Papers

Peer-reviewed
Aug, 2018

On a purely inseparable analogue of the Abhyankar conjecture for affine curves

Compositio Mathematica
  • Shusuke Otabe

Volume
154
Number
8
First page
1633
Last page
1658
Language
Publishing type
Research paper (scientific journal)
DOI
10.1112/s0010437x18007194
Publisher
Wiley

Let<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline1" /><tex-math>$U$</tex-math></alternatives></inline-formula>be an affine smooth curve defined over an algebraically closed field of positive characteristic. The Abhyankar conjecture (proved by Raynaud and Harbater in 1994) describes the set of finite quotients of Grothendieck’s étale fundamental group<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline2" /><tex-math>$\unicode[STIX]{x1D70B}_{1}^{\acute{\text{e } }\text{t } }(U)$</tex-math></alternatives></inline-formula>. In this paper, we consider a purely inseparable analogue of this problem, formulated in terms of Nori’s profinite fundamental group scheme<inline-formula><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0010437X18007194_inline3" /><tex-math>$\unicode[STIX]{x1D70B}^{N}(U)$</tex-math></alternatives></inline-formula>, and give a partial answer to it.

Link information
DOI
https://doi.org/10.1112/s0010437x18007194
URL
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0010437X18007194
ID information
  • DOI : 10.1112/s0010437x18007194
  • ISSN : 0010-437X
  • eISSN : 1570-5846

Export
BibTeX RIS