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Abstract
We analyse pinned front and pulse solutions in a singularly perturbed three-component
FitzHugh–Nagumo model with a small jump-type heterogeneity. We derive explicit condi-
tions for the existence and stability of these type of pinned solutions by combining geometric
singular perturbation techniques and an action functional approach. Most notably, in certain
parameter regimes we can explicitly compute the pinning distance of a localised solution to
the defect.

Keywords Reaction–diffusion equations · Defects · Calculus of variations · Singular
perturbations · Existence · Stability · Localised defect solutions
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1 Introduction

Systems of partial differential equations (PDEs) with spatial heterogeneities, i.e. defect
systems, have received a lot of attention in the literature over the past few decades
[1,3,17,18,30,34–37,50,54,59–62, e.g.] and defect systems have been mentioned as poten-
tially being used in device applications [27,43, e.g.]. In this manuscript, we study a singularly
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Fig. 1 Pinned defect pulse and front solutions supported by (1) obtained by simulating the time-independent
version of (1), i.e. by simulating (10), on a domain of length 24. The system parameters used for the simulations
in panels a–c are (α, β, D, γ1, γ2, ε) = (3, 2, 5, 2, 2.5, 0.02), while the system parameters used in the panels
d–f are (α, β, D, γ1, γ2, ε) = (3,−2, 5, 0.02,−5, 0.02)

perturbed three-component FitzHugh–Nagumo defect model

⎧
⎪⎨

⎪⎩

Ut = ε2Uxx + U − U 3 − ε(αV + βW + γ (x)) ,

τ Vt = Vxx + U − V ,

θWt = D2Wxx + U − W ,

(1)

with a small jump-type heterogeneity, or defect, at x = 0:

γ (x) =
{

γ1 , for x ≤ 0 ,

γ2 , for x > 0 .
(2)

Here, 0 < ε � 1; D > 1; τ, θ > 0; (x, t) ∈ R × R
+;α, β, γ1,2 ∈ R and all parameters are

a priori assumed to be O(1) with respect to ε. We are particularly interested in stationary
localised solutions supported by (1) whose interfaces are pinned away from the defect, see,
for instance, panels “c–e” of Fig. 1. Following [24], we call this type of pinned solutions local
defect solutions and we call the distance of the interface to the defect the pinning distance.

For completeness, we first recall the definitions of the big-O-notation and the big-Θ-
notation.

Definition 1 (Adapted from [29])

– h1 = O(φ1) as ε ↓ ε0 if there are constants k0 > 0 and ε1 such that |h1(ε)| ≤ k0|φ1(ε)|
for ε0 < ε < ε1.

– h2 = Θ(φ2) as ε ↓ ε0 if there are constants k0, k1 > 0 and ε1 such that k1|φ2(ε)| ≤
|h2(ε)| ≤ k0|φ2(ε)| for ε0 < ε < ε1.
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By combining Geometrical Singular Perturbation Theory (GSPT) [25,31,32] with an
action functional approach [52], we derive the following result related to the the existence
and stability of local defect front and pulse solutions.

Main Result 1 Let ε be small enough and let τ and θ be bounded by some O(1)-constant.1

If γ1 = εγ̃1, with γ̃1 = Θ(1), (α, β, D, γ2) are Θ(1) such that γ̃1 − γ2 = Θ(1) and if
there exist an xd > 0 solving

2γ̃1 − 1

2
γ2 f (xd) = 0 , with f (xd) := αe−xd + βe−xd/D , (3)

then (1) supports a local defect front solution Z

f ,ld = (U 


f ,ld , V 

f ,ld , W 


f ,ld) that asymptotes
to ±1 + O(ε) as x → ±∞ and which is pinned to the left of the defect with leading order
pinning distance xd . The local defect front solution Z


f ,ld is stable if and only if

γ2g(xd) > 0 , with g(xd) := αe−xd + β

D
e−xd/D . (4)

If (α, β, D, γ1, γ2) are Θ(1) such that γ1 − γ2 = Θ(1) and if there exist an x∗ > 0 and
xd > 0 solving

f (2x∗) = γ2 , f (xd) = f (xd + 2x∗), (5)

then (1) supports a local defect pulse solution Zr
p,ld = (Ur

p,ld , V r
p,ld , W r

p,ld) that asymptotes
to −1+ O(ε) as x → ±∞ and which is pinned to the right of the defect with leading order
width2 2x∗ and leading order pinning distance xd . The local defect pulse solution Zr

p,ld is
stable if and only if

g(2x∗) > 0 , and (γ2 − γ1)(g(xd) − g(xd + 2x∗)) > 0 . (6)

To understand the implications of Main Result 1, we take a closer look at the existence
conditions (3) and (5), and stability conditions (4) and (6). If α and β have the same sign, then
f is monotonic. Consequently, the existence condition (3) for local defect front solutions
pinned to the left of the defect has at most one solution, while the existence conditions (5) for
local defect pulse solutions pinned to the right of the defect has no solutions. In other words,
if α and β have the same sign—and if the other system parameters are chosen appropriately—
then Main Result 1 gives the existence of a local defect front solutions pinned to the left of
the defect. After noting that g(xd) = − f ′(xd), we get from (4) that this solution is stable
only if α and γ2 have the same sign.

If α and β have opposite signs (however, see Remark 2), then, by the particulars of f ,
(3) has at most two distinct solutions. Consequently, and if the other system parameters are
chosen appropriately, Main Result 1 gives the existence of (at most) two local defect front
solutions pinned to the left of the defect and with different pinning distances. If αγ2 > 0,
then the local defect front solution with the smaller pinning distance is stable, while the other
local defect front solution is unstable. The opposite holds for αγ2 < 0. Main Result 1 also
gives, if the other system parameters are chosen appropriately, the existence of (at most)
two local defect pulse solutions pinned to the right of the defect and with different pinning
distances. If β < 0 < α and γ2 > γ1, then the local defect pulse solution with the smaller

1 Whilst the parameters τ and θ do not explicitly appear anywhere in the derivation of the results of Main
Result 1, theO(1)-bounds on them are needed to ensure that the stability framework of [7,9,10] carries over,
see also [53].
2 For historical reasons we represent the width of the pulse by 2x∗, rather than by x∗ [23,53].
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Fig. 2 Graphical representation of the existence condition (5) and the stability condition (6) of Main Result 1
related to local defect pulse solutions Zr

p,ld . Here, the first existence condition f (2x∗) = γ2 (5) has a unique

solution 2x∗ and since g(x) = − f ′(x), we have that g(2x∗) > 0 (6). The second existence condition
f (xd ) = f (xd + 2x∗) (5) yields a unique pinning distance xd and g(xd ) − g(xd + 2x∗) > 0. Thus, by (6),
the related local defect pulse solution Zr

p,ld is stable if γ2 > γ1 and unstable if γ2 < γ1

width is stable, while the other local defect front solution is unstable. Both local defect pulse
solutions are unstable if β < 0 < α and γ2 < γ1. The opposite holds for α < 0 < β. See
also Fig. 2. More details are given in the remainder of this manuscript, see, in particular, Sect.
3.2, Sect. 4.2, and Tables 1 and 2.

For x 
= 0, (1) has the symmetries

(U , V , W , x, γ1, γ2) �→ −(U , V , W , x, γ2, γ1) , (7)

and

(x, γ1, γ2) �→ (−x, γ2, γ1) . (8)

From Main Result 1 and the symmetries one can directly derive existence and stability
conditions for local defect front and pulse solutions that asymptote to 1+O(ε) as x → −∞
and/or local defect front and pulse solutions that are pinned in the opposite γi -region (so
on the other side of the defect). For brevity of presentation, we do not explicitly state these
additional results. Furthermore, we assume, without loss of generality, that defect solutions
asymptote to −1 + O(ε) as x → −∞ in the remainder of the manuscript (unless stated
otherwise).

Remark 1 The results presented in Main Result 1 are not rigorous since not all the functional
analytic details of the methodology of combining geometric singular perturbation techniques
and an action functional approach have been fullyworked out.Many of the functional analytic
details of the approach are given in all detail in series of papers by Chen and collaborators
[5–12] for slightly different problems and these methods can be generalised to the setting of
the current manuscript, see also [52]. However, these generalisations are a nontrivial exercise
and we decided to not proceed this direction (for the readability of the manuscript). Instead,
we explain the essentials of the approach in some detail in Sect. 2, see, in particular, Sect. 2.2,
and we test the results of Main Result 1 against numerical simulations and we get excellent
agreement, see, in particular, Figs. 5, 6, 10, and 11. Further, in [52] we introduced this
methodology for the homogeneous version of (1) and used it to explicitly replicate known
rigorous results regarding the existence and stability of localised solutions from [23,53,55].
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1.1 Background of the Model

A dimensional homogeneous version of (1)—so with γ1 = γ2 = γ (x)—was introduced
in the nineties to study gas-discharge systems [42,48]. Versions of the dimensional—and
nondimisionalised—homogeneous model have been studied intensively afterwards, see [2,
15,23,28,39,46,51–53,55–58, e.g.] and references therein. From a mathematical point of
view, the homogeneous version of (1) is arguably themost mathematically rigorously studied
singularly perturbed three-component reaction–diffusion equation. It is not a surprise that
the homogeneous version of (1) supports stable slowly travelling front solutions with speed
c = 3

2

√
2ε2γ [55], since the homogeneous model can be seen as a weakly perturbed Allen-

Cahn type equation [4,15,26]. Consequently, stationary front solutions exist only for γ ≡ 0.
In [23], it was shown there exist a (family of) stationary pulse solution(s) with leading order
width 2x∗ if there is an x∗ > 0 solving f (2x∗) = γ , where f is defined in (3). By using the
NonLocal Eigenvalue Problem approach for Evans functions [20–22], it was shown in [53]
that the critical part of the spectrum associated with a stationary pulse solution consists of a
translation invariance eigenvalue at the origin and a critical eigenvalue λ = −3

√
2ε2g(2x∗),

where g is defined in (4). The remaining subset of the spectrum is contained in the left
half-plane bounded away from the imaginary axis with an O(1)-bound and there are no
complex-valued eigenvalues for τ and θ of O(1). Thus, the stationary pulse solution is
stable if g(2x∗) > 0. In other words, the existence and stability conditions for homogeneous
stationary pulse solutions coincide with the first conditions for the existence and stability of
local defect pulse solutions of Main Result 1.

In [52], we reproduced the above mentioned existence and stability results for homoge-
neous stationary front and pulse solutions by combining GSPT techniques with an action
functional approach. The action functional approach for a mono-stable or a bi-stable two-
component FitzHugh–Nagumo model without small diffusion was pioneered by Chen and
collaborators in a series of papers [5–7,9,10,12]. In [52] it was shown that the action func-
tional J for a stationary homogeneous pulse solution (u, v, w)—whose profile with unknown
width is computed by GSPT—is given by

J (u) =
∫ ∞

−∞

(
1

2
ε2u2

x + F(u) − F(ūγ ) + 1

2
εα(uL1u − ū2

γ )

+1

2
εβ(uL2u − ū2

γ ) + εγ (u − ūγ )

)

dx,

(9)

with antiderivative F(u) = 1
4u4 − 1

2u2 , ūγ the steady state of the system near −1 (see

(11)), L1 := (− d2

dx2
+ 1)−1, L2 := (−D2 d2

dx2
+ 1)−1. Consequently, the existence condition

determining the width of the pulse solution follows from the critical points of J (with respect
to the unknown width) and the stability condition follows from the minimisers of J . We
derive Main Result 1 for the heterogeneous model (1) by utilising, and extending, this action
functional approach of [52] (however, see Remark 1).

(Versions of) the heterogeneous model (1), and the effect of the defect, have also been
studied [24,41,54,61,62, e.g.]. We shortly discuss the results of [24,54] as they are most
relevant for this manuscript. Since the heterogeneous model (1) is, in contrast to the homo-
geneous model, not translation invariant, a stationary solution is typically isolated and does
not come as a family of solutions. Moreover, since the defect is small it does not alter the
spectrum in a leading order fashion and the perturbed translation invariant eigenvalue (at the
origin for the homogeneous case) will determine the fate of the stability of a defect solution
(there are no leading complex-valued eigenvalues since τ and θ areO(1) [53]). In [54] it was
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shown that, under certain parameter conditions, (1) supports so-called stable pinned global
defect solutions [24]. That is, stationary front and pulse solutions with one of the interfaces
pinned at the defect (this in contrast to local defect solutions were the interfaces are pinned
away from the defect). In particular, it was shown that global defect front solutions exist if
γ1γ2 < 0 and that they are stable if, in addition, γ1 > 0, see also panel “e” of Fig. 1. For the
global defect pulse solutions it was shown that the widths of the pinned pulse solutions are,
to leading order, given by 2x∗, where 2x∗ solves f (2x∗) = min{γ1, γ2}, see also panel “a”
of Fig. 1. That is, they correspond to the widths of the pulse solutions in the homogeneous
case with γ = min{γ1, γ2}.

Local defect solutions were investigated numerically in [54] since the analytic methods
employed in [54] cannot be used directly to study local defect solutions. This is due to the
fact that the interaction of the defect with the localised interfaces is weak—due to the Θ(1)-
distance between them—and higher order computations are needed. For instance, a leading
order GSPT analysis appended with a Melnikov integral [47] gives that the leading order
width 2x∗ of a local defect pulse solution is—again—given by the roots of f (2x∗) = γi , see
also panels “b” and “c” of Fig. 1. In other words, the widths of the pinned pulse solutions are
in essence not affected by the introduction of the small defect. However, the pinning distance
xd cannot be determined from this leading order analysis.

Since the system parameters used for the simulations of the pinned pulse (front) solutions
in Fig. 1 are all the same, we have the co-existence of local and global defect pulse (front)
solutions. Moreover, the numerically stable local defect pulse solution shown in panel “c”
of Fig. 1 is pinned in the region to the right of the defect (where γ (x) = γ2), while the
numerically stable global defect pulse solution shown in panel “a” of Fig. 1 is pinned in the
opposite region to the left of the defect (where γ (x) = γ1). The two stable pinned pulse
solutions are separated by a numerically unstable pinned pulse solution shown in panel “b”
of Fig. 1. This unstable pulse is pinned at the defect in the γ2-region and has a width similar
as the stable local defect pulse solution. This unstable pinned pulse solution acts as the
separatrix between the two stable pinned pulse solutions and is called the scatter solution
[39–41,50,62].

In [24], the authors used geometric methods to study the persistence of heteroclinic and
homoclinic orbits for a general system of ordinary differential equations (ODEs) with a weak
defect and under generic conditions on the nonlinearities. The ODE associated to pinned
defect solutions of (1) (see (10)) fits into an extended version of this general system, see also
Remark 1.13 of [24]. Consequently, some of the results of [24] are directly applicable here.

Theorem 2 (adopted from Thms. 4.7 and 4.8 of [24]) Let γ (x) be as in (2) and let ε be small
enough. Moreover, let α > 0, β > 0, γ2 ∈ R be O(1) with respect to ε.

– If γ1 = 0, then (1) supports a local defect front solution Z

f ,ld = (U 


f ,ld , V 

f ,ld , W 


f ,ld)

that asymptotes to ±1 + O(ε) as x → ±∞ and with its front pinned to the left of the
defect.

– If 0 < γ1 < α + β, then (1) supports a local defect pulse solution Z

p,ld =

(U 

p,ld , V 


p,ld , W 

p,ld) that asymptotes to −1 + O(ε) as x → −∞ and with its pulse

pinned to the left of the defect.

Whilst Theorem 2 partly settles the question related to the existence of local defect front
and pulse solutions supported by (1), it has several limitations. Firstly, it requires that both α

and β are positive and does not provide any insights for α and/or β negative. See, however,
Remark 2. Secondly, Theorem 2 does not provide any information regarding the profiles—
and thus also not regarding the pinning distances—of the local defect solutions. Thirdly,

123



Journal of Dynamics and Differential Equations

for the existence of local defect front solutions it is required that γ1 = 0—this to ensure
the existence of a stationary front solution in the homogeneous case [55]—while one would
also expect local defect front solutions for γ1 small, but not zero. Finally, Theorem 2 does
not provide any information regarding the stability of the local defect solutions. The results
of this manuscript as stated in Main Result 1 (partly) address the above issues and thus
significantly extend the results of [24]. In particular, we put a priori no additional restrictions
on the parameters and determine leading order expressions for the pinning distances xd . In
addition, we also determine the stability of the local defect solutions.

Remark 2 From Main Result 1 it follows that the most interesting results of this manuscript
relate to the case where αβ < 0. For instance, the second existence condition of (5) implies
that, in this case only, the pinning distance xd = Θ(1) (since f is monotonic for αβ > 0).
The original activator–inhibitor framework of the homogeneous version of (1) [42,48, e.g.]
actually required that both α and β were positive. However, this restriction is mathematically
not necessary and the dynamics of the homogeneous and heterogeneousmodel is much richer
without it. See, for instance, [23,24,58].

1.2 Outlook

We deriveMain Result 1 by combining GSPT techniques with the action functional approach
of [52]. In short, GSPT techniques will provide the profile of a local defect solution—with
unknown width (for a pulse) and unknown pinning distance (for both a front and a pulse).
The critical points of the action functional landscape of the derived profile determine the
potential widths and pinning distances of the local defect solution under consideration and
only the minimisers of the action functional yield stable local defect solutions. In Sect. 2,
we discuss this action functional approach in more detail and show how to append the action
functional (9) of the homogeneous case as to deal with the heterogeneity of (1).

Besides local and global defect solutions, another type of defect solutions—the trivial
defect solution – was introduced in [24]. This type of defect solution is characterised by the
fact that it stays O(ε)-close to both asymptotic end states over the whole spatial domain.
That is, a trivial defect solution is—in some sense—a small perturbation of a steady state
solution and can thus be seen as the heterogeneous equivalent of a homogeneous steady
state solution. It was shown in [24] that, under generic conditions, trivial defect solutions
exist and are unique—in the sense that there is exactly one trivial defect solution near each
of the steady states. The homogenous version of (1) has two steady state solutions (near
(U , V , W ) = ±(1, 1, 1)) that fulfil these generic conditions, and, consequently, (1) has
two trivial defect solutions Z±

td = (U±
td , V ±

td , W ±
td). Whilst pinned local defect solutions are

the main subject of interest of this manuscript, we also explicitly determine the profiles of
these trivial defect solutions Z±

td in “Appendix A”. We add the derivation of these profiles
for completeness, but also to illustrate how the region around the defect should be handled
from an asymptotic perspective.3 Specifically, we show that the defect introduces two new
fast regions where the dynamics of the U -component dominates, one just to the left of the
defect and one just to the right of the defect. To leading order, these additional fast regions
do not contribute to the profile of the trivial defect solutions, i.e. the profiles are to leading
order ±1 in both fast regions, but they do contribute at an O(ε)-level. Heuristically, local
defect solutions can be seen as a concatenation of the equivalent stationary solution to the

3 Observe that the trivial defect solutions Z±
td can also be studied with variational methods.
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homogenous model with one of the trivial defect solutions.4 Therefore, obtaining insights
in these trivial defect solutions is also a first crucial step towards understanding local defect
solutions.

In Sect. 3, we derive the part of Main Result 1 related to local defect front solutions Z

f ,ld

pinned to the left of the defect and determine the profile—up to and includingO(ε)-terms—
of these solutions. We also use the action functional approach to study global defect front
solutions Z f ,gd and reproduce the key results of [54] related to the existence (γ1γ2 < 0) and
stability (γ1 > 0 > γ2) of these global defect front solutions (note that only leading order
computations are needed to obtain these results). Finally, we combine the results for local
and global defect front solutions and we numerically investigate the stationary version of (1)
to confirm the asymptotic findings.

In Sect. 4, we follow the same procedure as in Sect. 3 but now for defect pulse solutions.
That is, we derive the part ofMain Result 1 related to local defect pulse solutions Zr

p,ld pinned
to the right of the defect and determine the profile—up to and includingO(ε)-terms—of these
solutions. Most of this derivation has been placed in “Appendix B” since it is very similar
to the derivation in Sect. 3 and it is only algebraically more involved (the GSPT procedure
now determines the profiles up to two unknowns, the pinning distance xd and the pulse width
2x∗). We also discuss the connection of the action functional approach and the results for
global defect pulse solutions Z p,gd from [54] and combine these results to obtain a broader
picture for pinned pulse solutions. Finally, we numerically investigate the stationary version
of (1) to confirm the asymptotic findings.

We end this manuscript with a summary and a short outlook on future projects.

2 GSPT and the Action Functional Approach

Pinned solutions to (1) solve the following system of ODEs
⎧
⎪⎨

⎪⎩

0 = ε2uxx + u − u3 − ε(αv + βw + γ (x)) ,

0 = vxx + u − v ,

0 = D2wxx + u − w ,

(10)

and they asymptote to the asymptotic end states (ūγi , ūγi , ūγi ) and/or (ûγi , ûγi , ûγi ) of (1).
These are solutions of (1) in the regions |x | � 1 that are to leading order constant in time
and space and they are determined by two of the roots of the cubic polynomial u3 − u +
ε((α + β)u + γi ) = 0.5 In particular, ūγi and ûγi are given by

ūγi := −1 + 1

2
ε(α + β − γi ) + O(ε2) , ûγi := 1 − 1

2
ε(α + β + γi ) + O(ε2) , (11)

see, for instance, [23].

2.1 GSPT

The leading order profiles of trivial and local defect solutions to (1) (i.e. solutions of (10))
are relatively straightforward to determine. In short, we divide the spatial domain in N + 2,

4 This concatenation idea has been employed before for various types of Hamiltonian systems, see, for
instance, [13,14] and the references therein.
5 The third root relates to an unstable homogeneous steady state solution (in PDE sense) and is not of interest
for localised structures, see [23] for more details.
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asymptotically small, fast regions I f and N + 2 slow regions Is : a fast region around each
of the N interfaces of the local defect solution, two fast regions around the defect at x = 0
and N + 2 slow regions away from the N interfaces and the defect. In particular, for a trivial
defect solution Z±

td we have N = 0, while N = 1 for a local defect front solution Z f ,ld and
N = 2 for a local defect pulse solution Z p,ld . In the slow regions away from the interfaces
and defect, the fast u-component of (10) is, due to the asymptotic smallness of its diffusion
coefficient, close to one of its asymptotic end states (11). Consequently, the equations for
the slow (v,w)-components can be solved to leading order. In the fast, asymptotically small,
regions, the fast u-component of (10) is dominant, while the slow (v,w)-components are to
leading order constant. To study the fast u-equation in these fast regions, we introduce the
fast scaling ξ := x/ε and rewrite (10) in ξ :

⎧
⎪⎪⎨

⎪⎪⎩

0 = uξξ + u − u3 − ε(αv + βw + γ (ξ)) ,

0 = vξξ + ε2(u − v) ,

0 = D2wξξ + ε2(u − w) ,

(12)

where we note that (10) and (12) are equivalent as long as ε 
= 0. The u-equation is to
leading order solved by ± tanh ((ξ − ξ̂ )/

√
2), where ξ̂ is an arbitrary translational constant

that is determined by the location of the interface. Finally, we concatenate the solutions in the
different slow and fast regions to construct the leading order profiles of the trivial and local
defect solutions. For more details, see, in particular, “Appendix A”, the upcoming sections
and [23,54,55].

Remark 3 The defining difference between a local defect solution Zld and a global defect
solution Zgd is the location of the interfaces of the solutionwith respect to the defect at x = 0.
If this pinning distance is Θ(1) in the slow scaling x , then we have a local defect solution
Zld , while we have a global defect solution Zgd if the pinning distance is O(1) in the fast
scaling ξ := x/ε. In other words, for global defect solutions Zgd the defect and one of the
interfaces lie in the same fast field, while they lie in different fast fields—and are separated
by a slow field—for local defect solutions Zld . So, the spatial domain has to be divided in
N + 1 fast and N + 1 slow regions to study global defect solutions.

2.2 The Action Functional Approach

The Lagrangian associated with the homogenous version of (10) is a skew-gradient system
[8] and is given by

L0(u, v, w) := 1

2
ε2u2

x + F(u) + εα

(

uv − 1

2
v2x − 1

2
v2

)

+ εβ

(

uw − 1

2
D2w2

x − 1

2
w2

)

+ εγ u + c0 .

(13)

Here, F(u) = 1
4u4 − 1

2u2 and c0 is a normalising constant so that we deal with finite critical
values. With the second and third equations of (10) being linear, the associated Lagrangians
are convex, which provide natural coercivity. Furthermore, straightforward calculations yield

∫ ∞

−∞
(uv − v2x − v2)dx = 0 ,

∫ ∞

−∞
(uw − D2w2

x − w2)dx = 0 , (14)
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if u ∈ C∞
0 (R) or H1(R), and where v, respectively w, is the unique bounded solution of

the second, respectively third, equation of (10). The solutions of the homogeneous version
of (10) can be found from the critical points of a variational functional associated with the
Lagrangian L0(u, v, w) [8]. This functional is strongly indefinite, which requires min-max
arguments to show the existence of critical points. However, we may take advantage of the

linearity of the second and third equations of (10). That is, we introduceL1 := (− d2

dx2
+1)−1

andL2 := (−D2 d2

dx2
+1)−1, such thatL1u exactly solves the linearv-equation 0 = vxx +u−v

for any given u, whileL2u exactly solves the linearw-equation 0 = D2wxx +u −w, and use
(14) to employ an action functional J defined by (9) to investigate the stationary solutions
of the homogenous version of (10). From (14) it is clear that

∫ ∞

−∞
uLi udx ≥ 0 , i = 1, 2,

a coercivity which enables us to seek minimisers of J . See also [5,10,11,52], and references
therein, for more details.

As in [52], the idea of Lyapunov-Schmidt reduction helps us to investigate the pinned
front and pulse solutions; however, we need to further refine the argument to deal with the
defect imposed on (10). Knowing that the defect is located at x = 0, we adjust L0 (13) for
the different γ -values and split the integral associated to the action functional over the two
domains x < 0 and x > 0. In particular, for a defect pulse solution we use the following
action functional

Jp(u) =
∫ 0

−∞
L(u; ūγ1)dx +

∫ ∞

0
L(u; ūγ2)dx , (15)

with

L(u; ūγi ) := 1

2
ε2u2

x + F(u) − F(ūγi ) + 1

2
εα(uL1u − ū2

γi
)

+ 1

2
εβ(uL2u − ū2

γi
) + εγi (u − ūγi ) ,

(16)

and with F(u), ūγi and L1,2 as before. The admissible functions u are the profiles of the
defect pulse solutions with unknown widths and pinning distances determined by the GSPT
procedure outlined in Sect. 2.1. Thus, u ∈ H

1 + û, where û is a C∞ function and

û =
{

ūγ1 , for x < −1 ,

ūγ2 , for x > 1 .

Stationary front solutions are not studied in [52]6, but it is not hard to adapt the above
action functional for defect pulse solutions to an action functional for defect front solutions.
The main difference is that a defect front solution asymptotes to (ûγ2 , ûγ2 , ûγ2) as x → ∞,
hence, the action functional for a defect front solution becomes

J f (u) =
∫ 0

−∞
L(u; ūγ1)dx +

∫ ∞

0
L(u; ûγ2)dx , (17)

6 This is due to the fact that stationary front solutions exist only for γ = 0 and they are trivially stable in the
homogeneous case [55].
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with L given by (16) and ˆ̄uγ1,2 given by (11). The admissible functions u are now the profiles
of the defect front solutions with unknown pinning distances, and, hence, u ∈ H

1 + ǔ, where
ǔ is a C∞ function and

ǔ =
{

ūγ1 , for x < −1 ,

ûγ2 , for x > 1 .

The Maslov index derived in [7] can be used to study the stability of stationary pulse
solutions of skew-gradient systems; in particular of FitzHugh–Nagumo equations [5,9]. This
index plays a similar role as the Morse index for the solutions of gradient systems and the
Maslov index of a minimiser of Jp is zero. In view of the skew-gradient structure for (10), the
fact that the second and third equations are linear reduces the complexity of the calculations

in the spectral analysis. For instance, both − d2

dx2
+1 and −D2 d2

dx2
+1 are positive operators.

In addition, suitably small τ and θ precludes the existence of non-real eigenvalues in the
right half-plane [9, Lemma 4.1] and [53]. This assumption on τ and θ can thus be construed
as keeping the system away from a strongly excitable situation, as might result, for instance,
in Hopf bifurcations. So, similar to the results established in [7,9], the minimisers of Jp will
correspond to stable pinned pulse solutions. Likewise, we can adapt the approach of [10] to
assert that the minimisers of J f will correspond to stable pinned front solutions.

We now take a closer look to the individual terms of L (16) inside the action functionals
(15) and (17). As discussed above, to construct the profiles of the defect front and pulse
solutions we split the spatial domain into slow regions Is—that are away from the defect and
away from the interfaces—and fast regions I f —near the defect and interfaces. In the slow
regions Is , the slow (v,w)-components are dominant and the fast u-component is slaved to
the slow components. In particular, the fast u-component, as well as ˆ̄uγ1,2 (11), are to leading
order ±1 (see also the upcoming sections and appendices). Consequently, the 1

2ε
2u2

x -terms
in L of (15) and (17) are O(ε4) in the slow regions. For the antiderivative F(u), we have

F(±1 + εK1 + ε2K2 + O(ε3)) = −1

4
+ ε2K 2

1 + O(ε3). (18)

Hence, the F(u) − F( ˆ̄uγ1,2)-terms in L of (15) and (17) are O(ε2) in the slow regions.
Consequently, the leading order terms of the action functionals in the slow region Is are
actual O(ε). By using regular expansions for u = u0 + εu1 + O(ε2) = ±1 + εu1 + O(ε2)

and ˆ̄uγi = ˆ̄uγi ,0+ε ˆ̄uγi ,1+O(ε2) = ±1+ε ˆ̄uγi ,1+O(ε2) (11), we get that in the slow regions
Is

L(u; ˆ̄uγi )|Is = εL1(u; ˆ̄uγi ) + ε2L2(u; ˆ̄uγi ) + O(ε3) ,

with

L1(u; ˆ̄uγi ) := 1

2
α(u0L1u0 − 1) + 1

2
β(u0L2u0 − 1) + γi (u0 − ˆ̄uγi ,0) , (19)

and

L2(u; ˆ̄uγi ) := u2
1 − ( ˆ̄uγi ,1)

2 + 1

2
α(u1L1u0 + u0L1u1 − 2 ˆ̄uγi ,0

ˆ̄uγi ,1)

+ 1

2
β(u1L2u0 + u0L1u1 − 2 ˆ̄uγi ,0

ˆ̄uγi ,1) + γi (u1 − ˆ̄uγi ,1) .

(20)
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In the fast, asymptotically small, regions I f the fast component is dominant and the slow
components are effectively constant, see (12) and [23]. We use the fast scaling ξ = x/ε to
study the action functional in these fast regions. That is,

J f ,p(u) = ε

∫ 0

−∞
L̄(u; ūγ1)dξ + ε

∫ ∞

0
L̄(u; ˆ̄uγ2)dξ , (21)

with

L̄(u; ˆ̄uγi ) = 1

2
u2

ξ + F(u) − F( ˆ̄uγi ) + 1

2
εα(uL1u − ˆ̄u2

γi
)

+ 1

2
εβ(uL2u − ˆ̄u2

γi
) + εγ (u − ˆ̄uγi ) ,

where F,L1,2, and ˆ̄uγi (11) are as before and where we note the ε-term premultiplying the
integrals of (21). By using a regular expansion in ξ for the different components of L̄ , we
get that in the fast regions I f

L̄(u; ˆ̄uγi )|I f = L̄0(u; ˆ̄uγi ) + ε L̄1(u; ˆ̄uγi ) + O(ε2) ,

with

L̄0(u; ˆ̄uγi ) := 1

2
(u0)

2
ξ + F(u0) + 1

4
, (22)

and

L̄1(u; ˆ̄uγi ) := (u0)ξ (u1)ξ + u0u1(u
2
0 − 1) + 1

2
α(u0L1u0 − 1)

+ 1

2
β(u0L2u0 − 1) + γi (u0 − ˆ̄uγi,0) ,

(23)

where we used (18) and the observation that F(u0 + εu1 + O(ε2)) = F(u0) + εu0u1(u2
0 −

1) + O(ε2).

3 Pinned Front Solutions

In this section, we focus on pinned front solutions supported by (1) and we first derive the
part of Main Result 1 related to the existence and stability of local defect front solutions
Z


f ,ld pinned to the left of the defect. In particular, we explicitly derive the relationship (3)
determining the pinning distance of the interface of the local defect front solution to the
defect. In Sect. 3.2, we combine these results with the results of [54] related to global defect
front solutions to obtain a broader picture for pinned front solutions. Finally, we confirm
our asymptotic findings by numerically investigating the stationary version of (1), that is, by
investigating (10).

3.1 Local Defect Front Solutions Z�
f,ld Pinned to the Left of the Defect

In order to study local defect front solutions Z

f ,ld pinned to the left of the defect and as

outlined in Sect. 2.1, we split the spatial domain into three slow regions I 1,3,6s and three fast
regions I 2,4,5f . In particular,
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x
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I1s
x

I3s I6sI2f

I4f I5f

0−xd

−xd

γ2−regionγ1−region

Fig. 3 Schematic depiction of the three slow regions I 1,3,6s and three fast regions I 2,4,5f (24) used to study

local defect front solutions Z

f ,ld pinned to the left of the defect

I 1s := (−∞,−xd − √
ε] , I 3s := [−xd + √

ε,−√
ε] , I 6s := [√ε,∞) ,

I 2f := (−xd − √
ε,−xd + √

ε) , I 4f := (−√
ε, 0] , I 5f := (0,

√
ε) ,

(24)

with 0 < xd = Θ(1) the, currently undetermined, pinning distance and with the defect
located in between the fast fields I 4f and I 5f . See also Fig. 3. We use a regular expansion in ε

and expand the profile of a local defect front solution Z

f ,ld(x)

Z

f ,ld(x) = (U 


f ,ld , V 

f ,ld , W 


f ,ld)(x) = (U 

f ,ld,0, V 


f ,ld,0, W 

f ,ld,0)(x)

+ ε(U 

f ,ld,1, V 


f ,ld,1, W 

f ,ld,1)(x) + O(ε2) .

(25)

Since the defect is small, it has no leading order influence on the profile and we can thus use
the results from the homogeneous case. In particular, we have that

U 

f ,ld,0(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 , in I 1s ,

tanh

(
x + xd√

2ε

)

, in I 2f ,

1 , in I 3s ∪ I 4f ∪ I 5f ∪ I 6s ,

(26)

see, for instance, [15,54,55] (and recall that tanh ((ξ − ξ̂ )/
√
2) solves uξξ + u − u3 = 0).

The leading order components of the slow components are given by

V 

f ,ld,0(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ex+xd − 1 , in I 1s ,

0 , in I 2f ,

−e−(x+xd ) + 1 , in I 3s ∪ I 4f ∪ I 5f ∪ I 6s ,

(27)

and

W 

f ,ld,0(x) =

⎧
⎪⎪⎨

⎪⎪⎩

e(x+xd )/D − 1 , in I 1s ,

0 , in I 2f ,

−e−(x+xd )/D + 1 , in I 3s ∪ I 4f ∪ I 5f ∪ I 6s .

(28)

Beforewe compute the higher order correction terms of Z

f ,ld , we first look at the contribu-

tion of the leading order profile to the action functional J f (17). That is, we compute J 1,3
f ,1 :=
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∫

I 1,3s
L1(U 


f ,ld ; ūγ1)dx , J 6
f ,1 := ∫

I 6s
L1(U 


f ,ld ; ûγ2)dx , J 2,4
f ,1 := ∫

I 2,4f
L̄0(U 


f ,ld ; ūγ1)dξ , and

J 5
f ,1 := ∫

I 5f
L̄0(U 


f ,ld ; ûγ2)dξ , see (19), respectively (22), for the definition of L1, respec-

tively L̄0. These computations will be similar in spirit to the computations in [52] for
homogeneous pulse solutions (since the contributions of the weak defect enter only at the
next level of the action functional). We first compute the leading order contributions of the
three slow integrals J 1,3,6

f ,1 . We get

J 1
f ,1 =

∫

I 1s

L1(U


f ,ld ; ūγ1)dx

=
∫

I 1s

(
1

2
α

(
U 


f ,ld,0V 

f ,ld,0 − 1

)
+ 1

2
β

(
U 


f ,ld,0W 

f ,ld,0 − 1

)

+γ1

(
U 


f ,ld,0 + 1
))

dx

= −
∫ −xd

−∞

(
1

2
αex+xd + 1

2
βe(x+xd )/D

)

dx + O(
√

ε)

= −1

2
(α + β D) + O(

√
ε) ,

(29)

where the O(
√

ε)-term stems from the fact that we shifted the limit of the integral from
−xd − √

ε to −xd . Likewise, we get

J 3
f ,1 = 1

2

(
α

(
e−xd − 1

) + β D
(

e−xd/D − 1
))

+ 2γ1xd + O(
√

ε) ,

where we remark that the explicit γ1-dependence follows from the fact that U 

f ,ld,0 = 1 in

I 3s while ūγ1 = −1 in I 3s , see Fig. 3. Similarly,

J 6
f ,1 = −1

2

(
αe−xd + β De−xd/D

)
+ O(

√
ε) .

The integral over the first fast region I 2f gives

J 2
f ,1 =

∫

I 2f

L̄0(U


f ,ld ; ūγ1)dξ =

∫

I 2f

(
1

2
(U 


f ,ld,0)
2
ξ + F(U 


f ,ld,0) + 1

4

)

dξ

=
∫ 1/

√
ε

0
sech4

(
ξ√
2

)

dξ = 2
√
2

3
+ O(e−1/

√
ε) ,

(30)

where we used that tanh4(·)−2 tanh2(·)+1 = (tanh2(·)−1)2 = sech4(·), see also [52], and
the correction term again arises from changing the limit of the integral. The other two fast
integrals do not yield a leading order contribution to the action functional since the U -profile
is to leading order constant +1 over I 4,5f , see (26). In particular, over these fields we have

that (U 

f ,ld,0)ξ = 0 and F(U 


f ,ld,0) = −1/4 and, hence, L̄0(U 

f ,ld,0,

ˆ̄uγi ) = 0 (22). So, by

adding J 1,2,3
f ,1 and J 6

f ,1 we get that the action functional for a local defect front solution Z

f ,ld

pinned to the left of the defect is given by
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J f (U


f ,ld) =

(

2γ1xd + 2
√
2

3
− (α + β D)

)

ε + O(ε
√

ε) . (31)

As long as γ1 = Θ(1) (and thus unequal to 0), the critical points of J f (U 

f ,ld) with respect

to the pinning distance xd are—to leading order—given by xd → 0 and xd → ∞. In other
words, they approach the boundaries of the slow region I 1s . Consequently, local defect front
solutions Z


f ,ld pinned to the left of the defect do not exist if γ1 = Θ(1), and, as expected,

the pinning distance xd of Z

f ,ld cannot be determined from the leading order computation.

Remark 4 By the symmetry (7) of (1), the action functional for a local defect front solution
Zr

f ,ld pinned to the right of the defect is given by

J f (U
r
f ,ld) =

(

−2γ2xd + 2
√
2

3
− (α + β D)

)

ε + O(ε
√

ε) ,

where xd > 0 is again the pinning distance. So, combining the results following from the
action functionals for U 


f ,ld and Ur
f ,ld also hints to the results for the existence and stability

of global defect front solutions Z f ,gd pinned at the defect as obtained in [54]: global defect
front solutions exist if γ1γ2 < 0, and they are stable if and only if γ2 < 0 < γ1. In more
detail, for γ1 > 0 the action functional J f (U 


f ,ld) indicates that a front solution to the left
of the defect wants to move towards the defect (towards smaller xd > 0) to minimise its
action functional, while it moves away from the defect for γ1 < 0. Similarly, for γ2 < 0 the
action functional J f (Ur

f ,ld) indicates that a front solution to the right of the defect wants to
move towards the defect (towards smaller xd > 0) to minimise the action functional, while
it moves away from the defect for γ2 > 0.

3.1.1 The Next Order

As eluded to above, it is clear from (31) that, to leading order, we necessarily need that
γ1 = 0 for the existence of a local defect front solution Z


f ,ld pinned to the left of the
defect. So, we set γ1 = εγ̃1 with, a priori, γ̃1 = Θ(1). To be able to determine the next
order term of the action functional J f (17), we first compute the higher order correction
terms (U 


f ,ld,1, V 

f ,ld,1, W 


f ,ld,1)(x) (25) of Z

f ,ld . In the slow fields I 1,3,6s , we substitute the

regular expansion (25)—withU 

f ,ld,0, V 


f ,ld,0 and W 

f ,ld,0 respectively given by (26)–(28)—

into (10), to obtain
⎧
⎪⎪⎨

⎪⎪⎩

O(ε) = U 

f ,ld,1 − 3(U 


f ,ld,0)
2U 


f ,ld,1 − (αV 

f ,ld,0 + βW 


f ,ld,0 + γ (x)) ,

O(ε) = (V 

f ,ld,1)xx + U 


f ,ld,1 − V 

f ,ld,1 ,

O(ε) = D2(W 

f ,ld,1)xx + U 


f ,ld,1 − W 

f ,ld,1 .

(32)

Since (U 

f ,ld,0)

2 = 1 in all three slow fields, the first equation yields that the higher order

correction term U 

f ,ld,1 in the slow fields is given by

U 

f ,ld,1 = −1

2

(
αV f ,ld,0 + βW f ,ld,0 + γ (x)

)
,
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with V 

f ,ld,0, respectively W 


f ,ld,0, given by (27), respectively (28) and γ (x) given by (2)
with γ1 = 0 (since γ1 = εγ̃1 is a higher order term). This allows us to solve the second and
third equations of (32) explicitly. In I 1s we obtain

I 1s :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 

f ,ld,1 = 1

2
(α + β) − 1

2

(
αex+xd + βe(x+xd )/D

)
,

V 

f ,ld,1 = 1

2
(α + β) + C1,V ex + 1

8
α(2x − 1)ex+xd

− 1

2
β

(
D2

D2 − 1

)

e(x+xd )/D ,

W 

f ,ld,1 = 1

2
(α + β) + C1,W ex/D + 1

2
α

(
1

D2 − 1

)

ex+xd

+ 1

8
β

(
2x

D
− 1

)

e(x+xd )/D ,

where we used that both slow components need to be bounded as x approaches −∞ and the
fact that γ1 = 0 to leading order. In I 3s we obtain

I 3s :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 

f ,ld,1 = −1

2
(α + β) + 1

2

(
αe−(x+xd ) + βe−(x+xd )/D

)
,

V 

f ,ld,1 = −1

2
(α + β) + C3,V ex + D3,V e−x + 1

8
α(2x + 1)e−(x+xd )

+ 1

2
β

(
D2

D2 − 1

)

e−(x+xd )/D ,

W 

f ,ld,1 = −1

2
(α + β) + C3,W ex/D + D3,W e−x/D

− 1

2
α

(
1

D2 − 1

)

e−(x+xd ) + 1

8
β

(
2x

D
+ 1

)

e−(x+xd )/D ,

and in I 6s we have

I 6s :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 

f ,ld,1 = −1

2
(α + β + γ2) + 1

2

(
αe−(x+xd ) + βe−(x+xd )/D

)
,

V 

f ,ld,1 = −1

2
(α + β + γ2) + D6,V e−x + 1

8
α(2x + 1)e−(x+xd )

+ 1

2
β

(
D2

D2 − 1

)

e−(x+xd )/D ,

W 

f ,ld,1 = −1

2
(α + β + γ2) + D6,W e−x/D − 1

2
α

(
1

D2 − 1

)

e−(x+xd )

+ 1

8
β

(
2x

D
+ 1

)

e−(x+xd )/D ,

where we used that both slow components need to be bounded as x approaches ∞.
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In the three fast regions I 2,4,5f , we use the fast scaling ξ and substitute the regular expansion

(25)—as function of ξ—into (12). By using the expressions of U 

f ,ld,0, V 


f ,ld,0 and W 

f ,ld,0,

given by respectively (26)–(28), we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(ε) =
(

U 

f ,ld,1

)

ξξ
+ U 


f ,ld,1 − 3
(

U 

f ,ld,0

)2
U 


f ,ld,1

−
(
αV 


f ,ld,0 + βW 

f ,ld,0 + γ (x)

)
,

O(ε) =
(

V 

f ,ld,1

)

ξξ
,

O(ε) = D2
(

W 

f ,ld,1

)

ξξ
,

(33)

where we used that both (V 

f ,ld,0)ξξ and (W 


f ,ld,0)ξξ areO(ε2) in the fast fields. So, the slow
components are solved by linear functions. However, the solutions have to stay bounded and
therefore they are to leading order constant, see also “Appendix A”. Furthermore, since the
fast fields are too small for the slow components to change significantly, see, for instance,
[54], these slow components—as well as their derivatives—need to match over the fast fields.
This gives

C1,V = −1

4
γ2 + 1

8
α(−3 + 2xd)exd + 1

2
β

(
1

D2 − 1

)

exd , C3,V = −1

4
γ2 ,

D3,V = 1

8
α(3 + 2xd)e−xd − 1

2
β

(
1

D2 − 1

)

e−xd , D6,V = 1

4
γ2 + D3,V ,

and

C1,W = −1

4
γ2 − 1

2
α

(
D2

D2 − 1

)

exd/D + 1

8
β

(

−3 + 2xd

D

)

exd/D ,

C3,W = −1

4
γ2 ,

D3,W = 1

2
α

(
D2

D2 − 1

)

e−xd/D + 1

8
β

(

3 + 2xd

D

)

e−xd/D ,

D6,W = 1

4
γ2 + D3,W .

So, we have completely determined the correction terms V 

f ,ld,1 and W 


f ,ld,1.

In the first fast field I 2f , the U -equation of (33) reduces to

O(ε) = (U 

f ,ld,1)ξξ +

(

1 − 3 tanh2
(

ξ + ξd√
2

))

U 

f ,ld,1 ,

where we used that the leading order computation implied that γ1 = Θ(ε). The above
equation is explicitly solved by

U 

f ,ld,1(ξ) = D2,U

(

2 sinh

(
ξ + ξd√

2

)

cosh

(
ξ + ξd√

2

)

+ 3 tanh

(
ξ + ξd√

2

)

+ 3

(
ξ + ξd√

2

)

sech2
(

ξ + ξd√
2

))

+ C2,U sech2
(

ξ + ξd√
2

)

,
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see Sect. 2 of [54]. However, to ensure that U 

f ,ld,1 stays bounded as ξ approaches the

boundaries of the fast field, which are to leading order in ξ given by ξ → ±∞, we have
D2,U = 0. Moreover, also C2,U can be taken identically zero since the original U -equation,
upon substituting the leading order expressions of the slow components in the first fast field
I 2f (see (27) and (28)), has noO(ε)-terms. In particular, the u-equation of (12) in I 2f reduces

to O(ε2) = uξξ + u − u3 and so no O(ε)-correction term is expected, see also [53]. Thus,

U 

f ,ld,1(ξ) = 0 , ξ ∈ I 2f .

In the other two fast fields I 4,5f , the U -equation of (33) reduces to

O(ε) = (U 

f ,ld,1)ξξ − 2U 


f ,ld,1 − (α(−e−xd + 1) + β(−e−xd/D + 1) + γ (ξ)) .

This equation is solved, see also “Appendix A”, by

U 

f ,ld,1(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

2
(α + β) + C4,U e

√
2ξ + D4,U e−√

2ξ

+ 1

2

(
αe−xd + βe−xd/D

)
, ξ ∈ I 4f ,

− 1

2
(α + β + γ2) + C5,U e

√
2ξ + D5,U e−√

2ξ

+ 1

2

(
αe−xd + βe−xd/D

)
, ξ ∈ I 5f .

These two terms—as well as their derivatives—have to match at the defect point x = 0. This
gives C4,U + D4,U = C5,U + D5,U − 1

2γ2 and C4,U − D4,U = C5,U − D5,U . Moreover,
matching with the slow fields gives D4,U = 0 = C5,U . Combining these gives C4,U =
− 1

4γ2 = −D5,U . Hence, the correction term U 

f ,ld,1 is now also completely determined and

given by

U 

f ,ld,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(α + β) − 1

2

(
αex+xd + βe(x+xd )/D

)
, x ∈ I 1s ,

0 , x ∈ I 2f ,

− 1

2
(α + β) + 1

2

(
αe−(x+xd ) + βe−(x+xd )/D

)
, x ∈ I 3s ,

− 1

2
(α + β) − 1

4
γ2e

√
2x/ε + 1

2

(
αe−xd + βe−xd/D

)
, x ∈ I 4f ,

− 1

2
(α + β + γ2) + 1

4
γ2e−√

2x/ε

+ 1

2

(
αe−xd + βe−xd/D

)
, x ∈ I 5f ,

− 1

2
(α + β + γ2) + 1

2

(
αe−(x+xd ) + βe−(x+xd )/D

)
, x ∈ I 6s .

(34)

We are now in the position to compute the higher order correction term of the action
functional J f (17) for a front solution Z


f ,ld pinned to the left of the defect. We start by
computing the higher order contributions to the action functional coming from the first slow
region I 1s . Recall that to obtain the leading order contribution from the first slow region I 1s ,
i.e. (29), we shifted the upper limit of the integral of J 1

f ,1 and this resulted in anO(
√

ε)-error.
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Since we are now interested in the higher order contributions, we actually need to explicitly
compute this error-term. From (29) we deduce

J 1
f ,1 = −1

2
(α + β D) +

∫ −xd

−xd−√
ε

(
1

2
αex+xd + 1

2
βe(x+xd )/D

)

dx

= −1

2
(α + β D) + 1

2

(
α

(
1 − e−√

ε
)

+ β D
(
1 − e

√
ε/D

))

= −1

2
(α + β D) + 1

2
(α + β)

√
ε − 1

4

(

α + β

D

)

ε + O(ε
√

ε) .

Next, we compute the contribution of the remaining correction terms of the profile in I 1s .
That is, we compute

J 1
f ,2 : =

∫

I 1s

L2(U


f ,ld ; ūεγ̃1)dx

=
∫

I 1s

((
U 


f ,ld,1

)2 − (
ū0,1

)2 + 1

2
α

(
U 


f ,ld,1L1U 

f ,ld,0 + U 


f ,ld,0L1U 

f ,ld,1

+2ū0,1
) + 1

2
β

(
U 


f ,ld,1L2U 

f ,ld,0 + U 


f ,ld,0L1U 

f ,ld,1 + 2ū0,1

)

+γ̃1

(
U 


f ,ld,0 + 1
))

dx

=
∫

I 1s

((
U 


f ,ld,1

)2 − (
ū0,1

)2 + 1

2
α

(
U 


f ,ld,1L1U 

f ,ld,0 + U 


f ,ld,0L1U 

f ,ld,1

+2ū0,1
) + 1

2
β

(
U 


f ,ld,1L2U 

f ,ld,0 + U 


f ,ld,0L1U 

f ,ld,1 + 2ū0,1

))

dx ,

where we used the asymptotic scaling γ1 = εγ̃1 and recall that ū0,1 is the O(ε)-term of the
asymptotic end state near −1, see (11). For the clarity of the presentation, we compute the
different components of the integral separately. We get

∫

I 1s

(
(U 


f ,ld,1)
2 − (ū0,1)

2
)

dx

=
∫

I 1s

1

4

(
αex+xd + βe(x+xd )/D

) (
−2(α + β) +

(
αex+xd + βe(x+xd )/D

))
dx

= −3

8
(α2 + β2D) − 1

2
αβ

(
D3 − 1

D2 − 1

)

+ O(
√

ε) ,

where theO(
√

ε)-term again appears due to the errormade by shifting the limit of the integral.
Similarly,
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1

2
α

∫

I 1s

(
U 


f ,ld,1L1U 

f ,ld,0 + U 


f ,ld,0L1U 

f ,ld,1 + 2ū0,1

)
dx

= 1

2
α

∫

I 1s

(
U 


f ,ld,1V 

f ,ld,0 − V 


f ,ld,1 + (α + β)
)

dx

= 1

2
α

∫

I 1s

((
1

2
(α + β) − 1

2

(
αex+xd + βe(x+xd )/D

))

(ex+xd − 1)−
(
1

2
(α + β) +

(

−1

4
γ2 + 1

8
αexd (−3 + 2xd) + 1

2
β

1

D2 − 1
exd

)

ex

+1

8
αex+xd (2x − 1) − 1

2
β

D2

D2 − 1
e(x+xd )/D

)

+ (α + β)

)

dx

= 1

2
α

∫

I 1s

(
1

4
γ2ex + 1

4
α (6 − (x + xd)) ex+xd − 1

2
αe2(x+xd )

+1

2
β

(

1 − 1

D2 − 1

)

ex+xd + 1

2
β

(

1 + D2

D2 − 1

)

e(x+xd )/D

−1

2
βex+xd e(x+xd )/D

)

dx

= 1

2
α

(
1

4
γ2e−xd + 3

2
α + β

(
D3 − 1

D2 − 1

))

+ O(
√

ε) ,

and

1

2
β

∫

I 1s

(
U 


f ,ld,1L2U 

f ,ld,0 + U 


f ,ld,0L2U 

f ,ld,1 + 2ū0,1

)
dx

= 1

2
β

(
1

4
γ2De−xd/D + α

(
D3 − 1

D2 − 1

)

+ 3

2
β D

)

+ O(
√

ε) .

So, the total contribution to the action functional coming from the first slow field I 1s is given
by

J f |I 1s
= εJ 1

f ,1 + ε2 J 1
f ,2 + O(ε3)

= −1

2
(α + β D)ε + 1

2
(α + β)ε

√
ε +

(

−1

4

(

α + β

D

)

+ 1

8
γ2

(
αe−xd

+β De−xd/D
)

+ 3

8

(
α2 + β2D

) + 1

2
αβ

(
D3 − 1

D2 − 1

))

ε2 + O(ε2
√

ε) .

Observe that the pinning distance xd and γ2—but not γ̃1—enter the O(ε2)-term. We also
expect that, after adding the contributions to the action functional from the other slow and
fast regions, theO(ε

√
ε)-term above disappears (since the boundaries between the slow and

fast fields are artificial in the sense we could have used any εa, a ∈ (0, 1), as boundary
instead of

√
ε, see also [23]).
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We also compute the contributions to the action functional over the other two slow regions
I 3,6s . Using the same notation as above, i.e. J f |I 3,6s

= εJ 3,6
f ,1 + ε2 J 3,6

f ,2 +O(ε3), we get for I 3s

J 3
f ,1 = 1

2

(
α

(
e−xd − 1

) + β D
(

e−xd/D − 1
))

+ 1

2

(
α

(
1 + e−xd

)

+β
(
1 + e−xd/D

)) √
ε + 1

4

(

α
(
e−xd − 1

) + β

D

(
e−xd/D − 1

))

ε

+ O(ε
√

ε) ,

and

J 3
f ,2 : =

∫

I 3s

L2(U


f ,ld ; ūεγ̃1)dx

= 2γ̃1xd + 1

8
γ2

(
α(e−xd − 1) + β D

(
e−xd/D − 1

))
+ 1

8
α2 (

3 − 3e−xd

−xde−xd
) + 1

8
β2

(
3D − 3De−xd/D − xde−xd/D

)
+ 1

2
αβ

(
D3 − 1

D2 − 1

)

+ 1

2
αβ

(
e−xd − D3e−xd/D

D2 − 1

)

+ O(
√

ε) .

Observe that this term does explicitly depend on γ̃1. Similarly, For I 6s we get

J 6
f ,1 = −1

2
(αe−xd + β De−xd/D) + 1

2

(
αe−xd + βe−xd/D

)√
ε

− 1

4

(

αe−xd + β

D
e−xd/D

)

ε + O(ε
√

ε) ,

and

J 6
f ,2 : =

∫

I 6s

L2(U


f ,ld ; ûγ2)dx

= 1

8
γ2

(
α

(
1 + 2e−xd

) + β D
(
1 + 2e−xd/D

))
+ 1

8
α2 (3 + xd) e−xd

+ 1

8
β2 (3D + xd) e−xd/D + 1

2
αβ

(
D3e−xd/D − e−xd

D2 − 1

)

+ O(
√

ε) .

Next, we compute the higher order contribution of the action functional over the fast fields
I 2,4,5f . Unlike the case for the slow fields, the error terms of the leading order contributions
arising from shifting the limits of the fast integrals are exponentially small and we thus do
not have to revisit I 2,4,5f ,1 . We start with computing the correction term J 2

f ,2 coming from the

first fast field I 2f . There is noO(ε)-correction term to the fast component in I 2f , see (34), and,

in addition, the slow components in I 2f are to leading order zero, see (27) and (28). So, since
γ1 = Θ(ε), (23) reduces, to leading order, to

J 2
f ,2 :=

∫

I 2f

L̄1(U


f ,ld ; ūεγ1)dξ = −1

2
(α + β)

∫

I 2f

dξ = − 1√
ε
(α + β) ,

and we have

J f |I 2f
= 2

√
2

3
ε − (α + β)ε

√
ε + O(ε2

√
ε) .
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The fast component is to leading order constant +1 over the two fast fields I 4,5f around the

defect. So, (U 

f ,ld,0)ξ = 0 and (U 


f ,ld,0)
2 − 1 = 0 in both I 4f and I 5f . In addition, since

γ (x) = γ1 = Θ(ε) in I 4f , (23) becomes

J 4
f ,2 : =

∫

I 4f

L̄1(U


f ,ld ; ūεγ1)dξ = −1

2

(
αe−xd + βe−xd/D

) ∫

I 4f

dξ

= −1

2

1√
ε

(
αe−xd + βe−xd/D

)
.

In I 5f , γ (x) = γ2 but U 

f ,ld,0 − ûγ2,0 = 0, and (23) again reduces to

J 5
f ,2 : =

∫

I 5f

L̄1(U


f ,ld ; ûγ2)dξ = −1

2

1√
ε

(
αe−xd + βe−xd/D

)
.

Combining the contributions from the slowand fast regions to the action functional gives—
as expected—that theO(ε

√
ε)-terms from the fast regions cancel out with theO(ε

√
ε)-terms

from the slow regions, and the total action functional of a local defect front solution Z

f ,ld

pinned to the left of the defect becomes

J f (U


f ,ld) =

(
2
√
2

3
− (α + β D)

)

ε +
(

2γ̃1xd + 1

2
γ2

(
αe−xd + β De−xd/D

)

−1

2

(

α + β

D

)

+ 3

4

(
α2 + β2D

) + αβ

(
D3 − 1

D2 − 1

))

ε2

+ O(ε2
√

ε) .

(35)

3.1.2 The Derivation of the First Part of Main Result 1

We study the critical points of the action functional J f (U 

f ,ld) (35) to derive the results for

local defect front solutions Z

f ,ld pinned to the left of the defect as stated in Main Result 1.

For more details regarding this approach, we refer to Sect. 2, [5–7,9–12,52] and references
therein, however, see also Remark 1. In particular, expression (3) determining the pinning
distance xd is obtained from the critical points of the action functional J f (U 


f ,ld) (35), and
only the critical points that are minima yield stable solutions. That is, the minima of the
action functional coincide with the stability condition (4). To this purpose, we differentiate
the action functional J f (U 


f ,ld) (35) with respect to the unknown pinning distance xd

d

dxd
(J f (U



f ,ld)) = 2γ̃1 − 1

2
γ2

(
αe−xd + βe−xd/D

)
= 2γ̃1 − 1

2
γ2 f (xd) ,

and the second derivative is

d2

dx2d
(J f (U



f ,ld)) = 1

2
γ2

(

αe−xd + β

D
e−xd/D

)

= 1

2
γ2g(xd) .

So, the critical points of the action functional J f (U 

f ,ld) (35) with respect to the pinning

distance xd are exactly given by the existence condition (3) of Main Result 1, and a critical
point is a minimum if the stability condition (4) of Main Result 1 holds.
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3.2 Pinned Front Solutions

We further investigate the results of Main Result 1 related to local defect front solutions, and
we combine these results with the results of [54] related to global defect front solutions, see
also Remark 4. So, we aim to get a broad picture of pinned front solutions supported by (1).
For this reason, we first shortly discuss the essential properties of f (as defined in (3)) and
g = − f ′ (as defined in (4)). For αβ > 0 the function α f (x) is monotonically decreasing
and strictly positive, while f (x) has an extremum fex at xex for αβ < 0 and |αD| > |β|
(recall that D > 1 by assumption). In particular,

fex := −α(D − 1)

(

−αD

β

)−D/(D−1)

, xex := D

D − 1
log

(

−αD

β

)

, (36)

and f (xex ) = fex and g(xex ) = 0. For convenience, we summarise these properties also in
Table 1.

From Main Result 1 and these properties of f and g, we instantly get that there is a
unique local defect front solution Z


f ,ld pinned to the left of the defect if α, β > 0 and
0 < 4γ̃1/γ2 < α + β and this solution is stable only if γ2 > 0. A similar statement hold for
α, β < 0. For αβ < 0 it directly follows that the situation is more complicated. In particular,
the existence condition γ2 f (xd) = 4γ̃1 (3) for local defect front solutions Z


f ,ld pinned to the
left of the defect can have up to two solutions if |αD| > |β|. Consequently, there can be two
local defect front solutions pinned to the left of the defect with different pinning distances for
the same parameter set. From (4) it follows that one of these front solutions will be a stable
solution, while the other one is unstable. We summarise the results from Main Result 1 for
local defect front solutions Z


f ,ld pinned to the left of the defect for the different parameter
combinations in Table 2, and also refer to Figs. 4 and 5 for particular examples.

For γ1 ≡ 0 it immediately follows from (3)—see also Table 2—that local defect front
solutions Z


f ,ld pinned to the left of the defect with pinning distance xd = Θ(1) exist only for
αβ < 0. Since the local defect front solutions studied in [24], see also Theorem 2, required
γ1 ≡ 0 and α, β > 0, we can conclude that these front solutions necessarily have pinning
distances xd � 1. However, see also Remark 5.

Table 1 Properties of f (x) := αe−x + βe−x/D and g(x) := − f ′(x) = αe−x + β
D e−x/D for x ∈ [0, ∞)

f (x) f (0) R( f ) fex g(x)

α > 0, β > 0 ↘ > 0 (0, α + β] – ↘, > 0

α < 0, β < 0 ↗ < 0 [α + β, 0) – ↗, < 0

α > 0, β < 0, αD < |β| ↗ < 0 [α + β, 0) – < 0

α > 0, β < 0, α < |β| < αD ↘↗ < 0 [ fex , 0) < 0 g(xex ) = 0

α > 0, β < 0, α > |β| ↘↗ > 0 [ fex , α + β] < 0 g(xex ) = 0

α < 0, β > 0, |αD| < β ↘ > 0 (0, α + β] – > 0

α < 0, β > 0, |α| < β < |αD| ↗↘ > 0 (0, fex ] > 0 g(xex ) = 0

α < 0, β > 0, |α| > β ↗↘ < 0 [α + β, fex ] > 0 g(xex ) = 0

R( f ) stands for the range of the function f , ↘ means that the function is monotonically decreasing, while ↗
means it is monotonically increasing. Similarly, ↘↗ means that the function f is first decreasing and then
increasing and f attains its minimum fex at xex , i.e. fex = f (xex ), see (36). Likewise, ↗↘ means that the
function f is first increasing and then decreasing and it attains it maximum fex at xex
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Table 2 Number of local defect front solutions Z

f ,ld pinned to the left of the defect with pinning distances

xd = Θ(1), and their stability properties, as derived from Main Result 1

#Z

f ,ld = 0 #Z


f ,ld = 1 #Z

f ,ld = 2

α, β > 0 or 4γ̃1/γ2 ≤ 0 or 0 < 4γ̃1/γ2 < f (0) –

(α < 0, β > 0 and |αD| < β) 4γ̃1/γ2 ≥ f (0) γ2 > 0: stable

α, β < 0 or 4γ̃1/γ2 ≥ 0 or f (0) < 4γ̃1/γ2 < 0∗ –

(α > 0, β < 0 and αD < |β|) 4γ̃1/γ2 ≤ f (0) γ2 < 0: stable

α > 0, β < 0 and 4γ̃1/γ2 ≥ 0 or f (0) ≤ 4γ̃1/γ2 < 0∗ fex < 4γ̃1/γ2 < f (0)

α < |β| < αD 4γ̃1/γ2 < fex γ2 < 0: stable γ2 > 0: x1d stable

γ2 < 0: x2d stable

α > 0, β < 0 and 4γ̃1/γ2 ≥ f (0) or 0 ≤ 4γ̃1/γ2 < f (0) fex < 4γ̃1/γ2 < 0∗

α > |β| 4γ̃1/γ2 < fex γ2 > 0: stable γ2 > 0: x1d stable

(Figs. 4 and 5) γ2 < 0: x2d stable

α < 0, β > 0 and 4γ̃1/γ2 > fex or 0 < 4γ̃1/γ2 ≤ f (0) f (0) < 4γ̃1/γ2 < fex

|α| < β < |αD| 4γ̃1/γ2 ≤ 0 γ2 > 0 : stable γ2 > 0: x2d stable

γ2 < 0: x1d stable

α < 0, β > 0 and 4γ̃1/γ2 > fex or f (0) < 4γ̃1/γ2 ≤ 0∗ 0 < 4γ̃1/γ2 < fex

|α| > β 4γ̃1/γ2 ≤ f (0) γ2 < 0: stable γ2 > 0: x2d stable

γ2 < 0: x1d stable

Note that f (0) = α + β and fex is defined in (36). In the right-most column, the pinning distance is the
defining difference between the two different local defect front solutions Z


f ,ld and we label the smaller

pinning distance as x1d and the larger one as x2d . So, 0 < x1d < x2d . The
∗ indicates the cases where local defect

front solutions Z

f ,ld exist for γ̃1γ2 < 0, i.e. the cases where global defect front solutions Z f ,gd also exist

[54]

xd

Jf (Uld)

JNUM
f (Uld)

1 2 3 4 5

0.08015

0.08025

0.08035

xd0
6 8 10

−1

1

2

4
2

f(xd)

g(xd)

x̃d

fex

4γ̃1/γ2

Jf (U �
f,ld)

JNUM
f (U �

f,ld)

Fig. 4 An example of J f (U

f ,ld ) (35), f (xd ) and g(xd ) for sgn(α) 
= sgn(β) = −1, |αD| > |β| and α+β >

0. In particular, (α, β, D, γ1, γ2, ε) = (3, −2, 5, 0.01,−5, 0.01). Left panel: the action functional J f (U

f ,ld )

(35) and the numerically evaluated action functional J NU M
f (U


f ,ld ) (37) obtained from the asymptotically

profile of a local defect front solution Z

f ,ld pinned to the left of the defect as function of the still undetermined

pinning distance (and as derived in Sect. 3.1). The shape of the curve, aswell as the location of the critical points
are in good agreement, while the difference between the two curves appears to be, as expected, O(ε2

√
ε).

Right panel: the functions f (xd ) and g(xd ). For fex < 4γ̃1/γ2 < 0 (see (36) for the definition of fex ), there
exist two different local defect front solutions Z


f ,ld pinned to the left of the defect. If γ2 < 0, then the pinned
front solution closest to the defect, i.e. with smallest pinning distance xd , is unstable, while the larger one is
stable
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Fig. 5 Left panel: bifurcation diagram of the pinning distance xd of pinned defect front solutions for varying
β obtained by numerically simulating (10) on a domain of length 2L = 54. The other system parameters are
kept fixed at (α, D, εγ̃1, γ2) = (3, 5, ε, −5) with ε = 0.02. So, besides ε, the system parameters are similar
to Fig. 4. The red curves represent numerically stable pinned defect front solutions, while the green curve
represent numerically unstable pinned defect front solutions. The dashed blue curve shows the asymptotically
predicted pinning distances xd for the local defect front solutions Z


f ,ld obtained from the existence condition
(3) of Main Result 1. We observe excellent agreement between the asymptotic curve and the numerical curve,
and also the stability results coincide. Right panels: the associated profiles of the pinned defect front solutions
for β = −2. We have the co-existence of a stable global defect front solution (panel c) and two local defect
front solutions (panels a, b). The local defect front solution with the larger pinning distance is stable (panel
a), while the other one is unstable (panel b). Observe that the unstable local defect front solution in panel b
indeed has the largest action functional value (Color figure online)

3.2.1 Numerical Results

Global defect front solutions Z f ,gd exist only for γ1γ2 < 0 [54]. So, from Table 2 it follows
that α > 0, β < 0 and αD > |β| is the most interesting parameter setting (since in this case
we can have the co-existence of two local defect front solutions Z


f ,ld pinned to the left of the
defect and aglobal defect front solution Z f ,gd ). Therefore,wenumerically investigate (10) for
this parameter setting to further validate the asymptotic leading order results for pinned defect
front solutions as stated inMain Result 1 and as derived in [54]. To determine the ε-dependent
numerical profiles, we adapt the path following procedure for the homogeneous version of
(10) outlined in [52]. This procedure is inspired by the predictor-corrector method of pseudo-
arclength continuation [19,33,49]. From these profiles, we also compute the numerical action
functional J NU M

f ,p (u) by replacing the improper integrals of (15) and (17) by integrals from
−L to 0 and 0 to L . Here, 2L represents the length of the domain used in the numerical
integration. So,

J NU M
f ,p (u) =

∫ 0

−L
L(u; ūγ1)dx +

∫ L

0
L(u; ˆ̄uγ2)dx . (37)
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See [52] for more details regarding the numerical techniques. We observe an excellent
agreement between the numerically observed pinning distances and the leading order pin-
ning distances computed from the existence condition (3) of Main Result 1, see the left
panels of Figs. 4 and 5. Since γ2 < 0 and γ̃1 > 0, the stability condition (4) of Main
Result 1 gives that—for fixed system parameters—the local defect front solution Z


f ,ld
with the larger pinning distance is stable, while the other one is unstable, see also Table 2.
This agrees with Fig. 4 as the extremum of J f (U 


f ,ld) with the larger pinning distance
is a minimum. It also coincides with the numerically observed stability properties of
the pinned front solutions—obtained from the spectrum of the discretised PDE—shown
in Fig. 5. Furthermore, since γ2 < 0 < γ1, the global defect front solution Z f ,gd is
expected to be stable [54] and this is again confirmed by the numerical results, see again
Fig. 5.

4 Pinned Pulse Solutions

In this section, we focus on pinned pulse solutions supported by (1) and we derive the
part of Main Result 1 related to the existence and stability of local defect pulse solutions
Zr

p,ld pinned to the right of the defect. We follow the same procedure as for pinned front
solutions and we combine GSPT techniques with the action functional approach. However,
for the clarity of the presentation, and since the computations are similar in spirit (though
algebraically more involved) as the computations for pinned front solutions, the derivation
of the profile of a local defect pulse solution Zr

p,ld—with unknown pulse half-width x∗ and
unknown pinning distance xd—and the computation of its action functional Jp (15) is placed
in “Appendix B”. In addition, we show that the action functional approach also reproduces
some of the previously obtained results of [54] related to the existence of global defect pulse
solutions Z p,gd and the non-existence of local defect pulse solutions Zm

p,ld with the defect
pinned in between the two interfaces [54]. Finally, in Sect. 4.2, we confirm our asymptotic
findings by numerically investigating (10).

4.1 The Derivation of the Second Part of Main Result 1

We need to compute the action functional Jp(Ur
p,ld) (15) associated to a local defect pulse

solution Zr
p,ld pinned to the right of the defect to derive the parts of Main Result 1 related to

local defect pulse solutions. We state the action functional below and refer to “Appendix B”
for its proof.

Lemma 1 The action functional Jp(Ur
p,ld) (15) associated to a local defect pulse solution

Zr
p,ld pinned to the right of the defect is given by
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Jp(U
r
p,ld) =

(

−2α
(
1 − e−2x∗) − 2β D

(
1 − e−2x∗/D

)
+ 4γ2x∗ + 4

√
2

3

)

ε

−
(

α
(
1 − e−2x∗) + β

D

(
1 − e−2x∗/D

))

ε2

+ 2αβ
1

D2 − 1

(
−

(
1 − e−2x∗) + D3

(
1 − e−2x∗/D

))
ε2

+ 1

2
α2

(
3 − 3e−2x∗ − 2x∗e−2x∗)

ε2

+ 1

2
β2

(
3D − 3De−2x∗/D − 2x∗e−2x∗/D

)
ε2

− 1

2
γ1

(
αe−xd

(
1 − e−2x∗) + β De−xd/D

(
1 − e−2x∗/D

))
ε2

+ 1

2
αγ2

(
e−xd − e−(xd+2x∗) − 4x∗) ε2

+ 1

2
βγ2

(
De−xd/D − De−(xd+2x∗)/D − 4x∗) ε2 + O(ε2

√
ε) ,

(38)

with the pinning distance xd and the half-width of the pulse x∗ both positive and Θ(1) with
respect to ε.

Proof of Lemma 1. See “Appendix B”. ��
Toderive the results ofMainResult 1 related to local defect pulse solutions,wedifferentiate

the action functional Jp(Ur
p,ld) (38) with respect to the unknown pulse half-width x∗ and

with respect to the unknown pinning distance xd . Next, we equate the resulting expressions
to zero. This gives

∂

∂x∗ Jp(U
r
p,ld) = 0 �⇒ 4

(
−αe−2x∗ − βe−2x∗/D + γ2

)
ε = O(ε2)

�⇒ 4
(− f (2x∗) + γ2

)
ε = O(ε2) ,

and

∂

∂xd
Jp(U

r
p,ld) = 0 �⇒

1

2
(γ1 − γ2)

(
αe−xd

(
1 − e−2x∗) + βe−xd/D

(
1 − e−2x∗/D

))
ε2 = O(ε2

√
ε)

�⇒ 1

2
(γ1 − γ2)

(
f (xd) − f

(
xd + 2x∗)) ε2 = O(ε2

√
ε) .

The first condition coincides, to leading order, with the first existence condition of (5), while
the second condition coincides, to leading order, with the second existence condition of (5).
The local defect pulse solutions that are minimisers of Jp(Ur

p,ld) (38) correspond to stable
pulse solutions. Since Jp(Ur

p,ld) is a function of two unknowns, the second derivative test—
see, for instance, Theorems 2.1 and 3.1 in Chapter 8 in [16]—determines these minimisers.
However, since Jp(Ur

p,ld) is to leading order independent of xd , the second derivative test
simplifies and the minimisers of Jp(Ur

p,ld) are determined given by the critical points of

Jp(Ur
p,ld) such that both ∂2 J

∂(x∗)2 and
∂2 J

∂(xd )2
are positive. So, a local defect pulse solution Zr

p,ld

with half-width x∗ and pinning distance xd is stable if it is at a critical point of Jp(Ur
p,ld)
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and if

∂2 J

∂(x∗)2
> 0 �⇒ 8

(

αe−2x∗ + β

D
e−2x∗/D

)

ε > 0 �⇒ g(2x∗) > 0 ,

and

∂2 J

∂(xd)2
> 0 �⇒
1

2
(γ2 − γ1)

(

αe−xd
(
1 − e−2x∗) + β

D
e−xd/D

(
1 − e−2x∗/D

))

> 0 ,

�⇒ (γ2 − γ1)
(
g(xd) − g(xd + 2x∗)

)
> 0 .

This completes the derivation of the second part of Main Result 1.

4.2 Pinned Pulse Solutions

We further investigate the results of Main Result 1 related to local defect pulse solutions, and
we combine these results with the results of [54] related to global defect pulse solutions. So,
we aim to get a broad picture of pinned pulse solutions supported by (1).

4.2.1 Numerical Results: Pulse Widths

The action functional Jp(Ur
p,ld) (38) for a local defect pulse solution Zr

p,ld pinned to the right
of the defect is—to leading order—independent of the pinning distance xd , and, consequently,

γ2

2x∗

γ2

2x∗

21 3 4 5

10

0.1

−0.2−1.2 0.8 1.8 2.8

γ2 = γ1

1

10

0.1

1

γ2 = γ1

αβ > 0 αβ < 0

a

b, c

d, e

a

b, c
d, e

f, g, h

Fig. 6 Bifurcation diagrams of the observed pulse widths 2x∗ of pinned pulse solutions for varying γ2 and
for two different parameter sets. We observe an excellent agreement between the pulse widths obtained from
numerically integrating (10) (green solid curves) and the asymptotically leading order widths determined by
(5) of Main Result 1 (blue dashed curves) for pulse widths that are not too small. In the left panel the system
parameters are kept fixed at (α, β, D, γ1, ε) = (3, 2, 5, 2, 0.02) such that αβ > 0 and 2L = 24, while in the
right panel the system parameters are set at (α, β, D, γ1, ε) = (4,−1, 5, −0.2, 0.05) such that αβ < 0 and
2L = 48. The vertical dashed black lines indicate the homogeneous system were γ1 = γ2. The pinned pulse
profiles associated to γ2 = 2.5 (dotted line) in the bifurcation diagram in the left panel are shown in Fig. 7,
and the pinned pulse profiles associated to γ2 = −0.3 (dotted line) in the bifurcation diagram in the right
panel are shown in Fig. 8 (Color figure online)
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Fig. 7 The pinned pulse profiles associated to γ2 = 2.5 in the bifurcation diagram in the left panel of Fig. 6
obtained by numerically integrating (10) over a domain of length 2L = 24. The other parameters are kept
fixed at (α, β, D, γ1, ε) = (3, 2, 5, 2, 0.02). The profiles of panels b and c have the same leading order widths.
The profiles of panels a and c are numerically stable, while the scatter solution [62] of panel b is numerically
unstable. The small pulse profiles shown in panels d and e have not been analysed by the asymptotic methods
of this manuscript

similar to the action functional for a homogeneous stationary pulse solution (withγ = γ2), see
Lemma 1 in [52]. As a result, the first existence condition (5) ofMainResult 1 determining the
width of the local defect pulse solution is the same as the existence condition for a stationary
pulse solution in the homogeneous case (withγ = γ2), see also [23]. In otherwords, the defect
does not—to leading order—destroy the width of a stationary pulse solution. Combining the
results of Main Result 1 and [54], and by using the symmetry (8), gives that the widths of
both local and global pinned pulse solutions are to leading order determined by f (2x∗) = γi .
So, to leading order, the widths of pinned pulse solutions to the right or left of the defect
are independent from the pinning distance of the pulse to the defect. This is also observed
numerically for pulses with widths that are not too small, i.e. in regions in parameter space
where our asymptotic analysis is valid, see the bifurcation diagrams in Fig. 6. The profiles of
the particular defect pulse solutions associated to Fig. 6, for a fixed value of γ2, are shown
in Fig. 7 (for αβ > 0) and Fig. 8 (for αβ < 0). Moreover, since f (2x∗) = γi can have up to
two solutions for a fixed parameter set, see Table 1 and [23], a pinned pulse solution can have
up to four different leading order widths for a given parameter set (α, β, D, γ1, γ2). See, for
instance, Fig. 8.

Furthermore, it is clear that for fixed x∗ the action functional Jp(Ur
p,ld) (38) is smaller

than the action functional Jp(U 

p,ld)7 associated to a local defect pulse solution pinned to the

left of the defect if and only if γ1 > γ2. Consequently,

min
x∗ Jp(U



p,ld) > min

x∗ Jp(U
r
p,ld) if and only if γ1 > γ2 .

That is, a pinned pulse solution Zr
p,ld pinned to the right of the defect is favourable compared

to a pinned pulse solution Z

p,ld pinned to the left of the defect if and only if γ1 > γ2

(since only critical points that are local minima are stable). See also upcoming Fig. 9. This is
consistent with the results for global defect pulse solutions Z p,gd presented in [54]: a global
defect pulse solution Zr

p,gd pinned immediately to the right of the defect and with leading
order width 2x∗ exists if γ1 > γ2 and if x∗ > 0 solves f (2x∗) = γ2.

7 This action functional can be directly obtained from (38) by interchanging the role of γ1 and γ2.
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Fig. 8 The pinned pulse profiles associated to γ2 = −0.3 in the bifurcation diagram in the right panel of
Fig. 6 obtained by numerically integrating (10) over a domain of length 2L = 48. The other parameters are
kept fixed at (α, β, D, γ1, ε) = (4, −1, 5, −0.2, 0.05). The profiles of panels b and c have the same leading
order width. Similarly, the profiles of panels d and e have the same leading order width, and also the profiles
of panels f, g and h have the same leading order width

4.2.2 Local Defect Pulse Solutions Zmp,ld Pinned Around the Defect

Local defect pulse solutions correspond to pulse solutions with their interfaces located away
from the defect. So, there are potentially three different types of local defect pulse solutions:
the defect is to the left of both interfaces, the defect is to the right of both interfaces, and the
defect is in between both interfaces. In [54], it was shown that local defect pulse solutionswith
the defect pinned in between both interfaces do not exist. This result can also be explained
by using the current approach. The leading order term of an action functional Jp(U m

p,ld) for
a local defect pulse solution Zm

p,ld with the defect located in between the two interfaces is
slightly different from the leading order term of the action functional Jp(Ur

p,ld) (38) (and

from the leading order term of the action functional Jp(U 

p,ld)). This difference comes from

the final term γi (u0− ˆ̄uγi,0) in the integral of the leading order part of the action functional over
the slow field in between the interfaces, see (19). Integrating this term for a local defect pulse
solution pinned completely to the left or right of the defect—as well as for a homogeneous
pulse solution—gives 4γi x∗ (with 2x∗ the leading order pulse width), while integrating this
term for Zm

p,ld gives 2γ2x∗
2 − 2γ1x∗

1 , where x∗
1 < 0 < x∗

2 denote the location of the two
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Fig. 9 Contour plot of the leading order part of the action functionals Jp(Ur ,
,m
p,ld ) (38) and (39) (divided by ε)

of local defect pulse solutions Zr ,
,m
p,ld as function of the interface locations x∗

1 and x∗
2—such that the leading

order pulse width is 2x∗ = x∗
2 − x∗

1—for (α, β, D, γ1, γ2) = (3, 2, 5, 2, 1). The level curves associated to the

action functionals Jp(Ur ,

p,ld ) in first and third quadrants are constant along the lines x∗

2 − x∗
1 = K , K ∈ R,

since these action functionals Jp(Ur ,

p,ld ) depend only on 2x∗ = x∗

2 − x∗
1 . The minimum in each of these two

quadrants is indicated by the blue dashed curve and they are attained for x∗
2 −x∗

1 = K ∗
1,2 with f (K ∗

1,2) = γ1,2.
In particular, K ∗

1 ≈ 1.6663 and K ∗
2 ≈ 3.8096. Since γ2 < γ1, we have—as expected—that K ∗

2 > K ∗
1 and

min{Jp(Ur
p,ld )} < min{Jp(U


p,ld )}. In addition, the leading order part of the action functional Jp(Um
p,ld )

(39) in the second quadrant becomes minimal for (x∗
1 , x∗

2 ) → (0, K ∗
2 ). The red dashed curve in the second

quadrant indicates the minimum of the action functional Jp(Um
p,ld ) for a given x∗

2 fixed. Note that the action

functional Jp(Um
p,ld ) decreases along the red curve for increasing x∗

1 (Color figure online)

interfaces andwith x∗
2−x∗

1 the leading order pulsewidth. In the end, this leads to the following
action functional Jp(U m

p,ld)—which we present without proof, but we refer to [52] for more
details—for a local defect pulse solution Zm

p,ld with the defect pinned in between the two
interfaces

Jp(U
m
p,ld) =

(
−2α

(
1 − e−(x∗

2−x∗
1 )

)
− 2β D

(
1 − e−(x∗

2−x∗
1 )/D

)

+ 2
(
γ2x∗

2 − γ1x∗
1

) + 4
√
2

3

)

ε + O(ε
√

ε) .
(39)

Unlike the leading order term of the action functional Jp(Ur
p,ld) (38) (and of Jp(U

r ,

p,ld)), the

action functional Jp(U m
p,ld) depends on two variables. Upon introducing 2x∗ := x∗

2 − x∗
1 >
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0—such that x∗ again represents the pulse half-width—we rewrite (39) as

Jp(U
m
p,ld) =

(

− 2α

(

1 − e−2x∗
)

− 2β D

(

1 − e−2x∗/D

)

+ 4min{γ1, γ2}x∗ + 4
√
2

3

)

ε

+ 2ε(γ2 − γ1)y + O(ε
√

ε) ,

with y := x∗
2 for γ2 > γ1 and y := x∗

1 for γ1 > γ2. By construction, only the linear term
2(γ2 − γ1)y of the leading order part of Jp(U m

p,ld) depends on the variable y and this term
is positive for both γ2 > γ1 and γ1 > γ2 (since x∗

1 < 0 < x∗
2 ). Consequently, for γ2 > γ1,

y → 0 (which implies that x∗
2 → 0) is a necessary condition for Jp(U m

p,ld) to be minimal,
while y → 2x∗ (which implies x∗

1 → 0) is a necessary condition for Jp(U m
p,ld) to bemaximal.

Similarly, for γ1 > γ2, y → 0 (which implies that x∗
1 → 0) is a necessary condition for

Jp(U m
p,ld) to be minimal, while y → −2x∗ (which implies x∗

2 → 0) is a necessary condition
for Jp(U m

p,ld) to be maximal. In other words, for both γ2 > γ1 and γ1 > γ2 local defect pulse
solutions Zm

p,ld with the defect in between the two interfaces move towards the boundary of
the slow field, see also Fig. 9. So, as was already shown in [54], local defect pulse solutions
Zm

p,ld with the defect in between the two interfaces do not exist as they move towards global
defect pulse solutions Z p,gd .

In addition, the part of the leading order term of the action functional Jp(U m
p,ld) that

depends on the pulse half-width x∗ is identical to the leading order term of the action func-
tionals Jp(U

r ,

p,ld) (38). Consequently, they have the same critical points {x∗| f (2x∗) = γi }

and thus also the same pulse half-widths and stability properties. For instance, for γ2 > γ1,
Jp(U m

p,ld) is minimal for y = 0, {x∗| f (2x∗) = γ1} and g(2x∗) > 0 and maximal for
y = 2x∗, {x∗| f (2x∗) = γ2} and g(2x∗) < 0. So, again, smaller γi ’s are favourable.

4.2.3 Numerical Results: Pinning Distances

For αβ > 0 and |γ1 − γ2| = Θ(1), the first existence condition of (5) of Main Result 1
related to the width of a local defect pulse solution Zr

p,ld pinned to the right of the defect
is solvable if αγ2 > 0 and 0 < |γ2| < |α + β|. Furthermore, since f is monotonically
decreasing or increasing, see Table 1, the second existence condition of (5) yields that—
similar to the front case—the pinning distance xd � 1. However, see Remark 5. From the
stability conditions (6) of Main Result 1—with xd � 1—it follows that these local defect
pulse solutions Zr

p,ld pinned to the right of the defect are stable only if α, β > 0 and γ2 > γ1.
For α, β < 0 all pinned pulse solutions will be unstable—independent of the defect—since
the first stability condition of (6) is never satisfied. Combining this stability result for local
defect pulse solutions Zr

p,ld with the results for global defect pulse solutions Z p,gd from [54],
we obtain that for α, β > 0 and 0 < γ1 < γ2 < α + β, (1) supports a stable global defect
pulse solution Z


p,gd pinned to the left of the defect and a stable local defect pulse solution
Zr

p,ld pinned to the right of the defect (with asymptotically large pinning distance xd ). These
stable solutions are separated by an unstable scatter solution Zr

p,gd [62] pinned immediately
to the right of the defect, see Figs. 6 and 7. The numerically computed action functional
values J NU M

p (37) for the profiles in these figures confirm the asymptotic—and numerical—
stability results. That is, the scatter solution Zr

p,gd has the largest action functional value.
This unstable scatter solution can be further understood by observing that Jp(Ur

p,ld) (38) also
approaches a critical point—at least from one side—as xd → 0, and, similarly, Jp(U m

p,ld)

(39) approaches a critical point—from the other side—as x∗
1 → 0.

As for the front case, the results of Main Result 1 related to local defect pulse solutions
are more interesting for αβ < 0, see also Remark 2. In this case, stable and unstable local
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Table 3 Pulse width 2x∗, pinning distance xd , pinning region, and stability properties (S = stable, U =
unstable) of pinned pulse solutions obtained fromMainResult 1, symmetry (8) and [54] for (α, β, D, γ1, γ2) =
(4, −1, 5,−0.2, −0.3), as well as their relation to the profiles of Fig. 8 obtained from simulating (10) on a
domain of length 2L = 48

2x∗ xd Region Stab. Figure 8 Num. stab. J NU M
p

Z
,1
p,gd 2.20 – x < 0 U f U − 2.166ε

Z
,2
p,gd 8.01 – x < 0 U a U − 1.301ε

Zr ,1
p,gd 2.61 – x > 0 S e S − 2.623ε

Zr ,2
p,gd 5.83 – x > 0 U b U − 2.469ε

Z
,1
p,ld 2.20 2.88 x < 0 S g S − 2.172ε

Z
,2
p,ld 8.01 2.01 x < 0 U – – –

Zr ,1
p,ld 2.61 2.76 x > 0 U d U − 2.617ε

Zr ,2
p,ld 5.83 2.20 x > 0 U c U − 2.465ε

defect pulse solutions Z p,ld with different widths can be pinned in the same γ -region, see, for
instance, Figs. 8, 10 and 11. Combining the result of thismanuscript with the results for global
defect pulse solutions Z p,gd of [54], and since the first existence condition f (2x∗) = γi of
Main Result 1 can have up to two solutions, shows that there can actually be a myriad of
different pinned defect pulse solutions, especially for 0 < |γ1,2| < |α + β| and |αD| > |β|,
see also Table 1. For instance, for (α, β, D, γ1, γ2) = (4,−1, 5,−0.2,−0.3)—the parameter
values used in Figs. 6, 8, 10 and 11—the asymptotic results of this manuscript and [54]
predict the existence of (at least) eight different pinned pulse solutions. Two of these eight
pinned solutions are stable, while the other six are unstable. The asymptotic results for this
particular parameter set are summarised in Table 3. Numerical simulations of (10) for the
same parameter set on a domain of length 2L = 48 yield the same stable pinned pulse
solutions, as well as six unstable pinned pulse solutions (and some small pulse profiles
similar to the ones shown in panels “d” and “e” of Fig. 7). However, one of the unstable
pinned pulse solutions from the asymptotic results of Main Result 1 is not found numerically
on this domain of integration. This is due to the relative small size of the domain and we
remark that we did find this solution by simulating on a larger domain, see Fig. 10 and also
Remark 5. In addition, one of the numerically computed unstable pinned pulse solutions—
shown in panel “h” of Fig. 8—is not found by the asymptotic results of Main Result 1. We
postulate that this stems from the fact that the pinning distance for this pinned pulse solution
is—asymptotically—much larger than one and a higher order analysis is needed to also find
the pinning distance for this solution, see again Remark 5. Actually, we believe that there
are potentially three more of these pinned pulse solutions that are pinned far away from the
defect and that are not captured by the asymptotic results of this manuscript.

To further justify the above claims,we reinvestigate the pinned pulse solutionswith leading
order width 2x∗ ≈ 8.01 for the same parameter set but on a larger domain—2L = 72 instead
of 2L = 48. Besides the unstable global defect pulse solution Z
,2

p,gd we also found on the
smaller domain, see Table 3, we discover two addition pinned pulse solutions with leading
order width 2x∗ ≈ 8.01: the missing unstable local defect pulse solution labelled Z
,2

p,ld in
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Fig. 10 Left panels: the profiles of the three unstable pinned pulse solutions with leading order width 2x∗ ≈
8.01 obtained by numerically integrating (10) over a domain of length 2L = 72 andwith (α, β, D, γ1, γ2, ε) =
(4, −1, 5,−0.2, −0.3, 0.05). Right panel: bifurcation diagram of the numerically observed pinning distances
xd (green solid curves) for these three pinned pulse solutions for varying γ2. For |γ2 − γ1| not too small, we
observe an excellent agreement between the numerically computed pinning distance of the local defect pulse

solution Z
,2
p,ld and the leading order pinning distance determined by Main Result 1 (blue dashed curves). The

pinned pulse solutions on the lower branch of the bifurcation diagram correspond to the global defect pulse

solution Z
,2
p,gd in Table 3, see also panel a of Fig. 8. Furthermore, the pinned pulse solution in panel I I I ,

and the upper branch of the bifurcation diagram, are not captured by the analysis of this manuscript since
the pinning distance for these pulses is asymptotically much larger than one, see also Remark 5 (Color figure
online)

Table 3 with pinning distance xd ≈ 2.88 and a defect pulse solution pinned far away from
the defect, see the three panels on the left of Fig. 10.

In Fig. 11, we show the bifurcation diagram of the pinning distances xd associated to the
pinned defect pulse solutions shown in panels “f–h” of Fig. 8—so with leading order pulse
width 2x∗ ≈ 2.20, see also Z
,1

p,gd and Z
,1
p,ld in Table 3—for varying γ2, while the other

parameters are kept fixed, i.e. (α, β, D, γ1) = (4,−1, 5,−0.2). We observe that as long as
|γ2 −γ1| is not too small, the asymptotically predicted pinning distances xd (indicated by the
blue dashed line in Fig. 11) of Main Result 1 agree perfectly with the numerically observed
pinning distances xd of the local defect pulse solutions. Moreover, both the asymptotical
and numerical results predict that the middle branch of pinned pulse solutions is stable. The
unstable upper branches in Fig. 11 relate to the pinned pulse solutions with asymptotically
large pinning distances (e.g. panel “h” of Fig. 8 and panel I I I of Fig. 11) and that these
branches connect with the middle branches for |γ2 − γ1| small—a region in parameter space
where the results ofMainResult 1 do not apply. See also the panel on the right of Fig. 10where
we observe similar behavior for the pinned pulse solutions with leading order pulse width
2x∗ ≈ 8.01. The onset of these local defect solutions with asymptotically large pinning
distances is unclear to us at this stage and whether these solutions fall in the category of
bifurcations from infinity [45, e.g.] seems to deserve further investigation in the future.

Remark 5 MainResult 1 predicts that, under the conditions ofTheorem2, the pinningdistance
of a local defect front and pulse solution is much larger than one. However, the numerically
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Fig. 11 Left panel: bifurcation diagram of the observed pinning distance xd for varying γ2 and
(α, β, D, γ1, ε) = (4, −1, 5, −0.2, 0.05) for pinned pulse solutions with leading order width 2x∗ ≈ 2.20
and associated to the profiles shown in panels f–h of Fig. 8 (as long as γ2 < γ1). This bifurcation diagram
is obtained by numerically integrating (10) over a domain of length 2L = 48. Right panel: the associated
profiles of the pinned pulse solutions for γ2 = −0.7. The profiles associated to the branches to the right of
γ2 = γ1 are actually pinned to the right of the defect. For |γ2 − γ1| not too small, we observe an excellent
agreement between the pinning distances obtained from numerically integrating (10) (red solid curves) and
the asymptotically leading order pinning distances determined by (5) of Main Result 1 (blue dashed curves).
Moreover, both the numerics and the results ofMain Result 1 yield that these local defect pulse solutions Z p,ld
with the smaller pinning distances xd are stable (red curves), while the other ones are unstable (green curves),
see also Table 3. The unstable upper branches relate to the pinned pulse solutions with asymptotically large
pinning distances (e.g. panel h of Fig. 8), and these branches connect with the middle branches for |γ2 − γ1|
small (Color figure online)

observed pinning distances of local defect front and pulse solutions under these conditions do
not appear to bemuch greater than one (see, for instance, the panel “c” of Fig. 1, Figures 4 and
5 in [54] and Figure 1 in [24]). We postulate that this stems from the fact that the numerical
simulations are necessarily done on a bounded domain and this obviously influences the
results on the pinning distances. Moreover, the asymptotic results from Main Result 1 hold
only for small enough ε. See also Fig. 12, where we show numerically simulated profiles of
local defect pulse solutions for α and β positive—one of the conditions of Theorem 2—but
for two different ε-values and on two different domains of integration.

5 Discussion

5.1 Summary

In this manuscript, we studied a heterogeneous three-component FitzHugh–Nagumo model
(1) and we derived existence and stability conditions for the simplest, but fundamental,
localised pinned solutions—namely pinned front and pulse solutions—that are pinned away
from the heterogeneity, see Main Result 1. In certain parameter regimes, we explicitly com-
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Fig. 12 Top panels: local defect pulse solutions obtained by simulating the time-independent version of (1),
i.e. by simulating (10), on a domain of length 24 for (α, β, D, γ1, γ2) = (3, 2, 5, 2, 1.5)—so αβ > 0—and
for two different ε-values. Whilst the pulse widths appear to be the same in both simulations, the pinning
distances xd differ significantly, see also Remark 5. Bottom panels: bifurcation diagrams of γ2 versus the
pinning distance xd for pinned pulse solutions for the same parameter set (but with γ2 varying) and for two
different ε-values and for two different domain lengths. The domain size, as well as the size of ε, have a
leading order influence on the observed pinning distances

puted the relationship between the jump-type heterogeneity (2) and the pinning distance xd of
a pinned localised solution, see, in particular, (3) and (5). In other parameter regimes, e.g. for
αβ > 0 for pinned pulse solutions, we showed that the pinning distances xd are much larger
than one, see also Remarks 2 and 5, and higher order computations are needed to explicitly
determine these pinning distances. These results were derived by combining GSPT tech-
niques with an action functional approach. This combined approach was pioneered by us in
[52] to study stationary localised solutions for the homogeneous three-component FitzHugh–
Nagumo model. By appending the homogeneous action functional to deal with the defect,
see (15) and (17), we showed that—due to the asymptotic scaling of the defect—the leading
order width of the localised solution is not affected by the defect (see, however, Remark 1).
In contrast, the pinning distance is determined at the next order (in ε) of the action functional.
In essence, the defect destroys the translation invariance of the homogeneous problem and
pinpoints—from the family of stationary localised solutions in the homogeneous case—a
set of isolated locations for the localised pinned solutions. In addition, the defect also deter-
mines the fate of the translation invariance eigenvalue at zero—and thus the stability—of the
localised pinned solutions, see (4) and (6).
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5.2 Concluding Remarks and FutureWork

5.2.1 Designing a Defect

Localised pinned solutions to (1) have been studied in detail before, see, in particular, [24,54].
However, this is the first time that (1) has been studied in this generality and that the pinning
distance xd has been computed explicitly.Actually, to the best of our knowledge this is the first
time that this pinning distance has been computed analytically for local defect solutions for
such systems of heterogeneous nonlinear reaction–diffusion equations. A direct consequence
of explicitly characterising the pinning distance xd in terms of the system parameters and the
strength of the defect is that it opens the path to solving the inverse problem of controlling
the pinned solutions. That is, for a given width and location, can we find suitable system
parameters and a heterogeneity such that (1) supports a stable localised pinned solution
satisfying these prescribed conditions. For instance, say (α, β) = (3,−1) are given and we
want to design a stable local defect pulse solution pinned to the right of the defect with width
2x∗ = 3 and pinning distance xd = 2.3. Then, (5) of Main Result 1 holds for D ≈ 4.94
and consequently γ2 = 3e−3 − e−3/D ≈ −0.395 (5). To ensure this pinned solution is also
stable, i.e. such that (6) holds, it is required that γ1 < γ2 and γ1 
≈ γ2.

5.2.2 Extensions Within the Action Functional Framework

The homogeneous version of (1) was originally developed for both α and β positive, see
also Remark 2. In contrast, the results of this manuscript give explicit information regarding
the pinning distances xd of pinned localised solutions for α and β of opposite sign only.
For α and β positive, the results only imply that the pinning distances xd are much larger
than one. It is expected that an even higher order computation of the action functional will
also provide the crucial information regarding the explicit pinning distances xd of pinned
localised solutions for α and β positive. The exploration of the next order term of the action
functional is part of future work.

The homogeneous version of (1) also supports stable stationary symmetric 2-pulse solu-
tions [23,53]—and, under the right parameter conditions, also stationary asymmetric 2-pulse
solutions or stationary symmetric 3-pulse solutions [52]—so it can be expected that (1) also
supports these more exotic types of localised solutions. It is interesting to see if the explicit
pinning distances of these more exotic solutions—as well as their stability—can also be
explicitly determined by the action functional approach of this manuscript.

The heterogeneous model (1) has one small jump-type heterogeneity (2). However, there
is a priori no reason to restrict to one jump and different types of heterogeneities have
been investigated numerically before [41,50,54, e.g.]. For instance, in [54] (1) with a bump-
type heterogeneity, i.e. γ (x) = γ1 for x /∈ [−A, A] and γ (x) = γ2 for x ∈ [−A, A],
was numerically simulated and it was observed that—under the right conditions on the
parameters—local defect pulse solutionswith the expectedwidths still form, see, in particular,
the left panel of Figure 8 in [54]. The approach of the action functional used in thismanuscript
can be easily extended to handle several of these jump-type heterogeneities and is interesting
to see if, for instance, the numerical observations of [54] can be shown analytically with
the current approach. This bump-type heterogeneity is particularly interesting since a pinned
solution in the region [−A, A] (with A = Θ(1)) cannot have an asymptotically large pinning
distance (as is the case for the jump-type heterogeneity for α and β both positive).
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5.2.3 Interaction Dynamics

Sincewe nowunderstand—to a certain extend—pinned front and pulse solutions of (1), a next
natural question to ask is the following. Suppose the homogeneous problem supports a stable
stationary localised solution. What happens if you introduce a small jump heterogeneity far
away from the position of the localised solution? Will the solution move towards the defect,
or will it move away from it? That is, can we also understand the interaction dynamics of the
heterogeneous model and can we, for example, derive the laws of motion that describe how
front-like or pulse-like initial conditions of (1) evolve? For the homogeneous model these
laws ofmotion are rigorously derived in [55] by using a RenormalizationGroup (RG)method
[44]. By projecting the equations on the eigenspace associated to the small eigenvalues it is
shown that an N -front-like initial condition evolves according to a N -dimensional system of
ODEs. For instance, a pulse-like initial condition with initial width x0w evolves according to

ẋw = 3
√
2ε2( f (xw) − γ ), xw(0) = x0w ,

with f as given in (3).Actually, the derived systems ofODEs is a gradient flowwith functional
G, and the action functional approach can be seen as a direct way of computing (a scaled
version of) this functional G, see Remark 4.3 in [55] and [52] for more details. It is interesting
to see how the presence of the defect influences the dynamics of front-like and pulse-like
initial conditions and whether the GSPT techniques and the action functional approach of
this manuscript can be combined with the RG method of [55] to explicitly derive similar
systems of ODEs describing the evolution in the defect case. Alternatively, one can try to
adapt the formal approach of [38] in which the interface dynamics for similar defect models
was derived. This approach is based on using the singular limit of the PDE to rewrite it into
a free-boundary problem of mixed PDE-ODE-type and subsequently use a center manifold
reduction to derive the interface dynamics, see [38] for more details.

5.2.4 Collision Dynamics

The importance of various types of defect solutions, such as scatter solutions, originated
from numerical explorations of the collision dynamics between travelling pulse solutions
and defects [41,50,62, e.g.], since understanding the structure of defect solutions would help
understanding the dynamics of travelling pulse solutions when colliding with the hetero-
geneity. In the current setting with τ and θ O(1), the homogeneous version of (1) does not
support travelling pulse solutions [23]. However, for τ and/or θ large (in particular O(ε−2))
the homogeneous version does support stable and unstable travelling pulse solutions and these
solutions travel with speed c = O(ε2) [23,53,55]. In addition, the homogeneous version also
supports so-called breathing pulse solutions [23]. In [54], several numerical simulations were
performed in this parameter regime and it appeared that, under the right parameter conditions,
an initially breathing pulse solution could evolve to a travelling pulse solution after colliding
with the defect, see, in particular, Figure 10 in [54]. It would be interesting to see whether this
collision dynamics can be studied analytically and whether we can develop an understanding
on how a defect influences travelling pulse solutions and breathing pulse solutions. One of the
complications arising in this parameter regime stems from the fact that the essential spectrum
of the linearised operator needed to determine stability lies asymptotically close to the imag-
inary axis and additional point eigenvalues (compared to the τ, θ O(1)-case) potentially pop
out of this essential spectrum, see [53] for more detail. Unfortunately, the action functional
approach used in the current setting is not directly suitable to study these travelling pulse
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solutions, not even in the homogeneous case, see [52] for more details. However, an existence
result for travelling pulse solutions supported by a mono-stable two-component FitzHugh–
Nagumo model was established in [6] using a variational approach. Finally, observe that the
general results of [24] are not applicable in this situation, since the underlying hypotheses in
[24] are not met.

Acknowledgements PvH thanks the National Changhua University of Education in Taiwan, the National
Center for Theoretical Sciences in Taiwan, and Tohoku University in Japan for their hospitality. CNC is
grateful for the warm hospitality of Queensland University of Technology in Australia. YN and TT also
thank Queensland University of Technology in Australia and the National Tsing-Hua University in Taiwan for
their hospitality. The authors also acknowledge support from the Mathematics Research Promotion Center in
Taiwan and they note that part of this research was finalised during the first joint Australia-Japan workshop
on dynamical systems with applications in life sciences at Queensland University of Technology in Australia.

Appendix A: Trivial Defect Solutions

From Lemma 1.7 in [24], we know that (1) supports two trivial defect solutions Z±
td =

(U±
td , V ±

td , W ±
td) near ±(1, 1, 1). We use a regular expansion

Z±
td = (U±

td , V ±
td , W ±

td)(x) = ±(1, 1, 1) + ε(U±
td,1, V ±

td,1, W ±
td,1)(x) + O(ε2) , (40)

to determine the next order terms of these trivial defect solutions. Because of the different
asymptotic scaling in the diffusion coefficients in (1)/(10)/(12), we expect that near the defect
the profile of the U -component changes faster—in the sense that we expect its gradient (in
space) to be steeper—than the profiles of the V and W components. Therefore, and as eluded
to in Sect. 2, we split our spatial domain into four different regions I ±

s and I ±
f . The two outer

slow regions I ±
s are away from the defect at x = 0 and are given by I −

s = (−∞,−√
ε],

respectively, I +
s = [√ε,∞). In these slow regions, the spatial scaling as stated in (1) and

(10)—the slow scaling—is used to accommodate the changes in the two slow V and W
components, while the fast U -component does not change significantly (as it is already close
to one of its asymptotic end states). The two inner fast regions I ±

f near the defect deal with the

changes in the fastU -component (due to the heterogeneity) and are given by I −
f = (−√

ε, 0],
respectively, I +

f = (0,
√

ε). These fast regions are asymptotically small in x . Therefore, the
two slow V and W components do not change significantly in these regions. To understand
the changes in U over the fast regions, we use the fast scaling ξ := x/ε and study (12). The
crux behind the asymptotic

√
ε-scaling of the two slow regions and two fast regions is that

the slow regions I ±
s span—to leading order—the whole spatial domain in the slow scaling

x , while the fast regions I ±
f span—to leading order—the whole spatial domain in the fast

scaling ξ (since I −
f = (−1/

√
ε, 0] and I +

f = (0, 1/
√

ε) in the fast ξ -variable). Observe that
similar spatial scalings are used to study the homogeneous version of (1), see [23,53, e.g.].

Wefirst compute the next order terms (U−
td,1, V −

td,1, W −
td,1)of the trivial defect solution Z−

td .

Subsequently, the next order terms of the trivial defect solution Z+
td are obtained by applying

both symmetries (7) and (8) to the Z−
td -profile. In the first slow region I −

s , implementing the
regular expansion (40) into (10) gives

I −
s :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O(ε) = −2U−
td,1 + (α + β − γ1) ,

O(ε) =
(

V −
td,1

)

xx
+ U−

td,1 − V −
td,1 ,

O(ε) = D2
(

W −
td,1

)

xx
+ U−

td,1 − W −
td,1 .

(41)
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The U -equation shows that the first order correction term U−
td,1 of the fast component in this

region is constant. In particular, for x ∈ I −
s we get

U−
td,1(x) = 1

2
(α + β − γ1) .

This allows us to solve the leading order parts of the slow equations of (41) explicitly and
we obtain

V −
td,1(x) = C−

s,V ex + 1

2
(α + β − γ1) , W −

td,1(x) = C−
s,W e

x
D + 1

2
(α + β − γ1) ,

for x ∈ I −
s and with C−

s,V and C−
s,W integration constants that are determined later (the two

other integration constant have been set to zero to ensure that the profiles stay bounded as
x → −∞). Similarly, we obtain that the first order correction terms in the second slow region
I +
s are given by

U−
td,1(x) = 1

2
(α + β − γ2) , V −

td,1(x) = C+
s,V e−x + 1

2
(α + β − γ2) ,

W −
td,1(x) = C+

s,W e− x
D + 1

2
(α + β − γ2) ,

with C+
s,v and C+

s,W two different integration constants.

We use the fast scaling ξ in the fast regions I ±
f , and substituting the regular expansion

(40) (in ξ ) into (12) gives

I ±
f :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O(ε) =
(

U−
td,1

)

ξξ
− 2U−

td,1 + (α + β − γ1,2) ,

O(ε) =
(

V −
td,1

)

ξξ
,

O(ε) = D2
(

W −
td,1

)

ξξ
.

The leading order part of the U -equations is solved by

U−
td,1(ξ) = 1

2
(α + β − γ1,2) + C±

f ,U e
√
2ξ + D±

f ,U e−√
2ξ ,

for ξ ∈ I ±
f and with C±

f ,U and D±
f ,U four different integration constants. The equations for

the slow components give

V −
td,1(ξ) = C±

f ,V + D±
f ,V ξ , W −

td,1(ξ) = C±
f ,W + D±

f ,W ξ , ξ ∈ I ±
f .

The solutions in the different regions—and their derivatives—should match at the bound-
aries of the particular slow and fast fields. Matching the fast U -component between the fast
and slowfields gives—to leading order—D−

f ,U = C+
f ,U = 0. To ensure that the profileU , and

its derivative, match over the defect point x = 0, we get C−
f ,U = −D+

f ,U = − 1
4 (γ2 −γ1). To

ensure the boundedness of the profiles of the slow components, we get D±
f ,V = D±

f ,W = 0

and matching at the defect point results in C−
f ,V = C+

f ,V and C−
f ,W = C+

f ,W . Finally,
matching the profiles of the V -component and their derivatives at the boundaries between
the fast and slow regions gives C+

f ,V = C−
s,V = −C+

s,V = − 1
4 (γ2 − γ1). Similarly,

C+
f ,W = C−

s,W = −C+
s,W = − 1

4 (γ2 − γ1).
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In summary, the trivial defect solution Z−
td = (U−

td , V −
td , W −

td)(x) (40) is, to leading order,
given by (−1,−1,−1), and the first order correction terms are given by

U−
td,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(α + β − γ1) , in I −

s ,

1

4
(γ1 − γ2)e

√
2x/ε + 1

2
(α + β − γ1) , in I −

f ,

1

4
(γ2 − γ1)e

−√
2x/ε + 1

2
(α + β − γ2) , in I +

f ,

1

2
(α + β − γ2) , in I +

s ,

V −
td,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
(γ1 − γ2)e

x + 1

2
(α + β − γ1) , in I −

s ,

−1

4
(γ1 + γ2) + 1

2
(α + β) , in I −

f ,

−1

4
(γ1 + γ2) + 1

2
(α + β) , in I +

f ,

1

4
(γ2 − γ1)e

−x + 1

2
(α + β − γ2) , in I +

s ,

and

W −
td,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
(γ1 − γ2)e

x/D + 1

2
(α + β − γ1) , in I −

s ,

−1

4
(γ1 + γ2) + 1

2
(α + β) , in I −

f ,

−1

4
(γ1 + γ2) + 1

2
(α + β) , in I +

f ,

1

4
(γ2 − γ1)e

−x/D + 1

2
(α + β − γ2) , in I +

s .

By applying both symmetries (7) and (8) to the above profile Z−
td , we get that, to leading

order, Z+
td (40) is given by (1, 1, 1), and the first order correction terms are given by

U+
td,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

2
(α + β + γ1) , in I −

s ,

1

4
(γ1 − γ2)e

√
2x/ε − 1

2
(α + β + γ1) , in I −

f ,

1

4
(γ2 − γ1)e

−√
2x/ε − 1

2
(α + β + γ2) , in I +

f ,

−1

2
(α + β + γ2) , in I +

s ,

V +
td,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
(γ1 − γ2)e

x − 1

2
(α + β + γ1) , in I −

s ,

−1

4
(γ1 + γ2) − 1

2
(α + β) , in I −

f ,

−1

4
(γ1 + γ2) − 1

2
(α + β) , in I +

f ,

1

4
(γ2 − γ1)e

−x − 1

2
(α + β + γ2) , in I +

s ,
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and

W +
td,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
(γ1 − γ2)e

x/D − 1

2
(α + β + γ1) , in I −

s ,

−1

4
(γ1 + γ2) + 1

2
(α + β) , in I −

f ,

−1

4
(γ1 + γ2) + 1

2
(α + β) , in I +

f ,

1

4
(γ2 − γ1)e

−x/D − 1

2
(α + β + γ2) , in I +

s .

Appendix B: Proof of Lemma 1

To prove Lemma 1 regarding the action functional of a local defect pulse solution Zr
p,ld

pinned to the right of the defect, we first need to determine the profile of Zr
p,ld . With a slight

abuse of notation, we split the spatial domain in four slow regions I 1,4,6,8s and four fast
regions I 2,3,5,7s :

I 1s := x ∈ (−∞,−√
ε] , I 2f := x ∈ (−√

ε, 0] ,
I 3f := x ∈ (0,

√
ε) , I 4s := x ∈ [√ε, xd − √

ε] ,
I 5f := x ∈ (xd − √

ε, xd + √
ε) , I 6s := x ∈ [xd + √

ε, xd + 2x∗ − √
ε]

I 7f := x ∈ (xd + 2x∗ − √
ε, xd + 2x∗ + √

ε) , I 8s := x ∈ [xd + 2x∗ + √
ε,∞) ,

(42)

with the pinning distance xd and the pulse width 2x∗ both positive and Θ(1) with respect
to ε. Since the defect (2) is small, it has no leading order influence on the profile of a
local defect pulse solution Zr

p,ld . So, Zr
p,ld is to leading order similar to the leading order

profile of the homogeneous pulse solution. In particular, upon using the regular expansion
Zr

p,ld = (Ur
p,ld,0, V r

p,ld,0, W r
p,ld,0) + ε(Ur

p,ld,1, V r
p,ld,1, W r

p,ld,1) + O(ε2), we get that

Ur
p,ld,0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 , in I 1s ∪ I 2f ∪ I 3f ∪ I 4s ,

tanh

(
x − xd√

2ε

)

, in I 5f ,

1 , in I 6s ,

− tanh

(
x − xd − 2x∗

√
2ε

)

, in I 7f ,

−1 , in I 8s ,

V r
p,ld,0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 +
(

ex−xd − ex−xd−2x∗)
, in I 1s ∪ I 2f ∪ I 3f ∪ I 4s ,

−e−2x∗
, in I 5f ,

1 −
(

ex−xd−2x∗ + e−(x−xd )
)

, in I 6s ,

−e−2x∗
, in I 7f ,

−1 +
(

e−(x−xd−2x∗) − e−(x−xd )
)

, in I 8s ,
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and

W r
p,ld,0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 +
(

e(x−xd )/D − e(x−xd−2x∗)/D
)

, in I 1s ∪ I 2f ∪ I 3f ∪ I 4s ,

−e−2x∗/D , in I 5f ,

1 −
(

e(x−xd−2x∗)/D + e−(x−xd )/D
)

, in I 6s ,

−e−2x∗/D , in I 7f ,

−1 +
(

e−(x−xd−2x∗)/D − e−(x−xd )/D
)

, in I 8s ,

see [23,52,54, e.g.]. To determine the next order correction terms, we use that—as for pinned
front solutions—the fast component is still slaved to the slow components in the slow fields,
see the first equation of (32). In particular, for x in the slow fields we have Ur

p,ld,1 =
− 1

2 (αV r
p,ld,0 + βW r

p,ld,0 + γ (x)). So,

Ur
p,ld,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(α + β − γ1) + 1

2
α

(
e−2x∗ − 1

)
ex−xd + 1

2
β

(
e−2x∗/D − 1

)
e(x−xd )/D , in I 1s ,

1

2
(α + β − γ2) + 1

2
α

(
e−2x∗ − 1

)
ex−xd + 1

2
β

(
e−2x∗/D − 1

)
e(x−xd )/D , in I 4s ,

−1

2
(α + β + γ2) + 1

2
α

(
ex−xd −2x∗ + e−(x−xd )

)

+1

2
β

(
e(x−xd −2x∗)/D + e−(x−xd )/D

)
, in I 6s ,

1

2
(α + β − γ2) − 1

2
α

(
e2x∗ − 1

)
e−(x−xd )

−1

2
β

(
e2x∗/D − 1

)
e−(x−xd )/D , in I 8s .

(43)

By the second and third equations of (32), the above expressions allow us to compute—up
to integration constants—the first order correction terms of the slow components in the slow
fields. We get

V r
p,ld,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(α + β − γ1) + 1

8
α(2x − 1)

(
1 − e−2x∗)

ex−xd

−1

2
β

D2

D2 − 1

(
1 − e−2x∗/D

)
e(x−xd )/D + Cv

1 ex , in I 1s ,

1

2
(α + β − γ2) + 1

8
α(2x − 1)

(
1 − e−2x∗)

ex−xd

−1

2
β

D2

D2 − 1

(
1 − e−2x∗/D

)
e(x−xd )/D + Dv

1ex + Dv
2e−x , in I 4s ,

−1

2
(α + β + γ2) + 1

8
α

(
ex−xd −2x∗ + e−(x−xd )

−2x
(

ex−xd −2x∗ − e−(x−xd )
))

+1

2
β

D2

D2 − 1

(
e(x−xd −2x∗)/D + e−(x−xd )/D

)
+ Ev

1ex + Ev
2e−x , in I 6s ,

1

2
(α + β − γ2) + 1

8
α(1 + 2x)

(
1 − e2x∗)

e−(x−xd )

+1

2
β

D2

D2 − 1

(
1 − e2x∗/D

)
e−(x−xd )/D + Fv

2 e−x , in I 8s ,

(44)
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and

W r
p,ld,1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(α + β − γ1) + 1

8
β

(
2x

D
− 1

) (
1 − e−2x∗/D

)
e(x−xd )/D

+1

2
α

1

D2 − 1

(
1 − e−2x∗)

ex−xd + Cw
1 ex/D , in I 1s ,

1

2
(α + β − γ2) + 1

8
β

(
2x

D
− 1

) (
1 − e−2x∗/D

)
e(x−xd )/D

+1

2
α

1

D2 − 1

(
1 − e−2x∗)

ex−xd + Dw
1 ex/D + Dw

2 e−x/D , in I 4s ,

−1

2
(α + β + γ2) + 1

8
β

(
e(x−xd−2x∗)/D + e−(x−xd )/D

−2
x

D

(
e(x−xd−2x∗)/D − e−(x−xd )/D

))

−1

2
α

1

D2 − 1

(
ex−xd−2x∗ + e−(x−xd )

)
+ Ew

1 ex/D + Ew
2 e−x/D , in I 6s ,

1

2
(α + β − γ2) + 1

8
β

(

1 + 2x

D

) (
1 − e2x∗/D

)
e−(x−xd )/D

−1

2
α

1

D2 − 1

(
1 − e2x∗)

e−(x−xd ) + Fw
2 e−x/D , in I 8s .

(45)

Similar to the front case, the slow components—and their derivatives—do not change in the
fast fields. Therefore, we require that they match up at the boundaries of the slow fields. This
results in twelve conditions that determine the twelve unknown integration constants of (44)
and (45). In the end, we find that

Cv
1 = 1

4
(γ1 − γ2) + 1

8

(
e−2x∗ − 1

)(

3α + 2αxd − 4β
1

D2 − 1

)

e−xd + 1

2
αx∗e−(xd+2x∗) ,

Dv
1 = 1

8

(
e−2x∗ − 1

)(

3α + 2αxd − 4β
1

D2 − 1

)

e−xd + 1

2
αx∗e−(xd+2x∗) ,

Dv
2 = 1

4
(γ2 − γ1) ,

Ev
1 = 1

8

(

3α + 2αxd + 4αx∗ − 4β
1

D2 − 1

)

e−(xd+2x∗) ,

Ev
2 = 1

4
(γ2 − γ1) + 1

8

(

3α − 2αxd − 4β
1

D2 − 1

)

exd ,

Fv
2 = 1

4
(γ2 − γ1) + 1

8

(
1 − e2x∗)

(

3α − 2αxd − 4β
1

D2 − 1

)

exd + 1

2
αx∗exd+2x∗

,
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and, similarly,

Cw
1 = 1

4
(γ1 − γ2) + 1

8

(
e−2x∗/D − 1

)(

4α
D2

D2 − 1
+ 3β + 2β

xd

D

)

e−xd/D

+1

2
β

x∗

D
e−(xd+2x∗)/D ,

Dw
1 = 1

8

(
e−2x∗/D − 1

)(

4α
D2

D2 − 1
+ 3β + 2β

xd

D

)

e−xd/D + 1

2
β

x∗

D
e−(xd+2x∗)/D ,

Dw
2 = 1

4
(γ2 − γ1) ,

Ew
1 = 1

8

(

4α
D2

D2 − 1
+ 3β + 2β

xd

D
+ 4β

x∗

D

)

e−(xd+2x∗)/D ,

Ew
2 = 1

4
(γ2 − γ1) + 1

8

(

4α
D2

D2 − 1
+ 3β − 2β

xd

D

)

exd/D ,

Fw
2 = 1

4
(γ2 − γ1) + 1

8

(
1 − e2x∗/D

)(

4α
D2

D2 − 1
+ 3β − 2β

xd

D

)

exd/D

+1

2
β

x∗

D
e(xd+2x∗)/D .

What remains to determine are the next order correction terms of the fast component in the
fast fields. We first look into the fast fields I 2,3f around the defect. The fast equation in these

fields, in the fast variable ξ , are given by the first equation of (12)—with γ (x) = γ1 in I 2f
and γ (x) = γ2 in I 3f . Plugging in the regular expansions for the local defect pulse solution
Zr

p,ld—and recalling that the slow components are constant in the fast fields—we get at the
O(ε)-level:

(
Ur

p,ld,1

)

ξξ
= 2Ur

p,ld,1 − α
(
1 +

(
e−2x∗ − 1

)
e−xd

)

− β
(
1 +

(
e−2x∗/D − 1

)
e−xd/D

)
+

{
γ1 , in I 2f ,

γ2 , in I 3f .

The solutions to these equations are given by

Ur
p,ld,1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2e
√
2ξ + B2e−√

2ξ + 1

2
α

(
1 +

(
e−2x∗ − 1

)
e−xd

)

+1

2
β

(
1 +

(
e−2x∗/D − 1

)
e−xd/D

)
− 1

2
γ1 , in I 2f ,

A3e
√
2ξ + B3e−√

2ξ + 1

2
α

(
1 +

(
e−2x∗ − 1

)
e−xd

)

+1

2
β

(
1 +

(
e−2x∗/D − 1

)
e−xd/D

)
− 1

2
γ2 , in I 3f .

MatchingUr
p,ld,1 at the left boundary of I 2f withUr

p,ld,1 (43) at the right boundary of I 1s gives

B2 = 0. Similarly, matching at the right boundary of I 3f with the left boundary of I 4s gives

A3 = 0. Matching Ur
p,ld,1, as well as its derivative, at ξ = 0 gives −A2 = B3 = 1

4 (γ2 − γ1).

Finally, the fast correction terms over the jump regions I 5,7f can, as for a local defect front
solution, be set to zero since the fast equations over these fields have no O(ε)-correction
terms.
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To compute the action functional Jp(Zr
p,ld) (38) and finalise the proof of Lemma 1, we

split the action functional integral (15) according to the four slow and four fast regions (42)

Jp =
∫

I 1s
· dx

︸ ︷︷ ︸

:=J 1
p

+
∫

I 2f

· dx

︸ ︷︷ ︸

:=J 2
p

+
∫

I 3f

· dx

︸ ︷︷ ︸

:=J 3
p

+
∫

I 4s
· dx

︸ ︷︷ ︸

:=J 4
p

+
∫

I 5f

· dx

︸ ︷︷ ︸

:=J 5
p

+
∫

I 6s
· dx

︸ ︷︷ ︸

:=J 6
p

+
∫

I 7f

· dx

︸ ︷︷ ︸

:=J 7
p

+
∫

I 8s
· dx

︸ ︷︷ ︸

:=J 8
p

.

(46)

By using the observations of Sect. 2.2 and the profile of a local defect pulse solution Zr
p,ld

constructed above, we compute the eight integrals J i
p = εJ i

p,1 + ε2 J i
p,2 + O(ε2

√
ε), i =

1, 2, . . . , 8 of (46)8. We start with the integrals over the slow fields. The integral over the
first slow field I 1s gives J 1

p = εJ 1
p,1 + ε2 J 1

p,2 + O(ε2
√

ε) with, by (19) and (20),

J 1
p,1 =

∫

I 1s

L1(U
r
p,ld ; ūγ1)dx

=
∫

I 1s

−1

2
α

(
ex−xd − ex−xd−2x∗) + 1

2
β

(
e(x−xd )/D − e(x−xd−2x∗)/D

)
dx

= −1

2

(
αe−xd

(
1 − e−2x∗) + β De−xd/D

(
1 − e−2x∗/D

))

+ 1

2

(
αe−xd

(
1 − e−2x∗) + βe−xd/D

(
1 − e−2x∗/D

))√
ε

− 1

4

(

αe−xd
(
1 − e−2x∗) + β

D
e−xd/D

(
1 − e−2x∗/D

))

ε + O(ε
√

ε) ,

and

J 1
p,2 =

∫

I 1s

L2(U
r
p,ld ; ūγ1)dx

= −1

2
αβ

1

D2 − 1

(
e−xd − e−(xd+2x∗) − D3e−xd/D + D3e−(xd+2x∗)/D

)

+ 1

8
α2

(
(3 + xd)

(
1 − e−2x∗)

e−xd − 2x∗e−(xd+2x∗)
)

+ 1

8
β2

(
(3D + xd)

(
1 − e−2x∗/D

)
e−xd/D − 2x∗e−(xd+2x∗)/D

)

+ 1

8
γ1

(
α

(
−1−2e−xd +2e−(xd+2x∗)

)
+β D

(
−1 − 2e−xd/D + 2e−(xd+2x∗)/D

))

+ 1

8
γ2(α + β D) + O(

√
ε).

Similarly, the integral over the second slow field I 4s gives

J 4
p,1 = −1

2

(
α

(
1 − e−xd

) (
1 − e−2x∗) + β D

(
1 − e−xd/D

) (
1 − e−2x∗/D

))

+ 1

2

(
α

(
1 + e−xd

) (
1 − e−2x∗) + β

(
1 + e−xd/D

) (
1 − e−2x∗/D

))√
ε

− 1

4

(

α
(
1 − e−xd

) (
1 − e−2x∗) + β

D

(
1−e−xd/D

) (
1 − e−2x∗/D

))

ε+O(ε
√

ε),

8 We do not show all the details of the computations since these are very similar to the computations for the
front case.
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and

J 4
p,2 = 1

2
αβ

1

D2 − 1

(
− (

1 − e−xd
) (

1 − e−2x∗) + D3
(
1 − e−xd/D

) (
1 − e−2x∗/D

))

+ 1

8
α2

(
3

(
1 − e−xd

) (
1 − e−2x∗)−xde−xd

(
1 − e−2x∗) − 2x∗e−2x∗ (

1 − e−xd
))

+ 1

8
β2

(
3D

(
1 − e−xd/D

) (
1 − e−2x∗/D

)
− xde−xd/D

(
1 − e−2x∗/D

))

− 1

4
β2x∗e−2x∗/D

(
1 − e−xd/D

)
+ 1

8
γ1

(
α

(
1 − e−xd

) + β D
(
1 − e−xd/D

))

− 1

8
γ2

(
α

(
1−e−xd

) (
3−2e−2x∗)+β D

(
1−e−xd/D

) (
3−2e−2x∗/D

))
+ O(

√
ε).

The integral over the third slow region I 6s gives

J 6
p,1 = −α

(
1 − e−2x∗) − β D

(
1 − e−2x∗/D

)
+ 4γ2x∗

+
(
α

(
1 + e−2x∗) + β

(
1 + e−2x∗/D

)
− 4γ2

)√
ε

+
(

−1

2
α

(
1 − e−2x∗) − 1

2

β

D

(
1 − e−2x∗/D

))

ε + O(ε
√

ε),

and

J 6
p,2 = αβ

1

D2 − 1

(
−

(
1 − e−2x∗) + D3

(
1 − e−2x∗/D

))

+ 1

4
α2

(
3 − 3e−2x∗ − 2x∗e−2x∗)

+ 1

4
β2

(
3D − 3De−2x∗/D − 2x∗e−2x∗/D

)

− 1

8
γ1

(
αe−xd

(
1 − e−2x∗) + β De−xd/D

(
1 − e−2x∗/D

))

+ 1

8
γ2

(
α

(
4 − 16x∗ + e−xd − 4e−2x∗ − e−(xd+2x∗)

))

+ 1

8
γ2

(
β

(
4D − 16x∗ + De−xd/D − 4De−2x∗/D − De−(xd+2x∗)/D

))
+ O(

√
ε).

The integral over the last slow field I 8s gives

J 8
p,1 = −1

2

(
α

(
1 − e−2x∗) + β D

(
1 − e−2x∗/D

))

+ 1

2

(
α

(
1 − e−2x∗) + β

(
1 − e−2x∗/D

))√
ε

− 1

4

(

α
(
1 − e−2x∗) + β

D

(
1 − e−2x∗/D

))

ε + O(ε
√

ε),
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and

J 8
p,2 = 1

2
αβ

1

D2 − 1

(
−

(
1 − e−2x∗) + D3

(
1 − e−2x∗/D

))

+ 1

8
α2

(
3 − 3e−2x∗ − 2x∗e−2x∗)

+ 1

8
β2

(
3D − 3De−2x∗/D − 2x∗e−2x∗/D

)

+ 1

8
γ1

(
αe−(xd+2x∗) + β De−(xd+2x∗)/D

)

− 1

8
γ2

(
α

(
2 − 2e−2x∗ + e−(xd+2x∗)

))

− 1

8
γ2

(
β D

(
2 − 2e−2x∗/D + e−(xd+2x∗)/D

))
+ O(

√
ε).

Next, we compute the integrals over the four fast fields. The leading order computation of

the action functional over the fast fields yields 4
√
2

3 ε—see [52] and (30)—and to determine
the next order term we use (23). Around the defect point we get

J 2
p = ε

∫

I 2f

L̄0(U
r
p,ld ; ūγ1)dξ + ε2

∫

I 2f

L̄1(U
r
p,ld ; ūγ1)dξ

= −1

2
ε2

∫ 0

−1/
√

ε

(
α

(
e−xd − e−xd−2x∗) + β

(
e−xd/D − e−(xd+2x∗)/D

))
dξ

+ O(ε2
√

ε)

= −1

2

(
α

(
e−xd − e−xd−2x∗) + β

(
e−xd/D − e−(xd+2x∗)/D

))
ε
√

ε + O(ε2
√

ε) ,

and

J 3
p = −1

2

(
α

(
e−xd − e−xd−2x∗) + β

(
e−xd/D − e−(xd+2x∗)/D

))
ε
√

ε

+ O(ε2
√

ε) .

The integral over the first fast jump, see also [52] and (30), gives

J 5
p = ε

∫

I 5f

L̄0(U
r
p,ld ; ūγ2)dξ + ε2

∫

I 5f

L̄1(U
r
p,ld ; ūγ2)dξ

= 2
√
2

3
ε + ε2

∫ 1/
√

ε

−1/
√

ε

(
1

2
α

(
−e−2x∗

tanh (ξ/
√
2) − 1

)

+1

2
β

(
−e−2x∗/D tanh (ξ/

√
2) − 1

)
+ γ2(tanh (ξ/

√
2) + 1)

)

dξ + O(ε2
√

ε)

= 2
√
2

3
ε + (−α − β + 2γ2) ε

√
ε + O(ε2

√
ε) .

Similarly,

J 7
p = 2

√
2

3
ε + (−α − β + 2γ2)ε

√
ε + O(ε2

√
ε) .
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So, adding the contributions of the slow and fast fields to the action functional together
gives the action functional Jp(Ur

p,ld) (38) of a local defect pulse solution Zr
p,ld pinned to the

right of the defect. As expected, the O(ε
√

ε)-terms of the action functional from the slow
and fast fields cancel out. This completes the proof of Lemma 1. ��
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