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Objective: Risk for developing papillary thyroid carcinoma (PTC), the most common
endocrine malignancy, is thought to be mediated by lifestyle, environmental exposures
and genetic factors. Recent progress in the genome-wide association studies of thyroid
cancer leads to the identification of several genetic variants conferring risk to this
malignancy across different ethnicities. We set out to elucidate the impact of selected
single nucleotide polymorphisms (SNPs) on PTC risk and to evaluate clinicopathological
correlations of these genetic variants in the Kazakh population for the first time.

Methods: Eight SNPs were genotyped in 485 patients with PTC and 1,008 healthy
control Kazakh subjects. The association analysis and multivariable modeling of PTC risk
by the genetic factors, supplemented with rigorous statistical validation, were performed.

Result: Five of the eight SNPs: rs965513 (FOXE1/PTCSC2, P = 1.3E-16), rs1867277
(FOXE1 5’UTR, P = 7.5E-06), rs2439302 (NRG1 intron 1, P = 4.0E-05), rs944289
(PTCSC3/NKX2-1, P = 4.5E-06) and rs10136427 (BATF upstream, P = 9.8E-03) were
significantly associated with PTC. rs966423 (DIRC3, P = 0.07) showed a suggestive
association. rs7267944 (DHX35) was associated with PTC risk in males (P = 0.02),
rs1867277 (FOXE1) conferred the higher risk in subjects older than 55 years (P = 7.0E-05),
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and rs6983267 (POU5F1B/CCAT2) was associated with pT3–T4 tumors (P = 0.01). The
contribution of genetic component (unidirectional independent effects of rs965513,
rs944289, rs2439302 and rs10136427 adjusted for age and sex) to PTC risk in the
analyzed series was estimated to be 30–40%.

Conclusion: Genetic factors analyzed in the present work display significant association
signals with PTC either on the whole group analysis or in particular clinicopathological
groups and account for about one-third of the risk for PTC in the Kazakh population.
Keywords: papillary thyroid carcinoma, single nucleotide polymorphism, case–control genetic association study,
risk factors for thyroid cancer, clinicopathological correlations
INTRODUCTION

Papillary thyroid carcinoma (PTC), a well-differentiated thyroid
cancer of follicular cell origin, accounts for about 80% of all
thyroid cancers worldwide being the most common endocrine
malignancy. According to the IARC, in 2018 thyroid cancer
affected 567,233 patients worldwide, making it the 9th most
prevalent human cancer (3.1%) with the average age-
standardized incidence of 6.7 and mortality rate of 0.42 per
100,000 of population (1). Region-specific incidence rates vary
broadly from 1.0 in Micronesia to 15.0 in North America per
100,000 of population. In Kazakhstan, the age-standardized
incidence of thyroid cancer was 2.4 per 100,000 of population
accounting for 1.4% of all newly diagnosed cancers in the
country in 2018.

With the improvements in cancer detection and diagnosis,
the incidence of thyroid cancer is growing in most countries
displaying one of the fastest increases in rate among common
cancers. While the advances in thyroid nodule visualization such
as ultrasound imaging and their facile assessment using
ultrasound-guided fine-needle aspiration cytology have likely
contributed to this uptrend, the additional reasons for the
increasing incidence are investigated. Besides of well-
established risk factor for thyroid cancer such as ionizing
radiation, other environmental agents, including iodine
deficiency, natural and technogenic pollutants with hormone
disrupter effects, exposures to excessive nitrate (2, 3) and various
chemicals are discussed or considered.

As a complex disease, PTC is thought to be dependent not
only on environmental, but also on genetic factors. Studies of
familial thyroid cancer estimated the contribution of genetic
component to the risk of disease to be ranging from 28 to 53%
(4, 5). At the population level, hereditary factors possibly
contributing to the phenotype (e.g. the development of a
condition or a disease) are usually identified in genetic
association studies. To date, a number of well-powered
genome-wide association studies (GWAS) or target gene
investigations in thyroid cancer have been performed in the
groups of different ethnicities in non-exposed or exposed to
radiation individuals (6–14). GWAS findings and consequent
independent repl icat ion studies have convincingly
demonstrated robust associations of rs965513 (FOXE1,
forkhead box E1 and/or PTCSC2, papillary thyroid carcinoma
n.org 2
susceptibility candidate 2; chromosome 9q22.33), rs944289
(PTCSC3 , papillary thyroid carcinoma susceptibility
candidate 3 and/or NKX2-1, NK2 homeobox 1; 14q13.3),
rs1867277 (FOXE1; 9q22.33), rs2439302 (NRG1, neuregulin
1; 8q12) and rs966423 (DIRC3, disrupted in renal carcinoma 3;
2q35) SNPs with differentiated thyroid cancer, principally PTC
(15–27), reviewed in (28). The strength of association signal for
these SNPs in terms of odds ratios (OR) ranged from 1.28 to
1.70 in most studies. More recent studies have identified
associations between the rs6983267 (POU5F1B, POU class 5
homeobox 1B and/or CCAT2, colon cancer associated
transcript 2; 8q24) and thyroid cancer in different
populations. A systematic review with meta-analysis of four
studies that included a total of 2,825 cases and 9,684 controls
confirmed the G allele of the rs6983267 to be a risk factor for
thyroid cancer with an OR = 1.08, P = 0.01 (29).

The novel GWAS candidate loci continue to emerge. A
recent combined analysis of GWAS results and the Italian
replication study provided evidence of association of risk for
differentiated thyroid cancer with rs10136427 (BATF, basic
leucine zipper ATF-like transcription factor, 14q24.3) with an
OR = 1.40, P = 4.35E-07) and rs7267944 (DHX35, DEAH-box
helicase 35, 20q12) with an OR 1.39, P = 2.13E-08. These
associations were replicated in the Polish and Spanish
populations with little evidence of population heterogeneity
(the combined, OR = 1.30, P = 9.30E-07 and OR 1.32, P=1.34E-
08, respectively) (10).

To the best of the authors’ knowledge, studies of rs10136427
(BATF, 14q24.3) and rs7267944 (DHX35, 20q12) in PTC have not
been replicated in independent studies. We therefore aimed to
examine the six well-described SNPs discussed above, namely
rs965513 (FOXE1/PTCSC2, 9q22.33), rs944289 (PTCSC3/NKX2-1,
14q13.3), rs1867277 (FOXE1; 9q22.33), rs2439302 (NRG1, 8q12),
rs966423 (DIRC3, 2q35) and rs6983267 (POU5F1B/CCAT2,
8q24.2), and two SNPs newly discovered to be associated with
thyroid cancer (10), rs10136427 (BATF, 14q24.3) and rs7267944
(DHX35, 20q12) in a relatively large case–control series. This
work is the first to characterize the eight SNPs in the Kazakh
population. In addition to the classical association analysis, we
estimated the contribution of the genetic variants to PTC risk, and
assessed the relationships with clinicopathological characteristics
of tumors in the study since available information is very limited
in the literature.
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MATERIAL AND METHODS

Study Population
A total of 485 patients with histologically confirmed PTC (90.3%
females, mean age 54.78 ± 13.3 y.o., 18–87 y.o., range) operated
from 1980 to 2015, and 1,008 healthy control subjects (78.7%
females, mean age 39.0 ± 15.8 y.o., 15–83 y.o., range) of Kazakh
origin were recruited. Clinicopathological information was retrieved
from medical records (Table 1). The pathological classification was
based on the World Health Organization definitions (30),
pathological staging (pTNM, where the T category defined the
anatomic extent of cancer for the tumor, N for the lymph nodes and
M for distant metastases) was according to the 7th edition of TNM
classification system (31). Patients and control subjects had no
Frontiers in Endocrinology | www.frontiersin.org 3
history of radiation exposure. All participants or their parents/
guardian gave written informed consent in accordance with the
Declaration of Helsinki. A peripheral venous blood sample was
collected from each participant. The protocol of this study was
approved by corresponding ethics committees.

DNA Isolation and Genotyping
Blood DNA was extracted using QIAamp DNA Mini Kit
(QIAGEN, Tokyo, Japan) according to the manufacturer’s
protocol. DNAs of sufficient quality for genotyping were
obtained from all 485 PTC patients and 1,008 control participants.

Genotyping was performed with predesigned Custom Applied
Biosystems TaqMan SNP Genotyping Assays (Table 2) using
TaqMan Genotyping Master mix (all reagents from
ThermoFisher Scientific) and 10 ng genomic DNA per 10 µl
reaction in a Light Cycler 480 (Roche, Indianapolis, IN). Cycling
conditions were as follows: denaturation at 95°C for 10 min
followed by 60 cycles of 92°C for 15 s and 62°C for 1 min for all
SNPs. As a quality control, 15–20% of all samples were randomly
selected and re-run in duplicates for each SNP. Full concordance
between the experiments was observed.

Statistical Analyses
Association Analysis
We used PLINK 1.9 (32) software to run the multiplicative genetic
models in the case–control sample for each SNP with age and sex
as covariates. This type of model evaluates the impact of individual
alleles of a polymorphic locus on the disease. The multiplicative
models have been used in the vast majority of the genome-wide
and replication association studies of thyroid cancer (6–27); using
those in our work provided an opportunity to compare the
strength of association signals (ORs) between the previous
studies and our findings. The risk alleles were assigned according
to the cited literature sources for consistency; summary
information on the risk alleles is provided in Table 3. Multiple
testing correction (the Benjamini–Hochberg method) and the
adaptive label-swapping permutation test (106, maximum) were
performed using options available in PLINK.

Associations between each SNP and clinicopathological
parameters of PTCs were assessed using logistic regression
models with binary outcomes sex (F vs M), age (≥55 vs <55
years old), pathological tumor (pT) category (pT3 or pT4 vs pT1 or
pT2) or nodal disease (N1 vs N0, i.e. present vs absent) as
dependent variables, and individual SNPs, age and sex (where
TABLE 1 | Demographic characteristics of control subjects and PTC patients,
and clinicopathological data.

Characteristics Value (%)1

Healthy control subjects, n = 1,008
Age at sampling, M ± SD (range) 39.0 ± 15.8 (15–83)
Sex
Female 793 (78.7)
Male 215 (21.3)

PTC patients, n = 485
Age at diagnosis, M ± SD (range) 54.8 ± 13.3 (18–87)
Sex
Female 438 (90.3)
Male 47 (9.7)

pT2

T1 98 (20.2)
T2 264 (54.4)
T3 85 (17.5)
T4 38 (7.8)

N category2

N0 259 (53.4)
N1 74 (15.3)
NX 152 (31.3)

M category2

M0 376 (77.5)
M1 2 (0.4)
MX 107 (22.1)
1Mean ± standard deviation and (range) for age in years, count data and (%) for
other variables.
2The pathological cancer staging (pTNM, where the T category defines the anatomic
extent of cancer for the tumor, N for the lymph nodes and M for distant metastases; 0,1
and X in the N and M categories correspond to absent, present, and unknown,
respectively) according to the 7th edition of TNM classification system (31).
TABLE 2 | TaqMan primer/probe set used for genotyping.

SNP Chromosomal locus Base position1 Nearest gene(s) TaqMan primer/probe set

rs965513 (A/G) 9q22.33 97,793,827 FOXE1, PTCSC2 C_1593670_20
rs944289 (T/C) 14q13.3 36,180,040 NKX2-1, PTCSC3 C_1444137_10
rs1867277 (A/G) 9q22.33 97,853,632 FOXE1 C_11736668_10
rs2439302 (G/C) 8q12 32,574,851 NRG1 C_16238367_10
rs10136427 (C/T) 14q24.3 75513546 BATF C_2676717_10
rs966423 (T,G/C) 2q35 217,445,617 DIRC3 C_1880230_10
rs7267944 (C/T) 20q12 39,318,791 DHX35 C_29372376_10
rs6983267 (G/T) 8q24.2 127,401,060 POU5F1B, CCAT2 C_29086771_20
January 2021 |
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applicable) as explanatory variables. The LOGISTIC procedure in
the 3.71 release of SAS Studio for the 9.4M5 version of SAS (SAS
Institute, Cary, NC, USA) was used for these calculations.

Exact two-sided tests, permutation tests and exact test for
equality of allele frequencies for stratified groups were performed
using the ‘HardyWeinberg’ package in R (37).

All tests were two-sided, P <0.05 was considered
statistically significant.

Predictive Modeling of Papillary
Thyroid Carcinoma
To evaluate the impact of the genetic component on PTC risk in
the given case–control sample, we used multivariable logistic
regression modeling. The initial full model included all eight
SNPs in the study, and age and sex as explanatory variables. The
reduced model was determined by stepwise or non-automatic
selection of variables to achieve minimum Akaike information
criterion. Statistical validation of the reduced model was performed
using permutation analysis as described before (38), and
bootstrapping with 0.9 sampling rate (i.e., selecting 90% of data
for each sample using the unrestricted random sampling method)
in 10,000 replicates using the SURVEYSELECT procedure. The
receiver operating characteristic (ROC) analysis was performed to
assess the predictive performance of the reduced model,
supplemented with the leave-one-out cross-validation.
RESULTS

Single_Nucleotide Polymorphisms
Association With and Impact on Papillary
Thyroid Carcinoma Risk
Five of the eight SNPs displayed significant association signals in
the Kazakh population with ORs similar to those in the original
Frontiers in Endocrinology | www.frontiersin.org 4
studies and follow-up publications (Table 4). The strongest
associations between a risk allele and sporadic PTC were
observed for rs965513 (FOXE1/PTCSC2, 9q22.33; OR = 2.25,
P = 1.3E-16), rs1867277 (FOXE1 5’UTR, 9q22.33; OR = 1.52, P =
7.5E-06), rs2439302 (NRG1 intron 1, 8q12; OR = 1.46, P = 4.0E-
05), rs944289 (PTCSC3/NKX2-1, 14q13.3; OR = 1.44, P = 4.5E-
06), and rs10136427 (intergenic region upstream BATF, 14q24.3;
OR = 1.30, P = 9.8E-03). rs966423 (DIRC3, 2q35) showed a
significant association (OR = 1.25, P = 5.8E-03) on unadjusted
analysis, but significance became marginal after adjusting for age
and sex (OR = 1.18, P = 0.07). Adjustment for multiple testing
and statistical validation (permutation) confirmed significant
association of the five SNPs (rs965513, rs944289, rs1867277,
rs2439302, rs10136427) and suggestive association for rs966423.

Two remaining SNPs, rs7267944 (DHX35, 20q12; OR = 1.04,
P = 0.71) and rs6983267 (POU5F1B/CCAT2, 8q24.2; OR = 1.09,
P = 0.36) did not display significant associations at this stage
of analysis.

After obtaining evidence that certain examined SNPs display
statistically significant association signals, we set out to determine
the performance of a statistical model of the risk for PTC based on
genetic factors. The reduced model included four SNPs: rs965513
(FOXE1/PTCSC2), rs944289 (NKX2-1, PTCSC3), rs2439302
(NRG1) and rs10136427 (BATF) (Table 5). Their association
signals remained significant after correction for multiple testing
(Bonferroni and FDR). Statistical validation confirmed significant
association of these SNPs with cancer risk (permutation), and
confidence intervals almost did not change on bootstrapping. Of
note, the OR estimates for the four SNPs in the model were very
similar to those obtained in the single-SNP models (see Table 4)
indicative of independent contribution of each SNP to thyroid
cancer risk. The area under the ROC curve (AUC) was 0.82 (95%
CI 0.80–0.84; P = 3.2E-183 as compared with a random classifier);
cross-validation did not demonstrate model overfit returning a
TABLE 3 | Summary information on the risk alleles of analyzed SNPs.

SNP Chromosomal
locus

Nearest
gene(s)

Location/
annotation

Risk allele function1 Risk allele
frequency1

Allelic
OR1

Replication
studies

References

rs965513
(A*/G)

9q22.33 FOXE1,
PTCSC2

Intergenic,
long-range
enhancer

Decreases the expression of FOXE1, unspliced
PTCSC2 and TSHR in normal thyroid tissue

0.09–0.61 1.40–2.81 Yes (6–9, 16–
18, 20–27,
33, 34)

rs944289
(T*/C)

14q13.3 PTCSC3,
NKX2-1

Non-
coding,
promoter

Decreases PTCSC3 expression by destroying
a C/EBPa/b transcription factor binding site in
PTCSC3 promoter

0.46–0.70 1.12–1.60 Yes (6, 8, 18,
20, 21, 23–
27, 35)

rs1867277
(A*/G)

9q22.33 FOXE1 5’UTR Upregulates FOXE1 expression in follicular
thyroid carcinoma cells through the recruitment
of USF1/USF2 transcription factors

0.16–0.53 1.20–1.75 Yes (15, 18, 20,
23, 25, 26)

rs2439302
(G*/C)

8p12 NRG1 Intron 1 Increases NRG1 expression 0.23–0.54 1.29–1.53 Yes (8, 24, 27,
33, 36)

rs10136427
(C*/T)

14q24.3 BATF Intergenic Not established 0.79–0.88 1.05–1.62 No (10)

rs966423
(T,G*/C)

2q35 DIRC3 Intron Not established 0.41–0.82 1.14–1.28 Yes (8, 24, 27,
33)

rs7267944
(C*/T)

20q12 DHX35 Intergenic Not established 0.17–0.26 1.10–1.54 No (10)

rs6983267
(G*/T)

8q24.2 POU5F1B,
CCAT2

Non-
coding

Suggested to predispose chromosome 8 to
chromosomal instability

0.37–0.51 0.89–1.16 Yes (23, 24, 26,
29)
Jan
uary 2021 |
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similar AUC of 0.82 (0.80–0.84). The Cox and Snell pseudo-R2 of
the optimal model was 0.27, and the Nagelkerke pseudo-R2 was
0.38 suggesting that some 30–40% of variability in the risk for PTC
in the analyzed series could be explained by the model that
included age, sex and the four SNPs.

Single-Nucleotide Polymorphism
Association With Clinicopathological
Parameters of Papillary Thyroid
Carcinoma
We assessed the genetic variants association with patients’ sex,
age (older than 55 years old), the pT category (pT3–T4 vs pT1–
T2), and regional metastasis (N1). As shown in Table 6, very few
statistically significant associations were found. rs7267944
(DHX35) was negatively associated with female sex (OR =
0.40, P = 6.1E-05), rs1867277 (FOXE1) was weakly but
nominally significantly associated with the older patients’ age
(OR = 1.32, P = 0.03) and rs6983267 (POU5F1B/CCAT2) with
more advanced tumors (OR = 1.49, P = 0.01).

The strong association of rs7267944 (DHX35) with patients’
sex prompted us to test its association with PTC risk using
stratified sampling. While no association was found in females
OR = 0.95 (95%CI 0.76–1.18, P = 0.62 adjusted for age), the
association signal in males was significant with an OR = 1.83
(95%CI 1.09–3.09, P = 0.02 adjusted for age). The difference in
effect size was statistically significant (P = 0.023, the Breslow–
Day test). No deviations from Hardy–Weinberg equilibrium in
the groups of PTC patients or healthy control subjects, either
non-stratified or stratified by sex, was found for this genetic
Frontiers in Endocrinology | www.frontiersin.org 5
variant (P > 0.4 for any exact two-sided test, P > 0.4 for any
permutation test). Exact test for equality of allele frequencies for
males and females in the control subjects was negative (P = 0.06),
but in PTC patients a strong inequality was observed (P = 8.26E-
05), in line with other statistical findings.

The modifying effect of age on rs1867277 (FOXE1) was tested in
respective groups of patients and control subjects younger or older
55 years old. In the younger group, rs1867277 displayed an
association signal with OR = 1.44 (95%CI 1.16–1.80, P = 9.5E-04
adjusted for sex), and in the older group with OR = 1.84 (95%CI
1.36–2.49, P = 7.0E-05 adjusted for sex). There was no surprise that
the association was significant in both age groups as rs1867277 was
significant on the whole group association analysis, which was
adjusted for age (seeTable 4). Clearly, the effect of rs1867277 on the
risk for PTC was more pronounced in subject older than 55 years
old, although the difference did not reach statistical significance (P =
0.20). No deviations from Hardy–Weinberg equilibrium in the
groups of PTC patients or healthy control subjects were found for
rs1867277 (P > 0.1 for any exact two-sided test, P > 0.1 for any
permutation test). Exact test for equality of allele frequencies for
subjects younger than 55 years old was negative (P = 0.85), while in
older subjects the inequality existed (P = 0.03).

We also tested the association of rs6983267 (POU5F1B/
CCAT2) with PTC of different pT stage. In pT1–T2 tumors,
the association was insignificant with OR = 1.0 (95%CI 0.82–
1.21, P = 0.96 adjusted for age and sex), while in pT3–T4 tumors
the signal was significant, OR = 1.47 (95%CI 1.09–1.98, P = 0.01
adjusted for age and sex). The difference in ORs was statistically
significant (P = 0.03). No deviations from Hardy–Weinberg
TABLE 5 | The SNP-based logistic regression model of risk for PTC in the Kazakh population.1

SNP Logistic regression Multiple testing Permutation Bootstrap2

OR [95%CI] P-value Bonferroni FDR P-value OR [95%CI]

rs965513 2.32 [1.91–2.83] 4.8E-17 2.4E-16 1.1E-16 <1.0E-04 2.36 [1.98–2.81]
rs944289 1.43 [1.19–1.72] 1.4E-04 2.8E-04 1.6E-04 1.0E-04 1.44 [1.22–1.68]
rs2439302 1.50 [1.24–1.82] 2.9E-05 8.8E-05 4.1E-05 <1.0E-04 1.51 [1.28–1.79]
rs10136427 1.32 [1.06–1.63] 1.1E-02 1.1E-02 1.1E-02 6.8E-03 1.33 [1.09–1.61]
January 2021 | Volume 11
1The multiplicative model adjusted for age and sex.
2Bootstrap sampling rate 0.9, 10,000 replicates.
TABLE 4 | Association analysis of papillary thyroid carcinoma in the Kazakh population.1

SNP2 Locus Nearest gene(s) Risk allele frequency OR [95%CI] P-value FDR3 P-permutation

Cases n = 485 Controls n = 1008

rs965513[A] 9q22.33 FOXE1, PTCSC2 0.39 0.22 2.25 [1.86–2.73] 1.3E-16 1.1E-15 1.0E-06
rs944289[T] 14q13.3 NKX2-1, PTCSC3 0.55 0.46 1.44 [1.21–1.72] 4.6E-05 9.1E-05 3.4E-05
rs1867277[A] 9q22.33 FOXE1 0.43 0.32 1.52 [1.27–1.83] 7.5E-06 3.0E-05 7.0E-06
rs2439302[G] 8q12 NRG1 0.43 0.33 1.46 [1.22–1.76] 4.0E-05 9.1E-05 4.6E-05
rs10136427[C] 14q24.3 BATF 0.77 0.72 1.30 [1.07–1.59] 9.8E-03 0.02 0.01
rs966423[T,G] 2q35 DIRC3 0.40 0.35 1.18 [0.98–1.42] 0.07 0.10 0.09
rs7267944[C] 20q12 DHX35 0.23 0.24 1.04 [0.85–1.28] 0.71 0.71 0.70
rs6983267[G] 8q24.2 POU5F1B, CCAT2 0.48 0.48 1.09 [0.91–1.30] 0.36 0.41 0.44
1The multiplicative model adjusted for age and sex.
2The risk allele is specified in brackets.
3False discovery rate, the Benjamini–Hochberg procedure.
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equilibrium in the groups of PTC patients or healthy control
subjects were found for rs6983267 (P > 0.1 for any exact two-
sided test, P > 0.1 for any permutation test). Exact test for
equality of allele frequencies in the subgroup of PTCs of pT1–
pT2 category was negative (P = 0.32) and marginally significant
in pT3–pT4 PTCs (P = 0.07).
DISCUSSION

In the present study we set out to determine the impact of genetic
factors on PTC risk in the Kazakh population. We focused on
several SNPs found to display confident association signals in the
previous studies across different populations/ethnicities and also
tested two SNPs that have been newly discovered in GWAS of
thyroid cancer.

Our genotyping results unambiguously confirmed the
associations of rs965513 (FOXE1/PTCSC2, 9q22.33), rs1867277
(FOXE1 5’UTR, 9q22.33), rs944289 (PTCSC3/NKX2-1, 14q13.3),
rs2439302 (NRG1 intron 1, 8q12) using canonical multivariate
analysis essentially supplemented by rigorous statistical validation.

Functional roles of rs965513 and rs1867277 located in the
FOXE1 locus on chromosome 9q22.33 were linked to the
transcriptional regulation of FOXE1 and PTCSC2. rs965513 was
shown to affect the expression of FOXE1, PTCSC2 and TSHR
(thyroid stimulating hormone receptor) in thyroid tissue (34), and
rs1867277 regulates FOXE1 expression through the recruitment of
USF1/USF2 transcription factors (15), implicating these SNPs into
thyroid homeostasis and development. Of note, transgenic mice
overexpressing FOXE1 in their thyroids displayed retardation in
Frontiers in Endocrinology | www.frontiersin.org 6
the proliferation of follicular cells, suggestive of its tumor
suppressor function (39). A meta-analysis that combined data
from 23 studies in different countries and ethnicities evaluated
that rs965513[A] risk allele had an OR = 1.58 (95% CI 1.32–1.90)
in the pooled sample, and OR = 1.65 and 1.49 in Caucasian and
Asian populations, respectively (40). Interestingly, in the Kazakh
population, which is of Asian descent, we found an OR = 2.25 (95%
CI 1.85–2.73), which is one of the strongest association signals ever
reported for the FOXE1 locus. Also of interest is the finding of age-
related effect rs1867277 (i.e., the higher risk in patients aged more
than 55 years), which is reported for the first time. It should be
noted that despite rs965513 and rs1867277 are located in the same
genetic locus, their effect on PTC risk is independent (41). The age
relatedness of rs1867277 effect could be addressed in independent
or already available studies.

rs944289 located on chromosome 14q13.3 regulates
expression of the PTCSC3 lncRNA, which has tumor
suppressor effect in thyroid cancer cell lines, through the
recruitments of C/EBPa and b transcription factors (35).
PTCSC3 level was found to be significantly lower in PTC than
in normal thyroid tissue (26), which corresponds well with its
tumor suppressor function. Interestingly, rs944289 besides of
PTC was also associated with follicular adenoma (26), indicating
its broader function in thyroid tumorigenesis.

rs2439302 is located in intron 1 of NRG1 on chromosome
8q12. NGR1 encodes human epidermal growth factor receptor 3
(HER3) ligand whose dimers with HER2 can activate MAPK and
AKT pathways known to play an important role in PTC (42).
Similarly to PTCSC3, NRG1 was also earlier associated with
follicular adenoma (26).
TABLE 6 | Association of the genetic variants with clinicopathological characteristics.1

SNP Sex (F) Age ≥ 55 y.o. pT3–T4 vs pT1–T22 N1 vs N03

P-trend4 OR5[95% CI] P-value P-trend OR6[95% CI] P-value P-trend OR[95% CI] P-value P-trend OR[95% CI] P-value

rs965513[A]7 0.76 1.07
[0.70–1.63]

0.76 0.09 1.25
[0.97–1.61]

0.08 0.87 1.02
[0.77–1.36]

0.88 0.50 1.14
[0.80–1.63]

0.47

rs944289[T] 0.27 1.00
[0.97–1.02]

0.71 0.25 1.18
[0.91–1.52]

0.22 0.10 0.78
[0.58–1.04]

0.09 0.78 0.96
[0.66–1.41]

0.83

rs1867277[A] 0.55 1.15
[0.75–1.75]

0.53 0.04 1.32
[1.02–1.69]

0.03 0.33 0.85
[0.64–1.13]

0.27 1.00 1.02
[0.71–1.47]

0.90

rs2439302[G] 0.06 1.52
[1.00–1.02]

0.06 0.70 0.97
[0.76–1.24]

0.79 0.37 0.88
[0.66–1.16]

0.35 0.13 0.78
[0.54–1.11]

0.17

rs10136427[C] 0.45 0.82
[0.48–1.40]

0.47 0.28 1.17
[0.87–1.59]

0.17 0.82 1.02
[0.72–1.45]

0.90 0.98 1.00
[0.64–1.57]

0.99

rs966423[T,G] 0.58 1.15
[0.72–1.82]

0.56 0.46 1.11
[0.85–1.45]

0.43 0.89 0.96
[0.70–1.30]

0.80 0.90 1.04
[0.70–1.54]

0.84

rs7267944[C] 3.4E-05 0.40
[0.26–0.63]

6.1E-05 0.41 0.84
[0.32–1.13]

0.11 0.79 0.95
[0.67–1.35]

0.79 0.96 0.96
[0.60–1.51]

0.84

rs6983267[G] 0.08 1.00
[0.98–1.02]

0.80 0.68 0.96
[0.74–1.25]

0.76 0.02 1.49
[1.09–2.02]

0.01 0.66 1.10
[0.74–1.64]

0.63
January 2
021 | Volu
me 11 | Article
1Multivariate logistic regression adjusted for age and sex unless otherwise specified.
2The T category (defines the anatomic extent of cancer for the tumor) from the pathological cancer staging according to the 7th edition of TNM classification system (31); here, the
advanced tumors (pT3–T4) are contrasted to less advanced tumors (pT1–T2).
3The N category (defines the regional lymph node involvement) from the pathological cancer staging according to the 7th edition of TNM classification system (31); here, cases with nodal
disease (N1) are contrasted to those without lymph node involvement (N0).
4The Cochran–Armitage test for trend.
5Adjusted for age.
6Adjusted for sex.
7The risk allele is specified in brackets.
Statistically significant associations are shown in bold.
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rs10136427, whose association with PTC risk was confirmed
in the Kazakh population for the first time, was previously
detected on GWAS in the Italian, Polish, and Spanish
population study providing strong evidence of association with
DTC (12). rs10136427 is located in an intergenic region
upstream BATF. BATF proteins are the “AP-1 inhibitors”;
findings in mouse myeloid leukemia cells suggested they can
act as tumor suppressors by promoting cell growth arrest and cell
differentiation. Whether BATF could play a similar role in other
tissues, such as the thyroid, remains unknown. Since this genetic
variant was not immediately associated with BATF expression, a
possibility was suggested that this genetic locus may act as a
trans-regulatory region controlling the expression of distant
genes that reside on the same or even different chromosome(s)
(trans-eQTL) (12).

rs966423 located in the DIRC3 intron on chromosome 2q35,
displayed marginally significant association (P = 0.07) in the
Kazakh population. This genetic variant was significantly
associated with the risk for thyroid cancer in both European
and Asian ethnicities with ORs from 1.28 to 1.34 (reviewed in
(28). In our study the OR = 1.18 (adjusted for age and sex) is
lower than those previously described. It therefore is likely that
our sample size (485 PTC patients and 1,008 healthy control
subjects) did not provide sufficient statistical power (achieved
power 44%). We interpret the association signal of this genetic
variant as suggestive in the Kazakh population. The functional
role of DIRC3 lncRNA is likely to be that of tumor suppressor,
and its relevance to thyroid cancer (8, 9) and other human
malignancies such as, originally, familial renal cancer (43),
melanoma (44), breast cancer (45) and laryngeal squamous cell
carcinoma (46) has been reported.

The finding for rs7267944, which is located approximately 280
kB telomeric to DHX35 on chromosome 20q12, was somewhat
unexpected. While on the whole group association analysis the
signal of rs7267944 was insignificant, we noticed a strong
modifying effect of sex. Accordingly, we found significant
association of rs7267944 with PTC in males but not in females.
DHX35 encodes a putative RNA helicase of DEAD/DEAH-box
family, which are implicated in translation initiation, RNA
splicing, and ribosome and spliceosome assembly. DHX35 is
relatively highly expressed in the endometrium, ovaries, prostate
and testes possibly pointing at its relatedness to sex-specific
biological function (47). In the thyroid, DHX35 is also expressed,
although its role in tissue homeostasis and carcinogenesis remains
unestablished. Within our study we could not determine the
reason for DHX35 association with sex, which, besides the true
association could be sampling bias, a phenomenon specific for the
given ethnic group (and relevant environmental exposures) or
occurring by chance. This could be clarified in an independent
study in the Kazakh population and also in other ethnic groups by
researcher with access to rs7267944 [or other SNP(s) in strong or
perfect linkage disequilibrium with it] genotyping data and
clinical/demographic information. It is also possible that
rs7267944 may point on the genetic factor other than DHX35
on chromosome 20q12 or elsewhere due to trans-eQTL effect.

A recent GWAS has identified rs6983267 (POU5F1B/CCAT2)
as a key locus in the 8q24 region previously associated with DTC/
Frontiers in Endocrinology | www.frontiersin.org 7
PTC. However, the association with thyroid cancer was
somewhat controversial since the significant association was
found in the Polish and UK populations, but no association
was found in the Spanish, Italian, and Japanese groups (10). In
the Kazakh population under study, we did not observe
significant association signal on the whole group analysis, yet a
correlation with the higher pT tumor stage was detected. When
pT3–T4 tumors were tested, a significant association with PTC
risk was confirmed. It is tempting to relegate controversies in the
rs6983267 association with thyroid cancer in different
populations not only to genetic heterogeneity but also to
different distribution of clinicopathological characteristics of
tumors in country-specific samples. rs6983267 resides in the
intronic region of POU5F1B, which encodes a transcriptional
activator implicated in multisite cancers (48–51). It is worth
noting that this genetic variant is also localized inside the CCAT2
lncRNA upregulated in colon cancer and implicated in other
human malignancies (52–55). The exact roles of either POU5F1B
or CCAT2 in PTC remain to be established.

After confirming the associations of rs965513 (FOXE1/
PTCSC2), rs944289 (PTCSC3/NKX2-1), rs1867277 (FOXE1),
rs2439302 (NRG1), rs10136427 (BATF) and, suggestively, of
rs966423 (DIRC3) with PTC in the whole group or on
subgroup analysis for rs7267944 (DHX35) and rs6983267
(POU5F1B/CCAT2), we combined these genetic variants in a
statistical model to evaluate their contribution to PTC risk as the
predictive strength of the genetic variants can be improved by
combining multiple SNPs in a model (27, 56). The final model,
which included four SNPs, rs965513 (FOXE1/PTCSC2),
rs944289 (NKX2-1 , PTCSC3), rs2439302 (NRG1) and
rs10136427 (BATF), was subjected to statistical validation to
ensure its reliability. The model had good predictive strength as
judged by the ROC analysis (AUC = 0.82). Using two different
analogs of the coefficient of determination for logistic regression
models, we considered it safe to claim that the four SNPs in the
optimal model, adjusted for age and sex effects, could explain
about 30–40% of the risk for PTC in the Kazakh population
examined in the study with a retrospective case–control design.

Our study had certain advantages such as homogenous
ethnicity of the participants, large sample size that provided
sufficient statistical power to detect meaningful associations, and
thorough selection of the genetic variants. On the other hand, the
study was not devoid of limitations. We could not fully rule out
sampling bias and acknowledge insufficient age and sex matching
of cases and controls, which could affect the accuracy of some of
the results obtained in the study. Also, clinicomorphological
information was not detailed enough to analyze potentially
clinically relevant correlations, and the lack of data on the
participants’ lifestyles and environmental exposures impeded
the assessment of the impact of these factors on PTC risk.

In summary, our results unambiguously demonstrate the
existence of genetic determinants of susceptibility to PTC
among the SNPs analyzed in this work in the Kazakh
population. We confirm the associations of rs965513 (FOXE1/
PTCSC2), rs944289 (PTCSC3/NKX2-1), rs1867277 (FOXE1),
rs2439302 (NRG1), and rs10136427 (BATF). The association of
rs966423 (DIRC3) with PTC risk in the Kazakh population is
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suggestive. The association signals in terms of ORs were generally
comparable to those in typical Asian and European populations,
and that of rs965513 (FOXE1/PTCSC2) was the highest so far
reported. We also detected the age-related effect of rs1867277
(FOXE1) conferring the higher risk for PTC in patients older than
55 years and the association of rs7267944 (DHX35) with PTC risk
in males and that of rs6983267 (POU5F1B/CCAT2) with more
advanced tumor pT stage.We estimate the contribution of genetic
factors to the susceptibility to PTC in the analyzed series from
Kazakhstan to 30–40%, accounting for age and sex. To better
understand the impact of different factors affecting PTC risk,
further studies would be desirable to increase the number of
potential genetic loci and to include the data on individual lifestyle
and exposures to environmental agents.
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