J-GLOBAL         Last updated: Nov 6, 2019 at 03:24
Waseda University
Faculty of Education and Integrated Arts and Sciences School of Education
Job title
Research funding number

Research Areas


Published Papers

On 3-dimensional hyperbolic Coxeter pyramids.
Komori, Yohei; Umemoto, Yuriko
RIMS Kôkyûroku Bessatsu   B66 213-230   2017   [Refereed]
On the growth rate of ideal Coxeter groups in hyperbolic 3-space.
Komori, Yohei; Yukita, Tomoshige
Proc. Japan Acad. Ser. A Math. Sci.   91(10) 155-159   2015   [Refereed]
Polyhedral realization of a Thurston compactification.
Gendulphe, Matthieu; Komori, Yohei
Ann. Fac. Sci. Toulouse Math.   (6)23(1) 95-114   2014   [Refereed]
Cook-hats and crowns.
Komori, Yohei
Contemp. Math. Amer. Math. Soc.   575 253-262   2012   [Refereed]
On the growth of hyperbolic 3-dimensional generalized simplex reflection groups.
Komori, Yohei; Umemoto, Yuriko
Proc. Japan Acad. Ser. A Math. Sci.   88(4) 62-65   2012   [Refereed]

Conference Activities & Talks

Growth of hyperbolic Coxeter groups [Invited]
Komori, Yohei
Growth in Topology and Number Theory: Volumes, Entropy, and L2-torsion   Jul 2018   Hausdorff Center, Bonn 大学
Construction of pseudo-Anosov automorphisms whose dilatations are 2-Salem numbers
日本数学会2018年度年会幾何学分科会一般講演   Mar 2018   東京大学
Growth functions of hyperbolic groups [Invited]
Komori, Yohei
Colloquium   Nov 2017   Fribourg 大学
On spectral radii of Coxeter elements for some bipartite Coxeter diagrams [Invited]
Komori, Yohei
Geometry Seminar   Nov 2017   Fribourg 大学
On Schwarz automorphic functions [Invited]
Komori, Yohei
Topology and Analysis of Discrete Groups and Hyperbolic Spaces   Jun 2016   京都大学数理解析研究所

Research Grants & Projects

Quasiconformal extension in differential geometry and theory of the universal Teichmueller space in harmonic analysis
Project Year: Apr 2018 - Mar 2023
Riemann surfaces and low dimensional manifolds
Project Year: Apr 2014 - Mar 2018
It is known that the moduli space of Riemann surfaces admits a natural compactification called the Deligne-Mumford compactification (DM-compactification). The main result of the present research is that we explicitly constructed a "natural" atlas ...
Teichmuller space and its topological dynamics via flat singular metrics on a surface
Project Year: Apr 2011 - Mar 2016
We study the geometry of Teichmuller space through the identification with the moduli space of flat metrics on a surface with cone singularities and aim to clarify the properties of its topological dynamics. As a result, we obtain the description ...
Studies on compactifications of Teichmuller spaces
Project Year: Apr 2011 - Mar 2014
Except Riemann surfaces conformal to Riemann spheres minus disks and one or two points, I showed that Teichmuller spaces of RIemann surfaces of topologically finite types can be realized as polyhedron in finite dimensional real projective spaces b...
Singularities and balancing conditions on the theory of minimal surfaces and related geometric variational problems
Project Year: Apr 2010 - Mar 2015
We formulated the condition for the existence of n-noids of genus 1 in the Euclidian 3-space whose complete system of representatives of poles of Gauss map and that of ends coincide with each other. Moreover, we constructed new examples of such n-...