If 7 < oy, then we obtain gi(7) = g§(a1).
Otherwise oy < 7 = ¥"(¢) € B C Hy(aq) for some o, h,c. We obtain gh(1) <
gh(a1) by Proposition 6.16. On the other hand we have T € Wy, by one of
the assumptions. Corollary 7.34 yields 8 € Wy y1.

Thus (60) is shown. O

In particular we obtain {r,b} U SC(g) C C™ (Wn1). Moreover we have
b < a and gi(p1) < gi(a1) by Proposition 6.9. Therefore once again SIH(C, a)
yields ﬂl S WN+1.

Case 4. b =a, 7 = K, ¥§ € SC(g)(Kqa,(0) < a) and g < f: Obviously
gh(B1) = gi(ar). As in (60) we see that SC(g) C Wyn41 from SIH((,a).
SSIH(C, a, f) ylelds ﬂl S WN+1.
Case 5. a < b < Kg, (8) for some 6 € SC(f)U{k,a}: It suffices to find a y such
that 81 < v € Wny1 Nag. Then f; € Wy follows from 51 € C* (Wn41)
and Propositions 7.2.1 and 7.11.

kx(a) denotes the set in Definition 6.17. In general we see that a € Kx («)
iff ¢ (a) € kx () for some o, h, and for each ¢! (a) € kx (410 (ag)) there exists
a sequence {a;}i<m of subterms of ag = 120 (ag) such that oy, = ¥(a), a; =
1/13,‘ (a;) for some o0y,a;,h;, and for each i < m, X Z a;41 € E(C;) for C; =
{O'Z‘, ai} U SC(hZ)

Let 6 € SC(f) U{k,a} such that b < - for a v € Kz, (§). Pick an ay =
Y2 (ag) € £(6) such that v € Kp, (a2), and an oy, = 92 (an) € kg, (a2) for
some oy, by, and a,, > b > a. We have ag € W41 by § € Whyr. If ag < ag,
then f1 < as € Wyi1 Nayg, and we are done. Assume as > ag, i.e., as € ay.
Then as € Ky, (2) < a <b, and m > 2.

Let {a;}o<i<m be the sequence of subterms of ay such that o; = w(',“ (a;)
for some o, a;, h;, and for each i < m, 81 < a;41 € E(C;) for C; = {o,a;} U
SCi(hy).

Let {n;}o<;j<k (0 < k < m — 2) be the increasing sequence ng < n; < --- <
ny < m defined recursively by ng = 2, and assuming n; has been defined so that
nj < m and o, > a1, njy1 is defined by nj 1 = min({i : n; <i<m:a; <
an, } U{m}). If either nj = m or a,; < a1, then k = j and n;;; is undefined.
Then we claim that

Vi < k(am;, € Wrni) &ay, < (61)
Proof of (61). By induction on j < k we show first that Vj < k(an; €

Wni1). We have a,, = as € Wyi1. Assume ap,; € Wyyg and j < k.
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Then n; < m, ie., an,,, < an;, and by ap, € C“"i (W), we have Cyn, C
C*"i (Wn41), and hence a1 € E(Cy,) € C* (Wn41). We see inductively
that a; € C%" (Wny1) for any ¢ with n; < ¢ < nj4q. Therefore Qn,., €
C* (Wn41) N, C W41 by Propositions 7.2.1 and 7.11.

Next we show that a,, < a;. We can assume that n; = m. This means that
Vi(ng—1 <i<m= q; > ay,_,). Wehave aa = ayyy > iy > -+ > ., > 1,
and Vi < m(a; > a1). Therefore oy, € ka,(a2) C ko, ({k,a} U SC(h)), ie.,
am € Ko, ({k,a} USC(h)) for oy = Y2 (am). On the other hand we have
Ko, ({k,a} USC(R)) < a for a; = ¢"(a). Thus a < a,, < a, a contradiction.

(61) is shown, and we obtain 51 < ay,, € W41 Na;g.

This completes a proof of Claim 7.37 and of the lemma. a

Corollary 7.38 For each ¢ € C'(Wy 1), MIH((; Wi 41) holds.

Proof. For each n < w, we have TI[C'"Y (Wn41) Nw,(Ix + 1)] by Lemma
7.13.2. We show MIH(¢; Wy 41) by induction on ¢ € C'™(Wy,1). Assume
V& € C™ (Whvs1) N CMIH(E W)

Let S = T™* with T € W1, and v = ¥/ (a) € L(S) be such that k(y) =
{r,a} USC(f) C C*¥(Wy+1) and h(y) = {a,g5(7)} C C¥ (Wni1) N ¢ We
obtain MIH(&; Wi41) by IH for £ = max{a, gj(v)}.

We obtain v € Wy41 by Lemma 7.36 and MIH(&; Wiv41) with subsidiary
induction on a € C'™ (Wy41) N (€ + 1) and sub-subsidiary induction on f € J.
Then Corollary 7.34 yields N(v) C Wn1.

Here by induction on f € J we mean by induction along g <9, f. In the proof
of Lemma 7.36, SSIH(C, a, f) is invoked in Case 4, i.e., only when ¢9(a) < 1/ (a)
with & < Iy. Then Lemma 6.3 yields o1, (g) < ory(f) € C'W(Wy41) for
SC(f) € C'¥ (Wy1) N A, where A = v, (b) and b = g§(vf(a)) = po(vf(a)).
Hence op(g) < oa(f) € W1 by A € Wiy, ]

Lemma 7.39 For each n < w, the following holds:
If one of the followings holds, then o € Wy 41 for a € OT(Iy).

1. a =S¥ with S € Wi 11 N (St U{Q}).
2. a =1y, (a) witha € O™ (Wny1) Nw,(Iy +1).

a = pl(a) € L(S) for S = TF with T € Wy,y1 and k(a) Uh(a) =
{k,a,g5()} USC(f) CC" Wni1) Nwn(Iy +1).

4. a € N(p) for p € Wyi1 N L(S) with S = T* such that T € Wy and
go(p) <wn(In +1).

Proof. 7.39.1 is seen from Lemma 7.20.

7.39.2 follows from Lemma 7.28.

7.39.3 follows from Lemma 7.36 and Corollary 7.38.

7.39.4 follows from Corollaries 7.34 and 7.38. O
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Let us conclude Theorem 1.2. For each a € OT(Iy), & € C™ (Wi 41) is seen by
metainduction on the lengths fa using Propositions 7.12, 7.21 and Lemma 7.39.
Note that £(gi(vf(a))) < £(¥](a)) and £(T) < £(p) for p € L(S) and S = TTk.
Therefore we obtain E}V+2—DC+BI FaeclWWhni)NQ =WniNQ =
W(C°Wn+1)) NQ = W(OT(In)) NQ, and X}, ,-DC+BI F Wola] for each
o < Yo(Ery+1)-

8 Outcomes on Z,

In this final section let us conclude some standard outcomes of an ordinal anal-
ysis of the theory Zs.
Let TI[TI ™, v (e1y +1)] denote a schema of transfinite induction Va € OT (T )N

Q (PrglOT(In), Al = OT(Ixy) N C A) up to Pa(ery+1) in OT(Iy) applied to
arithmetic formulas A € H(l)_ in the language of the first-order arithmetic PA.
Let Ty = PA + J{TI[I} ", va(ery+1)] : N < w}, and Ty = FiX*(T}) denote the
intuitionistic fixed point theory over Ty. The language of the theory T is ex-
panded by unary predicate symbols I for each operator ®(X, ), in which every
occurrence of a unary predicate symbol X is strictly positive. The axioms in T}
are obtained from T by adding the axioms Vz[I(x) <> ®(1,z)| for a fixed point
I. The axiom schema TI[TI;™,vq(ery+1)] of transfinite induction as well as
schema of complete induction may be applied to arbitrary first-order formulas
in the expanded language with the predicates I. The underlying logic in T is
the intuitionistic first-order logic with the axiom Vz,y(z = y — I(z) — I(y)).
The excluded middle Va(—I(z)V I(z)) for the predicate I is not available in T;.

Lemma 8.1 FiX'(T}) is a conservative extension of Ty. Moreover the fact is
provable in the fragment IXY of the first-order arithmetic: I1%9 F Prr, ([]) —
Prr, ([¢]), where Prp(z) is a standard provability predicate for a theory T.

Proof. The fact is seen as in [1, 3]. To formalize a proof of the fact in I%9,
follow a finitary analysis in section 4.4 of [3]. |

Theorem 8.2 Z, is a conservative extension of PA + J{TI[II; ™, Ya(ery+1)] :
N < w}. Moreover the fact is provable in the fragment I39.

Proof. Assume that Zs I A for an arithmetic sentence A € II;~. Pick an N <
w such that ¥} ,-DC+BI F A. By Lemma 2.3 we obtain KPw-+IIy-Collection+
(V = L) F A% and hence KPw + IIy-Collection - A***. Then by Lemma 2.5
we obtain Sy, F A,

Now we see that the proof of Theorem 1.1 in sections 4 and 5 is formalizable
in the intuitionistic fixed point theory T} = FiXi(TO) over Ty. Let us regard each
of the relations (H.,©;Qn) 2%, ;14 and (H,,0,Q) Fedepq, I as a fixed
point of a strictly positive operator. Then by applying transfinite induction
to first-order formulas with the fixed point predicates, Theorem 1.1 is proved.
Therefore we obtain FiX*(Tp) F A, and Ty - A by Lemma 8.1. a
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We see readily that the transfinite induction TI(¢q(L,)) up to ¥a(L,) is
equivalent to the IT}-soundness RFN1 (Z2) of Zy over RCAg, where TI(¢qo (L))

denotes a II}-sentence VNVa € OT (Iy)NQVY (Prg[OT(Iy),Y] — OT(In)Na C
Y).
Definition 8.3 Let a € OT(Iy) be an ordinal term.

1. DS, denotes a II9-sentence saying that ‘there is no primitive recursive
and descending sequence {f(n)},, of ordinals with f(0) < «’. This means
that f(0) <a= 3In(f(n+1) £ f(n)).

2. WDS,, denotes a II3-sentence saying that ‘for every primitive recursive
and weakly descending sequence {f(n)}, of ordinals with f(0) < «, there
exists an n such that Vm > n(f(m) = f(n))’. This is equivalent to the
principle that ‘for every primitive recursive sequence {f(n)}, of ordinals,
there exists an n such that Vm(f(n) < f(m)).

3. DSUJQ(EHNJA) = Va € OT(]IN)QQ DS, and DS,(/,Q(HW) = VN > 0DS¢Q(8HN+1)'
Also WDSyg (e, 1) & Ya € OT(In) N QWDS, and WDSy,q,) &
VN > OWDS¢Q(EIN+1).

4. A computable (total) function f on integers is said to be ¥q(ery+1)-
recursive if f is defined from a-recursive functions g,r, h by ¥ (ery+1)-
recursion:

_ [ 9ty fly,r(y,2))) if r(y,2) <o < Qin OT(Iy)
y,2) = { h(y,z) otherwise !

5. RFNyo (Z3) denotes the uniform reflection principle of Zy for X9 -formulas.

Corollary 8.4 1. The 2-consistency RFNxo(Z2) of Z5 is equivalent to W DSy, )
over %Y.

Z; is 113-conservative over IX] +{WDSy,(, .,,):0< N <w}.
The 1-consistency RFNxo(Z2) of Zs is equivalent to DSy ,,) over 9.

Zs is 119-conservative over 1S9 + {DSyo(ery 1) 1 0 <N <w}.

AN

For computable total function f on N, f is provably computable in Zs iff
f is Ya(ery+1)-recursive for an N < w.

Proof. Each follows from Theorem 8.2 as in chapter 4 of [3]. O

For the consistency Con(Zs) of Zy we obtain the following.

Corollary 8.5 There are primitive recursive predicate B and primitive recur-
sive function f such that both of YN > O0Va € OT(In) N Q(f(N,a) < a —
B(N, f(N,a)) = B(N,«)) and VN > OVa € OT(In) N Q B(N,a) — Con(Zs)
is provable in I¥9.

Proof. This is seen from Theorem 8.2 as in section 4.3 of [3]. 0
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