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Abstract— Software clones are introduced to source code by 
copying and slightly modifying code fragments for reuse. Thus, 
detection of code clones requires a partial match of code 
fragments. The essential idea of the proposed approach is a 
combination of a partial string match using the longest-
common-subsequence (LCS) and an apriori-based mining for 
finding frequent sequences. The novelty of our approach 
includes the maximal frequent sequences to find the most 
compact representation of sequential patterns. After outlining 
the proposed methods, the paper reports on the results of a 
case study using Java SDK 1.8.0_101 awt graphics package 
with highlighting the effect analysis on thresholds of the 
proposed algorithm, i.e., a minimum support and a maximum 
gap. The results demonstrate the proposed algorithm can 
detect all possible code clones in the sense that code clones are 
similar code segments that occur at least twice in source code 
under consideration. 

Keywords—Code clone; Maximal frequent sequence; Longest 
common subsequence(LCS) algorithm; Java source code. 

I.  INTRODUCTION 

Two fragments of source code are called software clones 
if they are identical or similar to each other. Software clones 
are very common in large software because they can 
significantly reduce programming effort and shorten 
programming time. However, many researchers in clone 
code detection point out that software clones introduce 
difficulties in software maintenance and cause bug 
propagation. For example, if there are many copy-pasted 
code fragments in software source code and a bug is found in 
one code clone, the bug has to be detected within a piece of 
software thoroughly and fixed consistently. 

Different types of software clones exist depending on the 
degree of similarity between two code fragments [1][2]. 
Type 1 is an exact copy without modification, with the 
exception of layout and comments. Type 2 is a slightly 
different copy typically due to renaming of variables or 
constants. Type 3 is a copy with further modifications 
typically due to adding, removing, or changing code units of 
at least one code unit.  

Research on Type 3 clones has been conducted in recent 
decades because there are substantially more significant 
clones of Type 3 than there are of Types 1 or 2 in software 
for industrial applications. Our approach also focuses on 
finding Type 3 clones. To find such type of clone, the 
following problems must be addressed. 

(1) How to handle gaps in a context of similarity.  
There are many algorithms that are tailored to handle 
gaps in similarity measure such as sequence alignment, 
dynamic pattern matching, tree-based matching and 
graph-based matching techniques [2]. 

(2) How to find frequently occurring patterns. 
The detection of frequently occurring patterns in a set of 
sequence data has been conducted intensively, as 
reported in sequential pattern mining literature [3]-[8]. 
There are several studies [9]-[12] using the apriori-
based algorithm to discover software clones in source 
code. 

Code clones are defined as a set of syntactically and/or 
semantically similar fragments of source code [1][2]. Since 
source code is represented by a sequence of statements, 
finding clone code is a problem of finding similar sequences 
that occur at least twice. Apriori-based sequential pattern 
mining algorithms are worth studying because they are 
designed to detect a set of frequently occurring sequences. 
The algorithms take a positive integer threshold set by a user 
called “minimum support” or “minSup” for short. The 
minSup controls the level of frequency [3][8].  

In [12], Udagawa shows that repeated structures in a 
method adversely affect the performance especially when a 
minSup is two or three. This paper pushes forward the study 
using a large scale software, i.e., Java SDK 1.8.0_101 awt, 
and analyzes to what extent a minSup affects the number of 
retrieved sequences and time performance. For this purpose, 
a proposed apriori-based sequential mining algorithm is 
properly revised to deal with the repeated structures in a 
method. 

The contributions of this paper are as follows: 
(I) the design and implementation of a code transformation 

parser that extracts code matching statements, including 
control statements and typed method calls; 

(II) the design and implementation of a sequential data 
mining algorithm that maintains performance at a practical 
level until a threshold minSup reaches down to two; 

(III) the evaluation of the proposed algorithm using Java 
SDK 1.8.0_101 awt with respect to minSup of two to ten 
and gap size of zero to three. In addition to time 
performance, the number of retrieved sequences is 
analyzed for each length of sequences showing that the 
number of repeated structures in a method accounts for a 
large part on numbers especially in the case when minSup 
is two. 
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The remainder of the paper is organized as follows. After 
presenting some basic definitions and terminologies on 
frequent sequence mining technique in Section II, we 
overview the proposed approach in Section III. Section IV 
describes the proposed algorithm for discovering clone 
candidates using an apriori-based maximal frequent 
sequence mining technique. Section V presents the 
experimental results using Java SDK 1.8.0_101 awt package. 
Section VI presents some of the most related work. Section 
VII concludes the paper with our plans for future work. 

II. BASIC DEFINITIONS 

Defnition 1 (sequence and sequence database). Let I = { i1, 
i2,…, ih} be a set of items (symbols). A sequence sx is an 
ordered list of items sx= xj1→ xj2→…→xjn such that xjk ⊆ I 
(1 ≤ jk ≤ h). A sequence database SDB is a list of sequences 
SDB = <s1, s2,…, sp> having sequence identifiers (SIDs) 1, 
2,…,p. 

Denition 2 (sequence containment). A sequence sa = a1→

a2→…→an is said to be contained in a sequence sb = b1→b2

→…→bm (n ≤ m) iff there exists the strictly increasing 
sequence of integers q taken from [1, n], 1 ≤ q[1] < q[2] < 
… < q[n] ≤ m such that a1=bq[1], a2=bq[2],…, an=bq[n] 
(denoted as sa ⊑ sb). 

Definition 3 (gapped sequence containment). Let maxGap 
be a threshold set by the user. A sequence sa = a1→a2→…→
an is said to be contained in a sequence sb = b1→b2→…→bm 
with respect to maxGap iff we have a1=bq[1], a2=bq[2],…, 
an=bq[n] and q[j] – q[j – 1] – 1 ≤ maxGap for all 2 ≤ j ≤ n. 

Denition 4 (prefx and postfix with respect to maxGap). A 
sequence sa = a1→a2→…→an is called a prefix of a sequence 
sb = b1→b2→…→bm iff sa is a gapped sequence containment 
of maxGap. A subsequence s'b= bn+1→…→bm is called 
postfix of sb with respect to prefix sa donoted as sb= sa→s'b. 

Denition 5 (support with respect to maxGap). Given a 
maxGap, the support of a sequence sb in a sequence 
database SDB with respect to maxGap is defined as the 
number of sequences s ∊ SDB such that sb ⊑ s with respect 
to maxGap and is denoted by supmaxGap(sb). 

Denition 6 (multi occurrence mode and single 
occurrence mode). Given a maxGap and a sequence sb = b1

→b2→…→bm with a prefix sa, the sequence sb has the 
support of supmaxGap(sb) that is greater than zero.  

When the prefix sa is contained in a postfix of sb, i.e., s'b= 
bn+1→…→bm, the support is calculated as supmaxGap(sb) + 1. 

This calculation is recursively applied for each postfix of 
sb to count the support number. The support number 
recursively calculated is named the support number in multi 
occurrence mode in this paper. This mode is critical when 
dealing with long sequences such as nucleotide DNA 
sequences [4] [5] and periodically repeated patterns over 
time [6]. On the other hand, the support number without the 

calculation of the postfix of sb is named the support number 
in single occurrence mode. The algorithm proposed in the 
paper supports both of the modes. 

Denition 7 (frequent sequences with maxGap). Let 
maxGap and minSup be a threshold set by the user. A 
sequence sb is called a frequent sequences with respect to 
maxGap iff supmaxGap(sb) ≤  minSup. The problem of 
sequence mining on a sequence database SDB is to discover 
all frequent sequences for given integers maxGap and 
minSup. 

Definition 8 (closed frequent sequence). A closed frequent 
sequence is defined to be a frequent sequence for which 
there exists no super sequence that has the same support 
count as the original sequence [5][8]. 

Definition 9 (maximal frequent sequence). A maximal 
frequent sequence is defined to be a frequent sequence for 
which none of its immediate super sequences are frequent 
[7][8].  

The closed frequent sequence is widely used when a 
system is designed to generate an association rule [3][8] that 
is inferred from a support number of a frequent sequence. 
On the other hand, the maximal frequent sequence is 
valuable, because it provides the most compact 
representation of frequent sequences [7][13]. 

III. OVERVIEW OF PROPOSED APPROACH 

Fig. 1 depicts an overview of the proposed approach [12]. 
According to the terminology in the survey [1], our approach 
can be summarized in three steps, i.e., transformation, match 
detection and formatting, and aggregation.  

 
Figure 1. Overview of the proposed approach. 

 

A. Extraction of code matching statements 

Under the assumption that method calls and control 
statements characterize a program, the proposed parser 
extracts them in a Java program. Generally, the instance 
method is preceded by a variable whose type refers to a class 
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object to which the method belongs. The proposed parser 
traces a type declaration of a variable and translates a 
variable identifier to its data type or class identifier as 
follows.  The translation allows us to deal with Type 2 clone. 

<variable>.<method identifier>  
is translated into  

   <data type>.<method identifier>  or  
   <class identifier>.<method identifier>. 
The parser extracts control statements with various levels 

of nesting. A block is represented by the "{" and "}" symbols. 
Thus, the number of "{" symbols indicates the number of 
nesting levels. The following Java keywords for 15 control 
statements are processed by the proposed parser. 

if, else if, else, switch, while, do, for, break, continue, 
return, throw, synchronized, try, catch, finally 

We selected the Java SDK 1.8.0_101 awt package as our 
target of the study. The number of total lines is 166,016, 
which means the awt package is a kind of large scale 
software in industry.  

Fig. 2 shows an example of the extracted structure of the 
getFlavorsForNatives(String[] natives) method in the 
SystemFlavorMap.java file of the java.awt.datatransfer 
package. The three numbers preceded by the # symbol are 
the number of comments, and blank and code lines, 
respectively.  

In this study, we deal only with Java. However, a clever 
modification of the parser allows us to apply the proposed 
approach to other languages such as C/C++ and Visual Basic. 

 

 
Figure 2. Example of the extracted structure. 

 

B. Encoding statements in three 32-decimal digits 

The conventional longest-common-subsequence (LCS) 
algorithm takes two given strings as input and returns values 
depending on the number of matching characters of the 
strings. Due to fact that the length of statements in program 
code differs, the conventional LCS algorithm does not work 
effectively. In other words, for short statements, such as if 
and try statements, the LCS algorithm returns small LCS 
values for matching. For long statements, such as 

synchronized statements or a long method identifier, the LCS 
algorithm returns large LCS values. 

 We have developed an encoder that converts a statement 
to three 32-decimal digits (to cope with 32,768 identifiers), 
which results in a fair base for a similarity metric in clone 
detection. Fig. 3 shows the encoded statements that 
correspond to the code shown in Fig. 2. Fig. 4 shows a part 
of the mapping table between three 32-decimal digits and a 
code matching statement extracted from the original source 
files. 

Figure 3. Encoded statements corresponding to Fig. 2. 
 

 
Figure 4. Mapping table between three 32-decimal digits and a code 
          matching statement used to encode statements in Fig. 3. 

 

C. Apriori-based mining algorithm for finding frequent 
sequences with gaps 

We have developed a mining algorithm to find frequent 
sequences based on the apriori principle [3][8], i.e, if an 
itemset is frequent, then all of its subsets must be frequent.  

Frequent sequence mining is essentially different from 
itemset mining because a subsequence can repeat not only in 
different sequences but also within each sequence. For 
example, given two sequences C→C→A and B→C→A→B
→A→C→A, there are three occurrences of the subsequence 
C→A. The repetitions within a sequence [4]-[6] are critical 
when dealing with long sequences such as protein sequences, 
stock exchange rates, customer purchase histories. 

Note that the proposed algorithm is implemented to run in 
two modes, i.e., multi occurrence mode to find all 
subsequences included in a given sequence, and single 
occurrence mode to find a subsequence in a given sequence 
even if there exists several subsequences. 

As described in Section V, the multi occurrence mode 
detects so many code matching that it has an adverse effect 
on performance especially when a minSup is two and a 
maxGap is one to three. 

The LCS algorithm is also tailored to match three 32-
decimal digits as a unit. That algorithm can match two given 
sequences even if there is a “gap.” Given two sequences of 
matching strings S1 and S2, let |lcs| be the length of their 
longest common subsequence, and let |common (S1, S2)| be 
the common length of S1 and S2 from a back trace 
algorithm. The “gap size” gs is defined as gs = |common (S1, 
S2)| – |lcs|. 

SystemFlavorMap::getFlavorsForNatives (String[] natives) 
→001→004→0VH→0VQ→003→044→04E→0VI→0VR 
→003→009→003 
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D. Mining maximal frequent sequences 

Frequent sequence mining tends to result in a very large 
number of sequential patterns, making it difficult for users 
to analyze the results. A closed and maximal frequent 
sequences are two representations for alleviating this 
drawback. The closed frequent sequence needs to be used in 
case a system under consideration is designed to deal with 
an association rule [3][8] that plays an important role for 
knowledge discovery. The maximal frequent sequence is 
such a sequence that are frequent in a sequence database and 
that is not contained in any other longer frequent sequence. 
It is a subset of the closed frequent sequence. It is 
representative in the sense that all sequential patterns can be 
derived from it [7]. Because we are just interested in finding 
a set of frequent sequences that are representative of code 
clone, we developed an algorithm to discover the maximal 
frequent sequences. 

IV. PROPOSED FREQUENT SEQUENCE MINING 

We have developed two algorithms for detecting software 
clones with gaps. The first is for mining frequent sequences, 
and the second is for extracting the maximal frequent 
sequences from a set of frequent sequences. 

A. Proposed Frequent Sequence Mining Algorithm 

The proposed approach is based on frequent sequence 
mining. A subsequence is considered frequent when it occurs 
no less than a user-specified minimum support threshold (i.e., 
minSup) in a sequence database. Note that a subsequence is 
not necessarily contiguous in an original sequence. 

We assume that a sequence is “a list of items,” whereas 
several algorithms for sequential pattern mining [4]-[7] deal 
with a sequence that consists of “a list of sets of items.” Our 
assumption is rational because we focus on detecting code 
clones that consist of “a list of statements.” In addition, the 
assumption simplifies the implementation of the proposed 
algorithm, which makes it possible to achieve high 
performance as described in Section V. 

The proposed frequent sequence mining algorithm 
comprises two methods, i.e., GProbe (Fig. 5) and 

 

 
Figure 5. Frequent sequence detection of the proposed algorithm. 

 

Retrieve_Cand (Fig. 6). It follows the key idea behind 
apriori principle; if a sequence S in a sequence database 
appears N times, so does every subsequence R of S at least. 
The algorithm takes two arguments, minSup and maxGap 
(the allowable maximal number of gaps). 

 

Figure 6. Candidate sequences retrieval for the next repetition. 
 

The variable k indicates the count of the repetition (line 2, 
Fig. 5). LinkedList < String > Sk is initialized to hold 15 
control statements. The Retrieve_Cand method (line 5, Fig. 
5) discovers a set of sequences of length k+1 from a 
sequence database that matches statement sequences in Sk. 
The while loop (lines 9–17) finds frequent sequences and 
sequence IDs in a sequence database. Lines 12–14 maintain 
the frequent sequences. Note that the proposed algorithm 
handles gapped sequences. Thus, both a frequent sequence 
and its “gap synonyms” are prepared for the next repetition. 
Here, “gap synonyms” means a set of sequences that match a 
given subsequence under a given gap constraint. 

Briefly, the Retrieve_Cand() method in Fig. 6 works as 
follows. HashMap <String, Integer> Ck holds a sequence 
(String) and its frequency (Integer). First, Ck is cleared (line 
2, Fig. 6). The three for loops examine all possible matches 
between an element in Sk and sequences in a sequence 
database. The longest common subsequence algorithm is 
tailored to compute the match count and gap count (line 6, 
Fig. 6). The if statement (line 7, Fig. 6) screens a sequence 
based on the match count and gap count. Lines 8–10 
maintain the frequency of sequences and its “gap 
synonyms.” 

B. Extracting Frequent Sequences 

In our approach, we assume a program structure is 
represented as a sequence of statements preceded by a class-
method ID. Each statement is encoded to three 32-decimal 
digits so that the LCS algorithm works correctly, regardless 
of the length of the original program statement. 

The proposed algorithm is illustrated for the given sample 
sequence database in Fig. 7. MTHD# is an abbreviated 
notation for a class-method ID. 

 
 
 
 

 

Figure 7. Example sequence database. 
 

MTHD1→005→003 
MTHD2→005→00A→003→003 
MTHD3→005→003→00F→006→005→003 
MTHD4→005→006→003→005→00C 
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Fig. 8 shows the result of the frequent sequences in the 
multi occurrence mode for a gap of 0 and minSup of 50%, 
which is equivalent to a minSup count of 2. “005” is a 
frequent sequence with a minSup count of 6 because “005” 
occurs once in the first and second sequences and twice in 
the third and fourth sequences. The proposed algorithm 
maintains an ID-List, which indicates the positions where a 
frequent sequence appears in a sequence database. The ID-
List for “005” is 1|2|3+3|4+4. 

Similarly, 005→003→  is a frequent sequence with a 
minSup count of 3, i.e., the ID-List for 005→003→ is 1|3+3. 

 
 
 
 
Figure 8. Result of the frequent sequences (gap, 0; minSup, 50%). 
 

Fig. 9 shows the result of the frequent sequences for a gap 
of 1 and minSup of 50%. “005” is a frequent sequence with a 
minSup count of 6, which is the same in the case of a gap of 
0.  

Similarly, 005→003→  is a frequent sequence with a 
minSup count of 5. In addition to the consecutive sequence 
005 → 003 → , the proposed algorithm detects gapped 
sequences. In the case of 005→003→, the algorithm detects 
005→00A→003→ in the second sequence and 005→006→
003→ in the fourth sequence. Thus, the ID-List for 005→
003→ is 1|2|3+3|4. 

 
 
 
 

Figure 9. Result of the frequent sequences (gap, 1; minSup, 50%). 
 

Fig. 10 shows the result of the frequent sequences for a 
gap of 2 and minSup of 50%. In addition to 005→ and 005
→003→, 005→006→ is detected as a frequent sequence 
because 005→003→00F→006→  in the third sequence 
matches 005→006→ with a gap of 2, and 005→006→ in the 
fourth sequence with a gap of 0. Thus, the ID-List for 005→
006→ is 3|4. 

 
 
 
 
 
Figure 10. Result of the frequent sequences (gap, 2; minSup, 50%). 

 

C. Extracting Maximal Frequent Sequences 

A frequent sequence is a maximal frequent sequence and 
no super sequence of it is a frequent sequence. In addition, it 
is representative because it can be used to recover all 
frequent sequences. Several algorithms for finding maximal 
frequent sequences and/or itemsets employ sophisticated 
search and pruning techniques to reduce the number of 
sequence and/or itemset candidates during the mining 
process. 

However, we wish to measure the effects of a maximal 
frequent sequence; therefore, the proposed algorithm first 
extracts a set of frequent sequences and then detects a set of 
maximal frequent sequences. 

Screening maximal frequent sequences from frequent 
sequences with a gap of zero is fairly simple. Given a set of 
frequent sequences Fs, the set of maximal frequent 
sequences MaxFs is defined by the following formula: 

 
MaxFs = {x∈Fs ｜ ∀y∈Fs (x ⊄ y) ∧ ( |x| + 1 = |y| )}. 

 
x ⊄ y says that a sequence x is not included in a sequence y. 
Since a gap equals zero, the length of the immediate super 
sequence is |x| + 1.  

The proposed algorithm is described using the sample 
sequence database in Fig. 11. 

 
 
 
 
 
 
 
 
 

Figure 11. Example frequent sequences.  
 

Fig. 12 shows a set of maximal frequent sequences. The 
frequent sequence 001→ is not a maximal frequent 
sequence because there is a frequent sequence 001→005→ 
that includes a sequence 001 and whose length is two. For 
the same reason, 003→, 004→, 005→ are not maximal 
frequent sequences. In this manner, we see that the sequence 
004→003→ is not a maximal frequent sequence. However, 
001→005→ is a maximal frequent sequence because there 
are no super-sequences that exactly include 001→005→. 
004→003→005→ and 004→001→004→003→ are 
maximal frequent sequences. 
 
 
 
 
 

Figure 12. Result of maximal frequent sequences (gap, 0). 
 

The definition of the maximal frequent sequence is simply 
extended to those dealing with gaps, as described in [12].  

V. EXPERIMENTAL RESULTS 

This section shows statistical evaluation of experimental 
results using Java SDK 1.8.0_101 awt package. The number 
of total source code lines is 166,016. The extracted 
statement sequences comprise 5,108 lines which are roughly 
corresponding to the number of methods in the package. 
The number of extracted unique IDs is 3,175. We performed 
the experiments using the following environment: 

005→                 N=6（1|2|3+3|4+4） 
005→003→       N=3（1|3+3） 

005→              N=6（1|2|3+3|4+4） 
005→003→        N=5（1|2|3+3|4） 

005→                  N=6（1|2|3+3|4+4） 
005→003→    N=5（1|2|3+3|4） 
005→006→        N=2（3|4） 

001→ 
003→ 
004→ 
005→ 
001→005→ 
004→003→ 
004→003→005→ 
004→001→004→003→ 

001→005→ 
004→003→005→ 
004→001→004→003→ 
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CPU: Intel Core i7-6700 (3.40 GHz) 
Main memory: 8 GB 
OS: Windows 10 HOME 64 Bit 
Programming Language: Java 1.8.0_101. 

A. Numbers of Retrieved Frequent Sequences 

Fig. 13 compares the number of retrieved frequent 
sequences with respect to maxGap (0 to 3) and minSup (2 to 
10) with the number of retrieved frequent itemsets for the 
apriori algorithm [14]. The proposed algorithm for a 
maxGap of zero is comparable to the apriori algorithm for a 
minSups of six to ten. The apriori algorithm fails to generate 
frequent itemsets for a minSup of two, due to it never 
completes the process in three hours. 

As expected, the number of retrieved frequent sequences 
increases as maxGap increases and minSup decreases. The 
proposed algorithm can find frequent sequences that occur at 
least twice in the sequence database, which is necessary for 
finding all possible code clones. One of the important 
findings of the experiment is that the effect of repetitions 
within a sequence becomes conspicuous when a minSup 
equals two. A detailed analysis of the retrieved frequent 
sequences is discussed in Subsection “C. Sequence Length 
Analysis.” 

 

 
Figure 13. Numbers of retrieved frequent sequences (gap size, 0 and 1-3; 

minSup, 2-10) and frequent itemsets for apriori algorithm. 
 

Fig. 14 shows the ratio of the number of maximal 
frequent sequences to the number of frequent sequences. In 
most of the cases, the ratio decreases as minSup values 
decrease. This can be explained by the fact that decreasing 
minSup values probably has a negative effect on the 
relevance of frequent sequences. Thus, redundant frequent 
sequences are likely mined as minSup values decrease, 
resulting in the low ratio of the number of maximal frequent 
sequences to the number of frequent sequences.  

The ratios are generally smaller in the multi occurrence 
mode than in the single occurrence mode. It can be a fair 
explanation that the single occurrence mode suppresses 
extraction of frequent subsequences caused by repetitions 
within a sequence. The results show that the gap size affects 
the ratio up to approximately 5.55% for a maxGap of two. 

 
Figure 14. Ratio of the number of maximal frequent sequences to the 

number of frequent sequences (gap size, 0 and 1-3; minSup, 2-10). 

B. Time Analysis 

Fig. 15 shows the elapsed time in milliseconds for 
retrieving frequent sequences for a minSup of two to ten. 
The proposed algorithm for a maxGap of zero is comparable 
to the apriori algorithm for a minSup of five to ten as for 
performance. 

The proposed algorithm can retrieve frequent sequences 
fairly efficiently. For example, it takes 816,534 milliseconds 
to identify 27,435 frequent sequences for a maxGap of one 
and a minSup of two in the single occurrence mode. Note 
that elapsed time increases as maxGap increases. This 
tendency is obvious for a minSup ranging from two through 
ten. As for a minSup of two in the multi occurrence mode, 
the elapsed time jumps up from 2.36 (for a maxGap of 
three) to 4.65 (for a maxGap of one) times of those for a 
minSup of three in the multi occurrence mode. A reason for 
performance degradation is analyzed in the next subsection. 

 
Figure 15. Elapsed time (milliseconds) for retrieving frequent sequences 
(gap size, 0-3; minSup, 2-10) and frequent itemsets for apriori algorithm. 

 

C. Sequence Length Analysis 

Fig. 16 shows the number of retrieved sequences for each 
length of sequences in the multi occurrence mode and a 
maxGap of three with a minSup ranging from two to five. 
The maximum length of the retrieved sequence is 244. Note 
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that Fig. 16 omits the results on 31 to 244 of the length of 
sequence. The number of retrieved sequences reaches peaks 
around a sequence length of eight to ten for each minSup of 
two to five. This suggests that code clones of length eight to 
ten occur most frequently.  

The sequence length of 244 is extracted from the 
GetLayoutInfo() method in GridBagLayout.java file of 
java.awt package, consisting of 569 source lines including 
comments and blank lines. The sequence is detected as a 
frequent sequence, because the sequence includes “if{ * }” 
statements 244 times caused by repetitions within the 
sequence of GetLayoutInfo() method. It is clear that the 
detection is not preferable for finding code clone detection. 
 

 
Figure 16. Number of retrieved sequences for each length in multi  

occurrence mode and maxGap of three. 
 

Fig. 17 shows the number of retrieved sequences for each 
length of sequence in the single occurrence mode and a 
maxGap of three with a minSup ranging from two to five.  

 

 
Figure 17. Number of retrieved sequences for each length in single  

occurrence mode and maxGap of three. 
 

The maximum length of the retrieved sequence is 53 in the 
single occurrence mode. The sequence of length 53 is 
extracted from the getDataElements() method in Banded 
SampleModel.java file of java.awt.image package and the 
getDataElements() method in ComponentSample Model.java 
file. The two methods are the same except for minor 
syntactic structure, e.g., if <single statement> and if {<single 
statement>}, which suggests that they are code clone. Fig. 18 
shows the encoded sequence of getDataElements() method 
in BandedSampleModel.java file. 

 

 
 
 
 
 
 
 
 
 

Figure 18.  Encoded sequence of getDataElements() method 
in BandedSampleModel.java file.  
 

VI. RELATED WORK 

Zhu and Wu [4] propose an apriori-like algorithm to mine 
a set of gap constrained sequential patterns which can be 
found in a long sequences such as stock exchange rates, 
DNA and protein sequences. Ding et al. [5] discuss an 
algorithm to mine repetitive gapped subsequence and apply 
the proposed algorithm to program execution traces. Kiran et 
al. [6] propose a model to mine periodic-frequent patterns 
that occurs at regular intervals or gaps. Fournier-Viger et al. 
[7] discuss the importance of the maximal sequential pattern 
mining and propose an efficient algorithm to find the 
maximal patterns. 

Wahler et al. [9] propose a method to detect clones of the 
Types 1 and 2 which are represented as an abstract syntax 
tree (AST) in the Extensible Markup Language (XML) by 
applying a frequent itemset mining technique. Their tool uses 
the apriori algorithm to identify features as frequent itemsets 
in large amounts of software program statements. They 
devise an efficient link structure and a hash table for 
achieving efficiency for practical applications. 

Li et al. propose a tool named CP-Miner [10] that uses the 
closed frequent patterns mining technique to detect frequent 
subsequences including statements with gaps. CP-Miner 
shows that a frequent subsequence mining technique can 
avert redundant comparisons, which leads to improved time 
performance. 

El-Matarawy et al. [11] propose a clone detection 
technique based on sequential pattern mining. Their method 
treats source code lines as transactions and statements as 
items. Their algorithm is applied to discover frequent 
itemsets in the source code that exceed a given frequency 
threshold, i.e., minSup. Finally, their method finds the 
maximum frequent sequential patterns [7][8] of code clone 
sequences. Their method is fairly similar to ours except for a 
code transformation parser and systematic handling of gaps 
of similar sequences based on an LCS algorithm. 

Accurate detection of near-miss intentional clones 
(NICAD) [15] is a text-based code clone detection technique. 
NICAD uses a parser that extracts functions and performs 
pretty-printing to standardize code format and the longest-
common-subsequence (LCS) algorithm [16] to compare 
potential clones with gaps. Unlike an apriori-based approach, 
NICAD compares each potential clone with all of the others. 
Regarding LCS, Iliopoulos and Rahman [17] introduce the 
idea of gap constraint in LCS to address the problem of 
extracting multiple sequence alignment in DNA sequences. 

BandedSampleModel::getDataElements(int x:int y:Object 
obj:DataBuffer data) → 
001→004→003→24A→24B→007→008→004→003→006→
003→04E→24C→003→00M→008→008→004→003→006→
003→04E→24D→003→00M→008→004→003→006→003→
04E→24E→003→00M→008→004→003→006→003→04E→
24F→003→00M→008→004→003→006→003→04E→24G→

003→00M→003→009→003 
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Murakami et al. [18] propose a token-based method. The 
method detects gapped software clones using a well-known 
local sequence-alignment algorithm, i.e., the Smith-
Waterman algorithm [19]. They discuss a sophisticated 
backtracking algorithm tailored for code clone detection. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented an attempt to identify 
Type 3 code clones. Our approach consists of four steps, i.e., 
extraction of code matching statements, encoding statements 
in 32-decimal digits, detecting frequent sequences with gaps, 
and mining the maximal frequent sequences. The paper 
mainly deals with the last two steps. 

Through the experiments using Java SDK 1.8.0_101 awt 
package source code, the proposed algorithm works out 
successfully for finding clones with respect to a maxGap of 
zero through three and a minSup of two through ten.  

Because a minSup of two poses heavy process loads for 
the proposed algorithm, we analyze the effect of the repeated 
subsequences in a method and conclude that the repeated 
subsequences have adverse effects on both performance and 
the quality of retrieved code clone especially lower minSup, 
i.e., minSup of two or three. 

So long as code clone is syntactically defined as similar 
code segments that occur at least twice, the proposed 
algorithm achieves 100% recall and 100% precision due to 
the nature of the aprior-based data mining with a minSup of 
two [11]. However, we do not believe that the situation is so 
simple that syntactically defined recall and precision 
evaluate the quality of mined code clones. Actually, we find 
a large number of mined code sequences that mainly consist 
of control statements. Many of these sequences are not clone 
from programmer's point of view. We are still only halfway 
to detecting code clones for industry use especially regarding 
the quality of mined code clones. 

Future work will include the development of functions for 
clustering and ranking mined code clones for the 
programmer's sake, and the improvement of the 
transformation for extracting code matching statements. 
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