Feb 15, 2022
Synthesis of 1-Silabenzo[ d, e]isochromanes via Electrophilic Aromatic Substitution of Aldehydes Activated by Silylium Ion
ACS Omega
- ,
- ,
- ,
- Volume
- 7
- Number
- 6
- First page
- 5166
- Last page
- 5175
- Language
- Japanese
- Publishing type
- Research paper (scientific journal)
- DOI
- 10.1021/acsomega.1c06228
- Publisher
- ACS Omega
A strong Lewis acid silylium ion was utilized for dehydrogenative annulation between dialkyl(1-naphthyl)silanes 1 and aldehydes 2. Silane 1a was reacted with [Ph3C][B(C6F5)4] in the presence of 2,6-di-tert-butyl-4-methylpyridine and aldehydes 2 to afford the annulation product, 1-silabenzo[d,e]isochromanes 3, in moderate isolated yields. The annulation occurred only at the 8-position on the 1-naphthyl group. The silylium ion-promoted hydrosilylation proceeded competitively to afford silyl ethers 4 via the same intermediates, silylcarboxonium ions, in the dehydrogenative annulation. The ratio of 3 and 4 was affected by solvents and the electronic properties of aromatic aldehydes; for example, the use of less polar solvents and that of benzaldehydes with an electron-withdrawing group at the para-position predominantly yielded 3. This annulation reaction was applicable to aldehydes bearing a heteroaromatic group and aliphatic alkyl groups. Judging from these results, both the formation of silylcarboxonium ions by in situ-generated silylium ions and the electrophilic aromatic substitution are important for this annulation reaction.
- Link information
- ID information
-
- DOI : 10.1021/acsomega.1c06228