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0 introduction

0.1 Contents

• Summery of Nelson’s Predicative Arithmetic

• The Connection between Predicative Arithmetic and Wittgenstein

Today’s purpose is to suggest an interest of Predicative Arithmetic which Nelson himself and others seem

to overlook. I want to claim that Predicative Arithmetic can be seen as a formal model of Wittgensitein’s

conception of proof, and can give an answer to the so-called ”paradox of inference” in the case of arithmetic.

0.2 What is Predicative Arithmetic?

• an alternative to classical arithmetic

• weaker than HA, or PRA

• without any induction axiom

1 Summery of Nelson’s Predicative Arithmetic

1.1 Nelson’s philosophical motivation

Nelson criticizes the validity as an axiom (or axioms) of mathematical induction.

In his essays, there are several lines of arguments to this conclusion. The clearest is the argument from

impredicativity.

1.1.1 The argument from impredicativity

a possible justification for induction:

The concept of natural numbers are defined as the totality about which mathematical induction can be validly

carried out. So, mathematical induction is a kind of definitional truth.

ex.)Frege’s construction of the set of natural numbers.

Nelson’s criticism[9]：

The above definition contains circularity, so that is inappropriate.

The reason for mistrusting the induction principle is that it involves an impredicative concept of number.

It is not correct to argue that induction only involves the numbers from 0 to n; the property of n being

established may be a formula with bound variables that are thought of as ranging over all numbers. That

is, the induction principle assumes that the natural number system is given. A number is conceived to
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be an object satisfying every inductive formula; for a particular inductive formula, therefore, the bound

variables are conceived to range over objects satisfying every inductive formula, including the one in

question.[ch.1]

1.1.2 To Predicative Arithmetic

Based on that argument, Nelson thinks it is incorrect to presuppose the totality about which induction can

be carried out.

He can’t use induction axioms, so he founds his mathematics on Robinson’s Arithmetic Q, which has no

induction axiom.

1.2 Development of Predicative Arithmetic

1.2.1 The basic idea

Q is too weak in itself. So, when we want to prove some formula ∀xA(x), we takes up a new theory Q[∀xA(x)],

and justify this theory by interpreting it in Q.

1.2.2 The starting point

In the following, we assume classical logic. Our language has the following nonlogical symbols: 0, S, P ,+,×,

≤.

definition 1 Q is a theory whose axioms are Ax.0-7. Q’ is a theory whose axioms are Ax.0-12.

• Ax.0 Sx ̸= 0

• Ax.1 Sx = Sy → x = y

• Ax.2 x+ Sy = S(x+ y)

• Ax.3 x+ 0 = x

• Ax.4 x× Sy = x× y + x

• Ax.5 x× 0 = 0

• Ax.6 Px = y ↔ Sy = x ∨ (x = 0 ∧ y = 0)

• Ax.7 x ≤ y ↔ ∃zx+ z = y

• Ax.8 (x+ y) + z = x+ (y + z)

• Ax.9 x× (y + z) = x× y + x× z

• Ax.10 (x× y)× z = x× (y × z)

• Ax.11 x+ y = y + x

• Ax.12 x× y = y × x

Q doesn’t have any induction axiom or any axiom justified by induction, so we can accept it on predicative

grounds. Q′ is interpretable in Q, so we can use it as a starting point for Predicative Arithmetic.

1.2.3 Induction by Relativizasion

Define F (x) by F (x) ≡ ∃z(2× z = x× Sx).

∀xF (x) seems a very basic truth about numbers, but we can’t prove ∀xF (x) in Q. Only F (0) and ∀x(F (x) →
F (Sx)) is provable.

So, instead of using an induction axiom, we try to interpret Q′[∀xF (x)] in Q′ to accept ∀xF (x).

definition 2:Relativization for an unary formula C(x) and a formula A, we define AC(x) as a

forumla that can be obtained by replacing in A all the occurances of quantifiers∀xB(x), ∃xB(x)by

∀x(C(x) → B(x)), ∃x(C(x) ∧B(x)).
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In order to interpret Q′[∀xF (x)], our first idea may be to relativize the domain of Q′ to F (x), but it is

unclear whether F 3(x) is closed under the functions S, P,+,×, and whether axioms of Q′ holds even under that

relativizaion (especially, Ax.7 is not open). So we introduce Relativization Scheme.

definition 3:Relativization Scheme for an unary formula C(x), C1(x), C2(x), C3(x) are defined in the

following way.

• C1(x) ≡ ∀y(y ≤ x → C(y))

• C2(x) ≡ ∀y(C1(y) → C1(y + x))

• C3(x) ≡ ∀y(C2(y) → C2(y × x))

theorem 1 if Q′ ⊢ C(0) ∧ ∀x(C(x) → C(Sx)), then the following are theorems in Q′

• R0) C3(x) → C(x)

• R1) (C3(x) ∧ y ≤ x) → C3(y)

• R2) C3(0) ∧ ∀x(C3(x) → C3(Sx))

• R3) C3(x) → C3(Px)

• R4) (C3(x) ∧ C3(y)) → (C3(x+ y) ∧ C3(x× y))

• R5) (C3(x) ∧ C3(y)) → (x ≤ y ↔ ∃z(C3(z) ∧ x+ z = y))

It is clear from the theorem 1 that F 3(x) contains 0, and is closed under S, P,+,×, and that axioms of Q′

holds even when we relativize the domain to F 3(x). Also, ∀xF (x) holds under that relativization.

theorem 2 Q′ ⊢ F 3(x) → F (x)F 3(x)

Proof F (x)F 3(x) ≡ ∃z(F 3(z) ∧ 2 × z = x × Sx). Assume F 3(x). Then from R0, F (x). In other words, there

exists z such that 2×z = x×Sx. From F 3(x), R2, R4, we can see F 3(Sx) ,and F 3(x×Sx). From this, R1, and

z ≤ x× Sx, F 3(z). So, there exists z such that (F 3(z) ∧ 2× z = x× Sx). in other words, F (x)F 3(x). Q.E.D.

Apply universal generalisation to this, we get the relativization by F 3(x) of ∀xF (x). So, all the axioms of

Q′[∀xF (x)] hold under that relativization.

definition 4 C(freeA) is the conjunction of all the C(v), for any variable v occuring freely in A.

theorem 3: Interpretablity for any formula A, Q′[∀xF (x)] ⊢ A ⇒ Q′ ⊢ F 3(freeA) → AF 3(x)

In this way, Q′[∀xF (x)]is interpretable in Q′. So we can accept ∀xF (x) on predicative grounds.

We can generalise the process of accepting ∀xF (x) in this way. Assume the current theory is T;

1. There is an inductive formula C(x).

2. We strengthen C(x) into C3(x).

3. For any axiom A in T [∀xC(x)], we prove T ⊢ C3(freeA) → AC3(x). Whether this is possible depends on

the form of C(x)

4. We interpret T [∀xC(x)] in T by relativization to C(x).

5. We replace T by T [∀xC(x)], and accept ∀xC(x).

According to Nelson[9], this process can be seen as a refinement of the concept of numbers. We refine the

original concept of number to the new concept F 3(x), which enables us to accept ∀xF (x) as a truth about all

numbers.

Let C be an inductive formula; our intuitive feeling is that if x is a number, then C[x] should hold.

Now the formula C3 respects all of the function symbols of Q′
1[our Q

′] and the defining axiom of ≤, by
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REL[our theorem 1]. All of the other nonlogical axioms of Q′
1 are open, so it automatically respects them

all as well. In other words, the entire theory Q′
1 can be relativized by C3. We can replace our concept of

number (any x) by a more refined concept of number (any x such that C3[x]). We can read C3[x] as ”x

is a number” (leaving open the possiblity of formalizing an even more refined concept of number at some

time in the future).[ch.5]

In summery, in Predicative Arithmetic mathematical induction is not an axiom, but a process of concept

refinement. When we want to prove ∀xA(x), we refine our concept of numbers to A3(x), and strengthen our

theory. Newer theories should always be interpretable in older ones, especially in Q, and whether it is possible

depends on the exact form of A(x). If it isn’t possible, we can’t understand the new concept of number in an

predicative (or non-circular) way.

The principles we can accept in this way;

1. induction for bounded formulae

2. tautalogical consistency of Q

The principles we can’t accept in this way;

1. totality of exponentiation

2. consistency of Q

2 Predicative Arithmetic and Wittensteinan proof

2.1 The paradox of inference

”paradox of inference”[4]

how to explain both of the two aspects, validity and utility, of logical inference? They seem to compete with

each other.

• For validity, there should be no conceptual distance between premises and the conclusion.

• For utility, there should be some conceptual distance between premises and the conclusion.

The paradox of inference is the problem of reconciling these two competing aspects of inference.

Apply this to mathematical proof.

• For validity of proof, there should be no conceptual distance between axioms and the theorem.

• For utility of proof, there should be some conceptual distance between axioms and the theorem.

Let me call this application of the paradox ”paradox of proof”.

We can think Wittgenstein conception of proof as an answer to this problem.

2.2 Wittegensteinan proof: proof as concept-formation

According to some interpretations (especially by Dummett and Wright), Wittgenstein thinks proofs are

transformation of our concept and introduce new criteria for application of the concept, not expressed by

axioms.

When I said that a proof introduces a new concept, I meant something like: the proof puts a new

paradigm among the paradigms of the language; like when someone mixes a special reddish blue, somehow

settles the special mixture of the colours and gives it a name. But even if we are inclined to call a proof

such a new paradigm[it gives a new criterion for application] – what is the exact similarity of the proof to

4



such a concept model? One would like to say: the proof changes the grammar of our language, changes

our concepts. It makes new connexions, and it creates the concept of these connexions. (It does not

establish that they are there; they do not exist until it makes them.)([19],III,S31)

The idea that proof creates a new concept might also be roughly put as follows:a proof is not its

foundations[axioms?] plus the rules of inference, but a new building – although it is an example of such

and such a style. a proof is a new paradigm. The concept which the proof creates may for example be a

new concept of inference, a new concept of correct inferring.（[19],III,S41)

Dummett criticizes：

• Based on this conception, we can explain the utility of proof. Proof gives us something completely new;

new applications of the concept.

• We can’t explain the validity. Proofs are themselves a type of application of concepts. If proofs change

the criterion of application freely, doesn’t the norm of proof evaporates completely? Isn’t the result

”anything goes”?

2.3 Predicative Arithmetic as an concept formation

The treatment of mathematical induction in Predicative Arithmetic can be viewed as a formal model for

Wittgenstein’s conception of proof, and importantly, in a way that avoids the Dummettian criticism.

表 1 Predicative Arithmetic and Wittgenstein’s conception

Wit’s conception of proof Mathematical Induction in PredA

concept-transformation refinement of the concept of numbers

new criteria of application adding new axioms

how to explain the validity of proof? interpretablitity in older theories

In these points, Predicative Arithmetic clearly embodies Wittgenstein’s idea.

In Predicative Arithmetic, the validity of Mathematical Induction as concept-refinement is judged by the

interpretablity in older theories (if a new theory isn’t interpretable in the older one, we can’t understand the

new concept of numbers in a non-circular way). So, Dummettian criticism doesn’t apply.

So, Predicative Arithmetic

• can give a formal model for Wittgenstein’s conception

• can rebut Dummett’s criticism on Wittgenstein by giving a Wittgensteinian model that avoids his criti-

cism.

• can give a model for reconciling the two aspects of mathematical proof. It explains the utility of proof

by new criteria of application, and the validity of proof by interpretablity.

Reservations: if my opinion that Predicative Arithmetic can answer the paradox of proof is correct, this

answer has only the limited application, because of the weakness of this theory.
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