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Introduction: With the widespread use of wearable sensors, various methods to
evaluate external physical loads using acceleration signals measured by inertial
sensors in sporting activities have been proposed. Acceleration-derived external
physical loads have been evaluated as a simple indicator, such as the mean or
cumulative values of the target interval. However, such a conventional simplified
indicatormay not adequately represent the features of the external physical load in
sporting activities involving various movement intensities. Therefore, we propose
a method to evaluate the external physical load of tennis player based on the
histogram of acceleration-derived signal obtained from wearable inertial sensors.

Methods: Twenty-eight matches of 14 male collegiate players and 55 matches of
55 male middle-aged players wore sportswear-type wearable sensors during
official tennis matches. The norm of the three-dimensional acceleration signal
measured using the wearable sensor was smoothed, and the rest period (less than
0.3 G of at least 5 s) was excluded. Because the histogram of the processed
acceleration signal showed a bimodal distribution, for example, high- and low-
intensity peaks, a Gaussian mixture model was fitted to the histogram, and the
model parameters were obtained to characterize the bimodal distribution of the
acceleration signal for each player.

Results: Among the obtained Gaussian mixture model parameters, the linear
discrimination analysis revealed that the mean and standard deviation of the high-
intensity side acceleration value accurately classified collegiate and middle-aged
players with 93% accuracy; however, the conventional method (only the overall
mean) showed less accurate classification results (63%).

Conclusion: Themean and standard deviation of the high-intensity side extracted by
the Gaussian mixture modeling is found to be the effective parameter representing
the external physical load of tennis players. The histogram-based feature extraction of
the acceleration-derived signal that exhibit multimodal distribution may provide a
novel insight into monitoring external physical load in other sporting activities.
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Introduction

Wearable sensor devices allowing objective and real-time
monitoring are becoming widespread in competitive sports (Patel
et al., 2015; Iqbal et al., 2016; Camomilla et al., 2018; Aroganam et al.,
2019). Sports scientists, trainers, coaches, and athletes use wearable
devices to evaluate physical loads to improve performance and
reduce the risk of injury (Cross et al., 2016; Malone et al., 2017;
Esmaeili et al., 2018; Duggan et al., 2021). Physical load monitoring
indicators have been classified into internal and external physical
loads (Halson, 2014). The external physical load is defined as the
work completed, as assessed by mechanical indices, whereas internal
physical loads are physiological and psychological stresses imposed
by external loads, as assessed by heart-rate-based indices, other bio-
signals, and questionnaires (Halson, 2014). Excessive external loads
resulting from training activities and competitive matches are the
major causes of injury in skeletal muscle systems (Gabbett, 2004;
Rogalski et al., 2013). Particularly, the frequency of high-intensity
acceleration/deceleration movement is associated with subsequent
muscular damage and causes a decline in neuromuscular function
(Young et al., 2012; Hulin et al., 2016; Russell et al., 2016; Taylor
et al., 2018; Gastin et al., 2019). Therefore, external physical loads
have been used as an indicator to prevent overload-related injuries
during daily training and competition (Gabbett, 2004; Rogalski et al.,
2013).

Position-derived evaluation using the global positioning system
(GPS) and local positioning system (LPS) have been used to assess
external physical loads in various competitive sports (Coutts and
Duffield, 2010; Waldron et al., 2011; Cummins et al., 2013; Johnston
et al., 2014; Wellman et al., 2016; Mujika, 2017; Linke et al., 2018).
The travel distance, speed, and acceleration of the players were
evaluated using time-series changes in the player’s position
(Johnston et al., 2018; Clemente et al., 2019). However, GPS-
based devices have some limitations: they cannot be used
indoors, their validity and reliability may decrease when
including short-cutting and jumping movements, and the travel
distance and speed have been reported to be underestimated
(Duffield et al., 2010; Rawstorn et al., 2014; Vickery et al., 2014;
Scott et al., 2016). Although LPS acquires position data with higher
accuracy than GPS in both indoor and outdoor environments
(Hoppe et al., 2018; Alt et al., 2020), the time-consuming set up
and calibration of antennas prior to measurement are practical
concerns for the daily use of LPS.

The acceleration-derived evaluation of physical loads mitigates
the disadvantage of position-derived evaluation of external physical
loads (Cambers et al., 2015; Spangler et al., 2018). Wearable and
small inertial sensors incorporating acceleration sensors have been
used to evaluate the external physical load in competitive matches
and daily practice (Sato et al., 2009; Alexander et al., 2016). The
inertial sensor can record three-dimensional acceleration at a high
sampling frequency over long period (Sato et al., 2009; Wundersitz
et al., 2015b; Cambers et al., 2015; Alexander et al., 2016; Spangler
et al., 2018). The norm of acceleration or norm of change in
acceleration is a major index of acceleration-derived physical
loads and has been used as a valid and reliable index (Boyd
et al., 2011; Bredt et al., 2020; Byrkjedal et al., 2022). These
acceleration-derived physical loads have been evaluated as simple
representatives, such as mean or cumulative values across the target

interval (Rowlands et al., 2015; Bowen et al., 2017; Staunton et al.,
2017; Gentles et al., 2018; Staunton et al., 2018; Reche-Soto et al.,
2019).

If the acceleration-derived physical load can be assumed to be
normally distributed, the mean value is appropriate as a representative
value. In contrast, the distribution of the acceleration-derived physical
load in sports that include exercises of various intensities, ranging from
walking to sprinting, remains unclear. The mean value may not
adequately represent the features of the acceleration-derived external
physical load assuming a simple unimodal normal distribution.
Therefore, we aimed to propose a method to evaluate acceleration-
derived physical loads based on the histogram of the acceleration signal
obtained from wearable inertial sensors.

Materials and methods

Participants

The participants of this study were 14male collegiate (age: 19.5 ±
1.4 years; height: 168.6 ± 1.4 cm; body mass: 63.2 ± 3.5 kg) and
55 male middle-aged players (age: 54.8 ± 8.7 years; height: 171.1 ±
6.0 cm; body mass: 69.3 ± 9.9 kg) who participated in regional
qualifier rounds for national tennis championships in their
categories (intercollege championship and master’s
championship) (Table1). All participants provided written
informed consent, and the study was approved by the
institutional review board (19537-2).

Data collection

Each participant wore a spandex sportswear-type sensing wear
(sportswear-type wearable) particularly designed for physical
activity measurement (MATOUSVS, Teijin Frontier Sensing Ltd.,
Osaka, Japan). The sensing unit, comprising an inertia sensor and a
data logger (SS-ECGHRAG, Sports Sensing Ltd, Fukuoka, Japan),
was securely fixed at the upper back of the sensing wear. Before data
measurement, because we confirmed that the size of the sensing
wear was properly adjusted to the upper body of each participant,
the acceleration data measured with the fixed inertia sensor
accurately reflected the participant’s movement. In addition, the
feasibility of this sensing wear to record exercise intensity has been
validated (Marutani et al., 2022). In total, 28 and 55 singles matches
were recorded from collegiate and middle-aged plyers, respectively.
The three-dimensional acceleration signals for 22 games of collegiate
players were recorded at 1,000 Hz, and the data for 6 games of
collegiate players, as well as 55 games of middle-aged players were
recorded at 200 Hz. The processed data (Supplementary Material)
was not influenced by the difference in sampling frequency.

Proposed method

The recorded three-dimensional acceleration signal was filtered
using a second-order Butterworth band-pass filter (0.5–20 Hz) to
remove the high-frequency noise and baseline shift owing to the
long-time recording, which also attenuated the gravity component
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from the acceleration signals. The cut-off frequency was determined
with reference to previous studies using trunk mounted inertia
sensor for evaluating locomotive motion (walking, jogging, and
running), team sports, and contact sports (Wundersitz et al.,
2015a; Wundersitz et al., 2015b; Wundersitz D. W. T. et al.,
2015). After calculating the norm of the filtered acceleration
signal (|a| �

����������
a2x + a2y + a2z

√
), a moving average filter with 1-s

window was used. The obtained smoothed absolute acceleration
signal is referred to as the acceleration index (Ward et al., 2016) and
is used as the main signal for the Gaussian mixture model fitting
(blue line in Figure 1). To identify the player’s resting period during
the competitive match, such as point-to-point and game-to-game
intervals, we identified the period where the value of the smoothed
signal (moving average with a 5-s window represented by the orange
line in Figure 1) was less than 0.3 G for at least 5 s and defined the
period as the rest interval. The period, rather than the rest interval,
was defined as in-play (Figure 1). We assumed that the low intensity
movement during in-play rally is unlikely to continue for more than
5 s. Using this cut-off value, the video image of the match confirmed
that the in-play and rest intervals were classified almost exactly.

The histogram of the acceleration index during the in-play
showed a meaningful bimodal distribution, which comprised a
low-intensity peak that appeared at approximately 0.25 G and a
high-intensity peak at approximately 0.9 G in the representative
data (Figure 2). To characterize this meaningful distribution of the
in-play acceleration index value, a Gaussian mixture model was
fitted to the histogram of the acceleration index during the in-play
(Figure 2).

p x( ) � ∑2

k�1wkN x
∣∣∣∣μk, σ2k( ) (1)

N x
∣∣∣∣μk, σ2k( ) � 1����

2πσ2k

√ exp − 1
2σ2k

x − μk( )2{ } (2)

where p(x) is the resultant mixture of two probability density
functions of the normal distributions N(x|μk , σ2k). The mixing
ratio wk determines the weight of each probability density. The
parameters μ; σ2 in the probability density function of the normal
distribution are the mean and standard deviation, respectively. In
the model fitting process, the parameters (μ1, μ2, σ1, σ2, w1, andw2)
were estimated using the maximum likelihood estimation of the
mixed normal distribution model using the EM algorithm for the
acceleration index (x). Because the mixing rate satisfies
w1 + w2 � 1.0, five parameters (μlow, σ low, μhigh, σhigh, andwhigh)
are used as the features obtained from the proposed method in
this study.

Comparison of proposed and conventional
methods

The proposed and conventional methods were compared to
validate the effectiveness of the proposed method. In previous
studies, the norm of the raw acceleration signal was calculated, and
the mean value across the target period (μtotal) was used as the feature.
The features obtained using the proposed and conventional methods
were standardized to have a mean of 0.0 and a standard deviation of
1.0 for comparison. As the proposed method has five features, the
distribution of each feature and the relationship between features were
visualized using a scatterplot matrix. We assumed that the intensity of
play is seems to be differ between collegiate and middle-aged players

TABLE 1 Descriptive statistics of participant’s age, body height, and body mass. Data was presented as mean and standard deviation.

Category Collegiate (n = 14) Middle-aged

40s (n = 22) 50s (n = 15) 60s (n = 18)

Age (years) 19.5 ± 1.4 47.1 ± 1.7 51.8 ± 1.4 66.6 ± 1.6

Body height (cm) 168.6 ± 3.8 172.9 ± 5.7 172.9 ± 6.5 167.5 ± 4.3

Body mass (kg) 63.2 ± 3.5 70.7 ± 9.5 73.8 ± 10.8 63.9 ± 7.4

FIGURE 1
Time-series change in acceleration index (blue) and classification of in-play (white) and rest interval (gray) based on the processed acceleration
(orange). Data of 5 min was extracted from approximately 1-hour data of a competitive tennis match to visualize in-play and rest intervals.
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based on the observation of tennis matches; therefore, we searched for a
combination of features that could clearly show this group difference
compared with conventional methods. The statistical distance between
the means of each group in the feature space was calculated to evaluate
the effectiveness of the proposed method compared with conventional
methods. The discrimination accuracy of the two groups (collegiate and
middle-aged players) based on the features obtained using the proposed
and conventional methods was validated using linear discriminant
analysis. All data analyses were performed using the custom-made
MATLAB R2020a program (MathWorks, Inc., United States).

Results

Eighty-three games played by collegiate and middle-aged players
revealed that the acceleration index during in-play showed a bimodal
distribution, which was approximated using a Gaussian mixture
model comprising two normal distribution models (Figure 3). The
intra-subject, inter-subject, and inter-group differences in the
Gaussian mixture model on the histogram of the acceleration
index are shown in Figure 3.

The mean (μlow), standard deviation (σ low), and parameters of
the normal distribution on the low-intensity side of the acceleration
index showed no inter-group differences (Figure 4). Conversely, for
the parameters of the normal distribution on the high-intensity side
of the acceleration index, mean (μhigh), and standard deviation
(σhigh), inter-group differences were evident (Figure 4). The
combination of the mean (μhigh) and standard deviation (σhigh)
of the normal distribution of the high-intensity side showed the
largest Euclidean distance between the means of the collegiate and
middle-aged players.

The Euclidean distance in the plane composed of the mean
(μhigh) and standard deviation (σhigh) of the high-intensity side was
2.15, compared with 1.43 when only the mean (μtotal) of the overall
distribution was employed using the conventional method
(Figure 5). The classification accuracy of the linear discriminant
analysis was 93% for the proposed method using the mean (μhigh)
and standard deviation (σhigh) of the normal distribution, indicating
the high-intensity side, and 63% for the conventional method using
only the overall mean (μtotal).

Discussion

We proposed a method to evaluate the external physical load
based on the histogram of the acceleration index recorded by
wearable sensors. The histogram of the acceleration index during
the competitive tennis match showed a bimodal distribution that
could be modeled using a Gaussian mixture model. The mean (μhigh)
and standard deviation (σhigh) of the high-intensity side in the
Gaussian mixture model were potential parameters for
characterizing the difference in the external physical load
between the player groups (collegiate and middle-aged). When
these variables were used as features, the classification accuracy
was higher than that of conventional methods in classifying two
groups with different intensities during competitive tennis matches
(Figure 5). Based on the results, the mean and standard deviation of
the high-intensity side of the Gaussian mixture model derived from
the acceleration index are effective in monitoring external physical
loads in competitive sports, including exercises of various intensities,
ranging from standing and walking to sprinting.

The histogram of the acceleration index during the competitive
tennis match showed a bimodal distribution and was adequately
approximated using the bimodal Gaussian mixture model (Figure 3).
Our previous study conducted an incremental loading test on a
treadmill to examine the change in the acceleration index from
quiet standing to sprinting (Marutani et al., 2022). Interpreting the
results of our previous study in the context of the present result, we
found that the peak of distribution of low- and high-intensity sides were
approximately equivalent to the walking and jogging, respectively, and
the high-intensity side is widely distributed from the jogging to running
and sprinting (Marutani et al., 2022). We speculate that the low-
intensity activity may represent the waiting for the opponent to hit
during a rally, whereas the high-intensity side may represent the ball
chasing and swing movements. A bimodal distribution was observed in
the histogram of collegiate players’ acceleration index compared with
that of middle-aged players. The histogram of μhigh and σhigh became
closer to the low-intensity side in middle-aged players, demonstrating a
decrease in high-intensity activity. Thus, visualization of the histogram
of the acceleration index may be useful in monitoring external physical
loads, enabling the application of other sporting activities in practice
and competition.

FIGURE 2
Process of Gaussian mixture modeling: (A) Histogram of the acceleration index during the classified in-play and rest intervals, (B) Histogram of the
acceleration index during the extracted in-play interval, (C) Fitted bimodal Gaussian mixture model.
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The mean (μhigh) and standard deviation (σhigh) of the high-
intensity side of the bimodal Gaussian mixture model differed
between collegiate and middle-aged tennis players (Figure 4). The
distance between the two groups was the largest when using the
combination of μhigh and σhigh (Figure 4), and the linear
discriminant analysis showed a higher accuracy compared with the
conventional method using only the overall mean of the acceleration
index (Figure 5). We suggested that the mean μhigh and standard
deviation σhigh of the high-intensity peak were sensitive features for
characterizing the external physical load during a tennis match. In
contrast, the parameters of the low-intensity peak (μlow; σ low) were

similar between the collegiate and middle-aged players (Figure 4),
demonstrating that the low-intensity movements are commonly
included during in-play in the collegiate and middle-aged players.
By excluding the influence of common features of the low-intensity
side across players, we extracted highly sensitive parameters
representing the distribution of the high-intensity side. Acceleration-
derived external physical loads were decreased by intermittent exercise-
induced fatigue, and a 15% reduction in acceleration-derived external
physical loads during the match when tennis matches were played for
four consecutive days has been reported (Reid andDuffield, 2014;Ward
et al., 2016; Beato et al., 2019; Truppa et al., 2020). Using the proposed

FIGURE 3
Intra- and inter-subject differences, as well as inter-group differences of the Gaussian mixture model on the histogram of the acceleration index.
The green line denotes the fitted Gaussian mixture model comprising the high- (red) and low-intensity (blue) sides.
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method, the time-series change in the external physical load can be
more sensitive, and it is expected to monitor players’ conditions. The
proposedmethodmay be sensitive to differences in the external physical
load of the players duringmatches and practices, and it is to be expected
to monitor the players’ condition and quality of matches and practice.

This study has two major limitations. First, the proposed
method was only tested for competitive tennis matches. However,
we believe that the proposed method to evaluate the external

physical load based on the distribution of the acceleration index
applies to other sporting activities during competition and training.
Second, the tested dataset was only recorded from male tennis
players because of the structural limitation of sensing wear.
However, if a sportswear-type wearable device designed for
women can record the acceleration signal using a trunk-mounted
inertia sensor, the shape feature of bimodal distribution of female
players would show a similar trend to male players. However, its

FIGURE 4
Scatter matrix of parameters of the bimodal Gaussian mixture model labeled by two groups. The parameters were standardized by the mean and
standard deviation. The number in each panel shows the Euclidean distance between the mean values of two groups. The asterisks (*) shows the
combination of parameters with the greatest Euclidean distance.

FIGURE 5
Comparison between the proposed (A) and conventional method (B). The proposed method used the mean and standard deviation of the high-
intensity side. Each parameter was standardized using the mean and standard deviation.
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intensity of female players is expected to be different from that of
male players.

Conclusion

We proposed a method to evaluate the external physical load
based on the histogram of the acceleration index recorded by
wearable sensors. The mean and standard deviation of the high-
intensity side extracted by the Gaussian mixture modeling are found
to be the effective parameter representing the external physical load
of tennis players. The histogram-based feature extraction of the
acceleration-derived signal that exhibit the multimodal distribution
may provide a novel insight into monitoring external physical load
in various sporting activities.
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