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Abstract

This supplementary material provides concrete arguments omitted in the original manuscript;
the derivation of desingularized vector fields associated with original ones, the proof of Lemma
2.2 and the Jacobian matrix of desingularized vector fields, which are essential for our numeri-
cal validations. Moreover, concrete calculations of blow-up rates of validated blow-up solutions
are presented.

A Transformation of vector fields via directional compacti-
fications

Firstly, we derive the transformed vector field associated with

u′
1 = N2(−2u1 + u2) + λeu

m
1 , u′

N−1 = N2(uN−1 − 2uN−2) + λeu
m
N−1 ,

u′
i = N2(ui−1 − 2ui + ui+1) + λeu

m
i , (i = 2, · · · , N − 2), (A.1)

where ′ = d
dt , via the directional compactification

uN/2 = s−1, ui = s−1xi (i = 1, · · · , N − 1, i ̸= N/2). (A.2)

Let
hk,α;m(s) := s−ke−α/sm (A.3)

and{
∆i := N2(xi−1 − 2xi + xi+1), (i = 2, · · · , N − 2, i ̸= N/2)

∆N/2 := N2(xN/2−1 − 2 + xN/2+1), ∆1 := N2(−2x1 + x2), ∆N−1 := N2(xN−2 − 2xN−1).
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Direct computations then yield

u′
N/2 ≡ −s−2s′ = N2

(
xN

2 −1

s
− 2

s
+

xN
2 +1

s

)
+ λe(1/s)

m

⇔ s′ = −s∆N/2 − λs2e(1/s)
m

≡ −s∆N/2 − λ(h2;1;m(s))−1,

u′
i = −s−2xis

′ + s−1x′
i = s−1∆i + λe(xi/s)

m

⇔ x′
i = s−1xis

′ +∆i + λse(xi/s)
m

= s−1xi

{
−s∆N/2 − λ(h2;1;m(s))−1

}
+∆i + λse(xi/s)

m

=
{
−xi∆N/2 − xiλ(h1;1;m(s))−1

}
+∆i + λse(xi/s)

m

= −xi∆N/2 − xiλ(h1;1;m(s))−1 +∆i + λ(h1,xm
i ;m(s))−1 (i ̸= N/2).

Therefore, we have the following transformed vector field:

s′ = −s∆N/2 − λ(h2,1;m(s))−1,

x′
i = −xi∆N/2 − xiλ(h1,1;m(s))−1 +∆i + λ(h1,xm

i ;m(s))−1 (i ̸= N/2).

Introducing the time-scale desingularization

dτ

dt
= h1,1;m(s)−1, (A.4)

we have

ḟ ≡ df

dτ
=

df

dt
h1,1;m(s)

for any function f and hence{
ṡ = −s∆N/2h1,1;m(s)− sλ = −∆N/2e

−1/sm − sλ,

ẋi = −xi∆N/2h1,1;m(s)− xiλ+∆ih1,1;m(s) + λh0,1−xm
i ;m(s). (i ̸= N/2)

(A.5)

We leave the calculation of Jacobian matrix later since we need several formulas for hk,α;m.

B Derivations around hk,α;m

In this section, we calculate differentials of hk,α;m defined in (A.3) with several basic properties
stated in Lemma 2.2.

Obviously, for fixed positive integers k,m > 0 and positive number α > 0, hk,α;m(s) is C1 (in
particular, C∞) with respect to s > 0. The limit lims→0+ hk,α;m(s) = 0 follows from the following
argument. Let

hk,α;m(s) =
f(s)

g(s)
, f(s) = e−α/sm , g(s) = sk.

Lemma B.1. For α > 0 and positive integer m > 0, the function

f(s) =

{
e−α/sm s > 0

0 s ≤ 0

is C1 on R. In particular, lims→0 f
′(s) exists and is equal to 0.
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Proof. Continuity of f on R and smoothness of f on R \ {0} are obvious. The remaining issue is
the smoothness of f at s = 0. The smoothness with m = 1 is well-known, and hence we assume
m = 1 in the remaining argument. For s > 0, f ′(s) = αms−(m+1)f(s). Introducing t = sm, the
function f ′(s) is rewritten by

f ′(s) = αms−(m+1)e−α/sm = αmsm−1s−2me−α/sm = αmt
m−1
m

e−α/t

t2
.

Using the well-known results that limt→+0 t
−ne−α/t = 0 for any nonnegative integer n and

limt→+0 t
c = 0 for c > 0, we have

lim
t→+0

t
m−1
m

e−α/t

t2
=

(
lim

t→+0
t
m−1
m

)(
lim

t→+0

e−α/t

t2

)
= 0.

Obviously t → +0 corresponds one-to-one to s → 0 and hence f ′(s) → 0 as s → +0, which implies
that f is C1 at s = 0.

The above proof gives an explicit form of f ′(s) via the transformation s = tm. Now we have

d

ds
hk,α;m(s) =

d

ds

(
f(s)

g(s)

)
= αms−(m+1+k)e−α/sm − ks−(k+1)e−α/sm .

Here, there are positive integers m̃1, m̃2 such that 0 ≤ r1 ≡ m̃1m − (m + 1 + k) < m and that
0 ≤ r2 ≡ m̃2m− (k + 1) < m. Therefore

αms−(m+1+k)e−α/sm − ks−(k+1)e−α/sm = αmtr1/m
(
e−α/t

tm̃1

)
− ktr2/m

(
e−α/t

tm̃2

)
.

By the same argument as the proof of Lemma B.1, we know that lims→+0
d
dshk,α;m(s) exists and

is equal to 0. Consequently, the function

hk,α;m(s) :=

{
hk,α;m(s), s > 0,

0, s ≤ 0

is a C1-extension of hk,α;m over R for any nonnegative integer k, positive integer m and positive
number α.

Next we check the monotonous behavior of hk,α;m(s). Direct calculations yield the following
alternative formula of the derivative of hk,α;m:

d

ds
hk,α;m(s) =

d

ds

(
s−ke−α/sm

)
= −ks−(k+1)e−α/sm + s−ke−α/sm d

ds
(−αs−m)

= −ks−(k+1)e−α/sm +mαs−(k+m+1)e−α/sm

= s−(k+1)e−α/sm
{
−k +mαs−m

}
=

{mα

sm
− k

}
hk+1,α;m(s).
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We see that, for sufficiently small s > 0, hk,α;m(s) and d
dshk,α;m(s) are positive. Thus hk,α;m(s)

increases monotonously with respect to s ∈ [0, s̄] as long as d
dshk,α;m(s) ≥ 0 over [0, s̄]. Since

hk,α;m(s) > 0 for all s > 0 and any k ≥ 0, then the monotonous property of hk,α;m(s) can break
at s = s̄ such that d

dshk,α;m(s̄) = 0, which is equivalent to mαs̄−m − k = 0. Therefore we have

s̄ =
(mα

k

)1/m

for real s̄. We easily know that mα
s̄m − k is positive for s ∈ (0, s̄), and hence we conclude that

hk,α;m(s) is monotonously increasing over (0, (mα/k)1/m).

C Jacobian matrix for (A.5)

Once we obtain differentials of hk,α;m, we can compute the Jacobian matrix of (A.5). Direct
computations with Part 1. of Lemma 2.2 yield

∂fN/2

∂s
=

∂

∂s

{
−e−1/sm∆N/2 − sλ

}
=

∂

∂s

{
−h0,1;m(s)∆N/2 − sλ

}
= −

{ m

sm

}
h1,1;m∆N/2 − λ

= −mhm+1,1;m(s)∆N/2 − λ,

∂fN/2

∂xj
=

∂

∂xj

{
−e−1/sm∆N/2 − sλ

}
= −e−1/sm ∂

∂xj
∆N/2.

Here we note that

∂

∂xj
∆N/2 = N2 ∂

∂xj
(xN/2−1 − 2 + xN/2+1) = N2(δj,N/2−1 + δj,N/2+1),

where δi,j is the Kronecker delta. In particular, we have

∂fN/2

∂xj
= −e−1/sm ∂

∂xj
∆N/2 = −(δj,N/2−1 + δj,N/2+1)N

2h0,1;m(s) (j ̸= N/2).

Next,

∂fi
∂s

=
{
−xih1,1;m(s)∆N/2 − xiλ+ h1,1;m(s)∆i + λh0,1−xm

i ;m(s)
}

= −xi∆N/2
∂

∂s
h1,1;m(s) + ∆i

∂

∂s
h1,1;m(s) + λ

∂

∂s
h0,1−xm

i ;m(s)

= {∆i − xi∆N/2}
{ m

sm
− 1

}
h2,1;m(s) + λ

{
m(1− xm

i )

sm

}
h1,1−xm

i ;m(s)

= (1−ms−m)h2,1;m(s)(xi∆N/2 −∆i)− λm(xm
i − 1)hm+1,1−xm

i ;m(s), (i ̸= N/2).
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Finally,

∂fi
∂xj

=
∂

∂xj

{
−xih1,1;m(s)∆N/2 − xiλ+ h1,1;m(s)∆i + λh0,1−xm

i ;m(s)
}

= −
{
∂xi

∂xj
h1,1;m(s)∆N/2 + xih1,1;m(s)

∂

∂xj
∆N/2

}
− λ

∂xi

∂xj

+ h1,1;m(s)
∂

∂xj
∆i + λ

∂

∂xj
h0,1−xm

i ;m(s)

= −h1,1;m(s)∆N/2δi,j +N2xih1,1;m(s)(δj,N/2−1 + δj,N/2+1)− λδi,j

+ h1,1;m(s)
∂

∂xj
∆i + λ

∂

∂xj
e(1−xm

i )/sm

= −h1,1;m(s)∆N/2δi,j +N2xih1,1;m(s)(δj,N/2−1 + δj,N/2+1)− λδi,j

+ h1,1;m(s)
∂

∂xj
∆i − λmxm−1

i s−mδi,je
(1−xm

i )/sm

= −h1,1;m(s)∆N/2δi,j +N2xih1,1;m(s)(δj,N/2−1 + δj,N/2+1)− λδi,j

+ h1,1;m(s)
∂

∂xj
∆i − λmxm−1

i δi,jhm,1−xm
i ;m(s).

Now we consider ∂
∂xj

∆i in detail. Typically we have

∂

∂xj
∆i = N2(δi−1,j − 2δi,j + δi+1,j).

However, if i = N/2 ± 1, ∆i contains the term corresponding to xN/2, which is identically set as

1 in the present case. Hence ∂
∂xN/2

∆i must be identically zero. Note that the case i = N/2 is

eliminated since we have already treated above. Moreover, if i = 1 and N − 1, then δi−1,j and
δi+1,j are eliminated, respectively, since we have formally set as x0 = xN ≡ 0. Therefore we have

∂

∂xj
∆i = N2(δi−1,j(1− δi−1,N/2)(1− δi−1,0)− 2δi,j + δi+1,j(1− δi+1,N/2)(1− δi−1,N )).

We also note that, since the 0-Dirichlet boundary condition is imposed, we do not have to pay
extra attentions to the cases i = 1, N − 1 in the present setting1. Consequently, we have

∂fi
∂xj

= −h1,1;m(s)∆N/2δi,j +N2xih1,1;m(s)(δj,N/2−1 + δj,N/2+1)− λδi,j

+ h1,1;m(s)N2(δi−1,j(1− δi−1,N/2)(1− δi−1,0)− 2δi,j + δi+1,j(1− δi+1,N/2)(1− δi−1,N ))

− λmxm−1
i δi,jhm,1−xm

i ;m(s). (i ̸= N/2)

D Blow-up behavior : theoretical study

Following arguments of asymptotic behavior [1, 2], we can discuss blow-up rates of validated
solutions. Arguments of blow-up rates begin with asymptotic behavior of solutions of (A.5) tending

1If we consider other boundary conditions such as 0-Neumann boundary, non-trivial treatments involving bound-
ary conditions are necessary.
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to equilibria on the horizon {s = 0}. Let p∗ be a hyperbolic equilibrium for (A.5). Then, the s-
component of solutions asymptotic to p∗ is written by

s(τ) = Ceλsτ (1 + o(1)), as τ → ∞,

where C > 0 denotes a generic constant which can change in each calculation and λs < 0 is a
negative number such that Reµ ≤ λs < 0 holds for any eigenvalues µ of the Jacobian matrix at
p∗

2. Then we have

tmax =

∫ ∞

0

e−1/s(η)m

s(η)
dη = C

∫ ∞

0

e−λsηe−e−mλsη

(1 + o(1))dη.

Let µ = e−λsη. Then, η = 1
−λs

logµ, µ : 1 → ∞ holds as η : 0 → ∞, s(µ) = Cµ−1(1 + o(1)) as
µ → ∞ and dµ = −λsµdη. Thus

tmax = C

∫ ∞

0

e−λsηe−e−mλsη

dη =
C

−λs

∫ ∞

1

e−µm

(1 + o(1))dµ. (D.1)

Remark D.1. As mentioned in the end of Section 3, we can directly prove that tmax < ∞ from
the convergence of (D.1). However, the whole arguments in this section do not tell us the concrete
value of tmax.

The same argument yields the following asymptotic behavior of tmax − t as t → tmax:

tmax − t =

∫ ∞

τ

e−λsηe−e−mλsη

dη = C

∫ ∞

e−λsτ

e−µm

(1 + o(1))dµ

where t = t(τ) given by

t =

∫ τ

0

e−1/s(η)m

s(η)
dη.

In particular, we have

e−λsτ ∼ C
[
ln(tmax − t)−1

]1/m
as t → tmax.

Summarizing the argument, we finally have

1

s(µ)
= µ = C

[
ln{(tmax − t)−1}

]1/m
(1 + o(1)) as µ → ∞.
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