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This article proposes a topological method that extracts hierarchi-
cal structures of various amorphous solids. The method is based on
the persistence diagram (PD), a mathematical tool for capturing
shapes of multiscale data. The input to the PDs is given by an
atomic configuration and the output is expressed as 2D histo-
grams. Then, specific distributions such as curves and islands in
the PDs identify meaningful shape characteristics of the atomic
configuration. Although the method can be applied to a wide
variety of disordered systems, it is applied here to silica glass,
the Lennard-Jones system, and Cu-Zr metallic glass as standard
examples of continuous random network and random packing
structures. In silica glass, the method classified the atomic rings as
short-range and medium-range orders and unveiled hierarchical
ring structures among them. These detailed geometric character-
izations clarified a real space origin of the first sharp diffraction
peak and also indicated that PDs contain information on elastic
response. Even in the Lennard-Jones system and Cu-Zr metallic
glass, the hierarchical structures in the atomic configurations were
derived in a similar way using PDs, although the glass structures
and properties substantially differ from silica glass. These results
suggest that the PDs provide a unified method that extracts greater
depth of geometric information in amorphous solids than
conventional methods.

amorphous solid | hierarchical structure | persistent homology |
persistence diagram | topological data analysis

The atomic configurations of amorphous solids are difficult to
characterize. Because they have no periodicity as found in

crystalline solids, only local structures have been analyzed in
detail. Although short-range order (SRO) defined by the nearest
neighbor is thoroughly studied, it is not sufficient to fully un-
derstand the atomic structures of amorphous solids. Therefore,
medium-range order (MRO) has been discussed to properly
characterize amorphous solids (1–3). Many experimental and
simulation studies (4–7) have suggested signatures of MRO such
as a first sharp diffraction peak (FSDP) in the structure factor of
the continuous random network structure, and a split second
peak in the radial distribution function of the random packing
structure. However, in contrast to SRO, the geometric inter-
pretation of MRO and the hierarchical structures among dif-
ferent ranges are not yet clear.
Among the available methods, the distributions of bond angle

and dihedral angle are often used to identify the geometry be-
yond the scale of SRO. They cannot, however, provide a com-
plete description of MRO because they only deal with the atomic
configuration up to the third nearest neighbors. Alternatively,
ring statistics are also applied as a conventional combinatorial
topological method (2, 8, 9). However, this method is applicable
only for the continuous random network or crystalline structures,
and furthermore it cannot describe length scale. Therefore,
methodologies that precisely characterize hierarchical structures
beyond SRO and are applicable to a wide variety of amorphous
solids are highly desired.

In recent years, topological data analysis (10, 11) has rapidly
grown and has provided several tools for studying multiscale data
arising in physical and biological fields (11–16). A particularly
important tool in the topological data analysis is persistence di-
agram (PD), a visualization of persistent homology as a 2D
histogram (e.g., see Fig. 2). The input to the PD is given by
an atomic configuration with scale parameters, and the output
consists of various multiscale information about topological
features such as rings and cavities embedded in the atomic
configuration. Here, the atomic configurations are generated
by molecular dynamics simulations in this article. Importantly,
in contrast to other topological tools, PDs not only count to-
pological features but also provide the scales of these features.
Hence, PDs can be used to classify topological features by their
scales and clarify geometric relationships among them; this is
presumably the most desired function for deeper analysis of
amorphous structures.
This article proposes a method using PDs for various amor-

phous solids in a unified framework. The method is applied to
atomic configurations and enables one to study hierarchical
geometry embedded in amorphous structures that cannot be
treated by conventional methods. We first applied the method to
silica glass as an example of the continuous random network
structure and obtained the following results. (i) We found three
characteristic curves in the PD of silica glass. These curves
classify the SRO rings in the SiO4 tetrahedra and the MRO rings
constructed by those tetrahedra. Furthermore, a hierarchical re-
lationship among the SRO and MRO rings was elucidated.
(ii) The PD reproduced the wavelength of the FSDP and clarified
a real space origin of the FSDP. (iii) Each curve in the PD rep-
resents a geometric constraint on the ring shapes and, as an
example, an MRO constraint on rings consisting of three oxygen
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atoms was explicitly derived as a surface in a parameter space of
the triangles. Moreover, we verified that these curves are pre-
served under strain, indicating that the PD properly encodes the
material property of elastic response. Next, as examples of the
random packing structure, the Lennard-Jones (LJ) system and
Cu-Zr metallic glass were studied by the PDs, and we clarified
the following. (iv) These amorphous solids were also character-
ized well by the distributions of curves and islands in the PDs.
(v) In the LJ system, the global connectivity of dense packing
regions was revealed by dualizing octahedral arrangements. (vi) In
Cu-Zr alloys, we found that the pair-distribution function defined
by the octahedral region in the PD shows the split second peak.
Furthermore, a relationship between the hierarchical ring struc-
ture and high glass-forming ability was discovered in Cu-Zr alloys.

PDs of Atomic Configuration
The input to PDs is a pair A= ðQ,RÞ of an atomic configuration
Q= ðx1, . . . , xNÞ and a parameter set R= ðr1, . . . , rNÞ. Here, xi
and ri are the position in R3 and the input radius for the ith atom,
respectively. To characterize the multiscale properties in Q, we

introduce a parameter α, which controls resolution, and generate a
family of atomic balls BiðαÞ= fx∈R3

��kx− xik≤ riðαÞg having the
radius riðαÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
α+ r2i

q
. We vary the radii of the atomic balls by

α and detect rings and cavities at each α, where α≥ αmin :=
−minfr21, . . . , r2Ng.
Let ck be a ring or cavity constructed in the atomic ball model

BðαÞ=∪N
i=1BiðαÞ at a parameter α. To be more precise, a ring

[respectively (resp.) cavity] here means a generator of the ho-
mology H1ðBðαÞÞ [resp. H2ðBðαÞÞ] with a field coefficient (17).
Then, we observe that there is a value α= bk (resp. α= dk) at
which ck first appears (resp. disappears) in the atomic ball model.
The values bk and dk are called the birth and death scales of ck,
respectively. The collection of all of the ðbk, dkÞ∈R2 of rings
(resp. cavities) is the PD denoted by D1ðAÞ [resp. D2ðAÞ] for A
(Fig. 1). It follows from the structure theorem of persistent ho-
mology (11) that the PDs are uniquely defined from the input.
From this construction, ðbk, dkÞ encodes certain scales of each ck.
For example, in D1ðAÞ, bk indicates the maximum distance between
two adjacent atoms in the ring ck, whereas dk indicates the size of ck.
In this article, our basic strategy is that we transform a com-

plicated atomic configuration into PDs and try to identify mean-
ingful shape information from specific distributions such as curves
or islands in the PDs. Namely, we reconstruct characteristic atomic
subsets from each distribution. To this aim, we compute the op-
timal cycle for each point ðbk, dkÞ∈DℓðAÞ on the distribution.
Mathematically speaking, for a given homology generator ck of
ðbk, dkÞ, the optimal cycle is obtained by solving a minimizing
problem in the representatives of ck under ℓ1-norm (see refs. 18
and 19). Our method combining PDs with optimal cycles provides
a tool to study inverse problems of PDs and effectively works in the
geometric analysis of glass structures, as we will see shortly.
For a mathematically rigorous introduction of these concepts

see Supporting Information or refs. 10 and 11. In this article, the
PDs are computed by CGAL (20) and PHAT (21).

PDs for Continuous Random Network Structure
Fig. 2 shows the PDs D1ðAliqÞ, D1ðAamoÞ, and D1ðAcryÞ of a liquid
Aliq = ðQliq,RliqÞ, an amorphous Aamo = ðQamo,RamoÞ, and a crys-
talline Acry = ðQcry,RcryÞ state of silica, respectively. Here, the
horizontal and vertical axes are the birth and death scales, respec-
tively, and the multiplicity of the PDs is plotted on a logarithmic
scale. The configurations Qliq, Qamo, and Qcry are acquired by
molecular dynamics simulations using the Beest–Kramer–Santen
(BKS) model (22). The input radii R are set to be rO = 1.275 Å
and rSi = 0.375 Å for each type of the atom (O or Si), which were
determined from the first peak positions of the partial radial
distribution functions of the amorphous configuration Qamo. The

Fig. 1. Atomic balls (Top) and the PD D1ðAÞ (Bottom). New rings appear at
αi   ði= 2,3,4,5Þ, and the dashed rings express the disappearance. This is a
schematic illustration showing the rings on CP (red), CT (blue), CO (yellow),
and BO (green) in silica glass. The large and small balls correspond to oxygen
and silicon atoms, respectively.

Fig. 2. PDs of the liquid (Left), amorphous (Middle), and crystalline (Right) states with the multiplicity on the logarithmic scale. In the amorphous state, the
three characteristic curves and one band region are labeled CP,CT,CO, and BO, respectively. The insets in D1ðAamoÞ show rings in the hierarchical relationship,
where the red and blue spheres represent oxygen and silicon atoms, respectively.
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details of the molecular dynamics simulations and input radii are
given in Supporting Information.
We discovered that the PDs in Fig. 2 distinguish these three

states. The liquid, amorphous, and crystalline states are charac-
terized by planar (2-dim), curvilinear (1-dim), and island (0-dim)
regions of the distributions, respectively. Here, the 0 and 2 di-
mensionality of the PDs result from the periodic and random
atomic configurations of the crystalline and liquid states, re-
spectively. Furthermore, we emphasize that the presence of the
curves in D1ðAamoÞ clearly distinguishes the amorphous state
from the others. This implies that specific geometric features of
the rings generating the curves in D1ðAamoÞ play a significant role
for elucidating amorphous states.
As shown in Fig. 2, D1ðAamoÞ contains three characteristic

curves CP, CT, and CO and one band region BO, which are pre-
cisely characterized by using the invariance property with respect
to the initial radius (15). These particular distributions, espe-
cially CO, start to become isolated near the glass transition
temperature T =Tg (Supporting Information). Through further
analysis of the persistent homology using optimal cycles, we
found the following three geometric characterizations. (i) The
rings on CP generate secondary rings on CT,CO, and BO (P is
named after “primary”). That is, by increasing the parameter α,
each ring on CP becomes thicker and starts to create new rings
by pinching itself, and these newly generated rings appear on
CT,CO, and BO (a schematic illustration of the pinching process
is described in Fig. 1). This indicates a hierarchical structure
from CP to CT,CO, and BO in the continuous random network.
An example of the rings in this hierarchical relationship is
depicted in the inset of D1ðAamoÞ. (ii) The rings on CT are
constructed by tetrahedra consisting of four oxygen atoms at the
vertices with one silicon atom at the center. (iii) The rings on CO
and BO are constructed only by the oxygen atoms (three and
more, respectively). Recalling that the death scale indicates the
size of rings, the rings on CT are classified as SRO, whereas those
on CP, CO, and BO are classified as MRO.

Decomposition of FSDP
The FSDP observed in the structure factor SðqÞ (q∼ 1.5–2 Å

−1
)

has been supposed to be a signature of MRO, but its real space
origin is still controversial (4). Here, we found that the distri-
butions CP, CO, and BO of the MRO rings reproduce the q values
of the FSDP fairly well. Moreover, we classified the MRO rings
as a real space origin of the FSDP.
We first note that the death scales of the rings on CP, CO, and

BO are determined only by the oxygen atoms, and this is directly
verified by the PD computation. In addition, recall that α is the
parameter controlling the radius riðαÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
α+ r2i

q
of the ith

atomic ball BiðαÞ, and the death scale α= dk indicates the size of
the individual ring ck. More precisely, the ring ck disappears

at α= dk by being covered up in the atomic ball model ∪N
i=1BiðαÞ.

Hence ℓðdkÞ= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dk + r2O

q
measures the size of ck on CP, CO, and

BO, where rO is the input radius of the oxygen atom.
From the aforementioned argument, we define a distribution

MAi ðqÞ=
1
jAij

X
ðbk , dkÞ∈Ai

δ

�
q−

2π
ℓðdkÞ

�
,

where A1 =CP ∪CO ∪BO, A2 =CP, A3 =CO, and A4 =BO, and
jAij is the number of the elements in Ai. Here, δ is the Dirac
delta function, which is used to count the contribution of each
MRO ring in q-space.
Fig. 3 shows the plots of MAiðqÞ and the structure factor SðqÞ

around the FSDP. We found good agreement between the
q values of the FSDP and the peak of MA1ðqÞ. This implies
that the MRO rings composed of CO, CP, and BO are the real
space origin of the FSDP. We also note that the distributions
MA3ðqÞ,MA2ðqÞ,MA4ðqÞ are located on the large, medium, and
small q values and, hence, the rings in CO, CP, and BO provide a
decomposition of the FSDP into those q values, respectively. It
should be emphasized that the MAiðqÞ are derived from the
configuration of the oxygen atoms only. This shows that the con-
figuration of oxygen atoms plays a significant role in the FSDP.
Furthermore, the invariant property (15) of ℓðdkÞ for the rings on
CP, CO, and BO induces that of MAiðqÞ under the choice of the
input radius rO. This means that our analysis using PDs does not
contain any artificial ambiguity of the input radii.

Curves and Shape Constraints
The presence of curves CP, CT, and CO in D1ðAamoÞ clearly dis-
tinguishes the amorphous state from the crystalline and liquid
states. We emphasize here that this characteristic property shows
the constraints on the shapes of the rings induced by the normal
directions of these curves.
For example, the shape of a ring on CO, which consists of

three oxygen atoms (Fig. 4, Right), is determined by specifying
the first and second minimum edge lengths d1 and d2 (d1 < d2)
and the angle θ between them, and hence is realized in a 3D pa-
rameter space. Then, the constraint for CO to be the curve re-
quires that these three variables ðd1, d2, θÞ satisfy a certain relation
f ðd1, d2, θÞ= 0, and hence provides a restriction on the shape of
the O-O-O triangles. Fig. 4 shows a plot of ðd1, d2, θÞ for the
O-O-O triangles on CO in D1ðAamoÞ, and we found a surface
corresponding to this constraint f ðd1, d2, θÞ= 0 in the parameter
space. This demonstrates one of the medium-range geometric
structures in the amorphous state. It is worth noting that this
previously unidentified characterization of MRO of O-O-O tri-
angles in 3D parameter space cannot be derived by separately
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Fig. 3. The distributions MAi ðqÞ (i= 1,2,3,4) and the structure factor SðqÞ
around the FSDP.

Fig. 4. Plot of ðd1,d2, θÞ for the O-O-O triangles on CO.
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analyzing the conventional distributions of lengths or angles,
because each of them can only deal with the single parameter.

Response Under Strain
The presence of the curves also indicates variations in the shapes
of the rings. That is, by following each curve along its tangential
direction and studying its rings, we can observe the deformation
of the rings. It is reasonable to suppose that these variations are
due to thermal fluctuations, and hence the deformations of the
ring configurations along the curves are probably softer than
those in the normal directions. Consequently, the response under
strain is expected to follow the same shape constraints.
To verify this mechanical response of PDs, we performed

simulations of isotropic compression for our amorphous state
and computed the PD of the strained state. The strain is set to be
1% of the original volume, which is sufficiently small to satisfy a
linear response relation with the stress. The three panels on the
top in Fig. 5 show the contours of the histograms restricted on
CP, CO, and CT for the original configuration Qamo of the
amorphous state (black), for the strained state Qstrain

amo (red), and
for the artificial 1% linear shrink Qlinear

amo of the original coordi-
nates (blue), respectively. The contours of CO are depicted on
the coordinates along the tangential direction. The bottom three
panels in Fig. 5 show the projections of the histograms on their
normal axes.
Fig. 5 shows that the contours of the strained state shift along

the original curves CP, CO, and CT in D1ðAamoÞ (i.e., downward in
CP, leftward in CO, and almost fixed in CT, respectively). This is
in contrast to a linear shrink, in which the contours simply move
in the direction of decreasing both birth and death scales because
of the uniform shrink of the system size. This strongly suggests
that the configuration Qstrain

amo reflects the shape constraints and
supports the expected mechanical response of PDs. We also note
from the figures of Qstrain

amo that the contour of CT is almost fixed
compared with those of CP and CO. Because CP and CO (CT) are
classified as MRO (SRO), this implies that MRO is mechanically
softer than SRO. Here, we remark that we can observe a similar
behavior of the PDs for a shear deformation.

We have revealed that PDs encode information about elastic
response, similar to how the radial distribution function encodes
volume compressibility (23). It should also be emphasized that
the curves or islands appear in the PDs of only the solids. This
evidence suggests that these isolated distributions are related to
the rigidity of the materials. This hypothesis follows from the fact
that isolations represent geometric constrains reflecting me-
chanical responses. Future numerical and theoretical studies to
unravel this relationship would be of great value.

PDs for Random Packing Structures
We next study the geometry of amorphous states close to ran-
dom packing structures. In this case, we found that both D1 and
D2 capture characteristic features of the amorphous structures.
Fig. 6 shows the PDs DiðALJ

cryÞ and DiðALJ
amoÞ for i= 1,2 of the

monodisperse LJ system in the crystalline and the amorphous
states, respectively. The input radii r= r1 = . . . = rN in R are set
to be zero, because changing r only causes translations of the
PDs for the single component system. The details of the simu-
lation are explained in Supporting Information.
Similar to the case of silica, the crystalline structure is char-

acterized by the island distributions in the PDs (top panels in Fig.
6). They correspond to the regular triangles in D1ðALJ

cryÞ and the
regular octahedra, the regular tetrahedra, and the quartoctahe-
dra (24) in D2ðALJ

cryÞ of the face-centered cubic (FCC) configu-
ration. For the amorphous structure, the curves in D1ðALJ

amoÞ and
D2ðALJ

amoÞ represent variations of triangles and tetrahedra, re-
spectively. We also note that the isolation of the octahedral
distribution is preserved well even in D2ðALJ

amoÞ. Its peak is sep-
arated from the curve of the tetrahedra (bottom right panel in
Fig. 6), demonstrating the quantitative classification into two
typical local structures of different-sized cavities.
In random packings, it is known that the atomic configuration

can be divided into dense packing regions built from tetrahedra
and the complement that patches those regions together (25). In
particular, the network structure of the dense packing regions
characterizes the global connectivity beyond MRO, which has
not yet been investigated in detail. Note that D2ðALJ

amoÞ clearly
separates the dense packing regions as the deformation curve of
the tetrahedra and identifies the octahedral island as the main
component of the complement structure. From the Alexander
duality in R3 (e.g., ref. 17), the connectivity of the dense pack-
ing regions can be studied by the cavities of the complement.

Å

Å

C

Å

Å

C

Å

Å

C

Å

Å

C

Å

Å

C

Å

Å

C

Å

Å

CÅ

Å

CÅ

Å

C

Å C

Å

C

 0.142

 0.144

 0.146

 0.148

 0.15

D
ea

th
 [Å

2 ]

CT

Fig. 5. (Top) Contour plots of CP, CO, and CT for the original configuration
Qamo of the amorphous state (black), the 1% strained state Qstrain

amo (red), and
the artificial 1% linear shrink of the original coordinates Qlinear

amo (blue), re-
spectively. (Bottom) Projections of the histograms on the normal directions.

Fig. 6. PDs for the LJ system with the multiplicity on the logarithmic scale.
Left and right panels correspond to D1 and D2, respectively. Top panels
correspond to FCC crystal at T = 0.1 and bottom panels correspond to
amorphous state at T = 10−3.
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Namely, we first extract all octahedra from the octahedral island
in D2ðALJ

amoÞ and construct a new set of points ALJ
oct = ðQLJ

oct,R
LJ
octÞ

by putting a point at the center of each octahedron (Fig. 7, Left).
Here, we set RLJ

oct to be zero, because the SD of the octahedral
sizes is very small.
Fig. 7, Right shows D2ðALJ

octÞ, and we clearly observe that al-
most all cavities are located close to the diagonal. This means
that the octahedral distribution rarely generates persistent cavi-
ties, and hence by the duality we can conclude that the dense
packing regions mostly construct a giant connected network. It
should be remarked that the dual treatment is much easier and
computationally more efficient than directly studying the in-
tricate huge network structures. We also emphasize that the
analysis here of treating the octahedra as a new input is an it-
erative use of the PD method and can be an effective approach
for studying multiscale geometry.
As an example of multicomponent systems, we also studied

metallic glasses composed of Cu and Zr (26), in particular, fo-
cusing on Cu50Zr50 and Cu15Zr85, which display the different
glass-forming ability. The PDs for these alloys are shown in Fig. 8.
The input radii for Cu and Zr are set to be 1.30 Å and 1.55 Å,
respectively, for the multicomponent PDs (Fig. 8, Top). These
values are obtained by the same procedure as for the silica.
Even in the multicomponent system, the PDs basically show
similar behaviors to those of the LJ system. Specifically, the island
distribution corresponding to octahedra appears in D2ðACu50Zr50

amo Þ
and the characteristic curves are also observed in D1ðACu50Zr50

amo Þ and
D2ðACu50Zr50

amo Þ.
In the random packing structure, the split second peak of the

radial distribution function has been supposed to be a signature of
MRO (27). The shaded region of the radial distribution function in
Fig. 9, Bottom shows the split second peak of Cu50Zr50. Then, we
found that the pair-distance distribution of the atoms of generators
in B : = ½0.92, 1.05�× ½1.76, 2.01�⊂D2ðACu50Zr50

amo Þ also shows a clear
splitting of the distribution (black line in Fig. 9, Top) in the same
length scale. Here, B is chosen to be a region around the octahe-
dral distribution. Meanwhile the pair-distance distribution of gen-
erators other than B shows a slight change there (pink line in Fig.
9). This means that the generators around the octahedral distri-
bution play a significant role for the split second peak. Therefore,
similar to the FSDP in the silica, this result demonstrates that the
PDs classify the length scale of MRO from other scales.
We also studied the PDs of only the Zr component. The PD

D1 for Zr in Cu50Zr50 (Fig. 8, Middle Left) represents the exis-
tence of a hierarchical MRO structure similar to that of the silica
in Fig. 2, whereas the PD D1 for Zr in Cu15Zr85 (Fig. 8, Bottom
Left) does not show any hierarchical curves. An example of the
hierarchical rings in Cu50Zr50 is depicted as the insets in the PD.

We here remark that Cu50Zr50 has higher glass-forming ability
than Cu15Zr85 (28). Relationships between the glass-forming
ability and the geometric structure are now actively studied (e.g.,
ref. 29). Then, this result suggests another possibility that the
presence of the hierarchical MRO structure extracted from PDs is
also related to the glass-forming ability of the alloy. In view of the
results that the hierarchical MRO structure in PDs plays an im-
portant role for characterizing the glass states in SiO2, this state-
ment seems to be reasonable. To understand the geometric and

Fig. 7. (Left) Red balls express the octahedra in the amorphous structure of
the LJ system, and the empty part corresponds to the dense packing re-
gions. (Right) PD D2ðALJ

octÞ of the left figure with the multiplicity on the
logarithmic scale.

Fig. 8. PDs for Cu-Zr alloys with the multiplicity on the logarithmic scale.
The left and right panels correspond to D1 and D2, respectively. In the top
panels, DiðACu50Zr50

amo Þ are described. The middle and bottom panels show the
PDs of the atomic configurations of only Zr atoms in the alloys. The middle
panels correspond to Cu50Zr50 alloy, and the bottom panels correspond to
Cu15Zr85 alloy. The blue and green spheres represent copper and zirconium
atoms, respectively.

r

Fig. 9. The normalized pair-distance distributions (Top) computed from
D2ðACu50Zr50

amo Þ and the radial distribution function for Cu50Zr50 alloy (Bottom)
around the split second peak. The black line in the top panel was obtained
by the pair-distances of the atoms in B⊂D2ðACu50Zr50

amo Þ, whereas the pink line
corresponds to those in the complement of B.
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topological formation of the glass, it will be a great challenge to
clarify this new perspective.

Conclusion
We have presented that PD is a powerful tool for geometric
characterizations of various amorphous solids in the short, me-
dium, and even further ranges. In this work, we have addressed
two different types of amorphous systems: continuous random
network and random packing structures. Both types of amor-
phous systems are characterized well by the existence of the
curve and island distributions in the PDs. These specific distri-
butions characterize the shapes of rings and cavities in multi-
ranges, and the analysis using optimal cycles explicitly captures
hierarchical structures of these shapes. We have shown that
these shape characteristics successfully reproduce the FSDP for
the continuous random network and the split second peak for the
random packing and provide further geometric insights to them.
Furthermore, the global connectivity of dense packing regions in
the LJ system is revealed by the iterative application of the PD.
For the binary random packing of the Cu-Zr metallic glass, we
have also shown that the presence of the hierarchical MRO rings

in the single component suggests the relationship with the glass-
forming ability.
The methodology presented here can be applied to a wide

variety of disordered systems and enables one to survey the
geometric features and constraints in seemingly random con-
figurations. Furthermore, because we investigated the mechanical
response of the PDs, studying dynamical properties of materials
using the PD method would be of great importance to understand
the relationship between hierarchical structures and mechanical
properties. We believe that further developments and applications
of topological data analysis will accelerate the understanding of
amorphous solids.
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