Papers

Peer-reviewed Lead author
Feb 15, 2022

Synthesis of 1-Silabenzo[ d, e]isochromanes via Electrophilic Aromatic Substitution of Aldehydes Activated by Silylium Ion

ACS Omega
  • Arii H
  • ,
  • Nakao K
  • ,
  • Masuda H
  • ,
  • Kawashima T

Volume
7
Number
6
First page
5166
Last page
5175
Language
Japanese
Publishing type
Research paper (scientific journal)
DOI
10.1021/acsomega.1c06228
Publisher
ACS Omega

A strong Lewis acid silylium ion was utilized for dehydrogenative annulation between dialkyl(1-naphthyl)silanes 1 and aldehydes 2. Silane 1a was reacted with [Ph3C][B(C6F5)4] in the presence of 2,6-di-tert-butyl-4-methylpyridine and aldehydes 2 to afford the annulation product, 1-silabenzo[d,e]isochromanes 3, in moderate isolated yields. The annulation occurred only at the 8-position on the 1-naphthyl group. The silylium ion-promoted hydrosilylation proceeded competitively to afford silyl ethers 4 via the same intermediates, silylcarboxonium ions, in the dehydrogenative annulation. The ratio of 3 and 4 was affected by solvents and the electronic properties of aromatic aldehydes; for example, the use of less polar solvents and that of benzaldehydes with an electron-withdrawing group at the para-position predominantly yielded 3. This annulation reaction was applicable to aldehydes bearing a heteroaromatic group and aliphatic alkyl groups. Judging from these results, both the formation of silylcarboxonium ions by in situ-generated silylium ions and the electrophilic aromatic substitution are important for this annulation reaction.

Link information
DOI
https://doi.org/10.1021/acsomega.1c06228
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124583644&origin=inward
ID information
  • DOI : 10.1021/acsomega.1c06228

Export
BibTeX RIS