論文

査読有り
1993年9月

CLONING AND CHARACTERIZATION OF A 23-KDA STRESS-INDUCED MOUSE PERITONEAL MACROPHAGE PROTEIN

JOURNAL OF BIOLOGICAL CHEMISTRY
  • T ISHII
  • ,
  • M YAMADA
  • ,
  • H SATO
  • ,
  • M MATSUE
  • ,
  • S TAKETANI
  • ,
  • K NAKAYAMA
  • ,
  • Y SUGITA
  • ,
  • S BANNAI

268
25
開始ページ
18633
終了ページ
18636
記述言語
英語
掲載種別
研究論文(学術雑誌)
出版者・発行元
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC

Exposure of mouse peritoneal macrophages to oxidative and sulfhydryl-reactive agents in vitro enhances synthesis of a few cellular proteins that may be important in a self-defense system. A cDNA encoding a novel stress-inducible protein, designated MSP23 (macrophage 23-kDa stress protein), was cloned from a cDNA library of the macrophages by differential screening. A 1.0-kilobase mRNA transcript hybridized with the MSP23 cDNA gradually increased in macrophages upon culture in vitro. Treatment with diethylmaleate or glucose/glucose oxidase, which generates H2O2, markedly enhanced the induction of the transcript after several hours. Cadmium chloride and sodium arsenite also induced the transcript. An antiserum raised against recombinant MSP23 reacted with the 23-kDa stress-inducible protein of the macrophages. The amounts of 23-kDa protein in the cells rapidly increased during culture with diethylmaleate. The mRNA was detected in various tissues, and it was especially high in content in the liver. A search of databases revealed that six proteins of various species from bacteria to the mouse have a sequence homology to MSP23. One of the proteins is the C22 component of alkyl hydroperoxide reductase, which is induced by hydrogen peroxide in Salmonella typhimurium.

リンク情報
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:A1993LV65900043&DestApp=WOS_CPL
URL
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027325603&partnerID=MN8TOARS
URL
http://orcid.org/0000-0001-7701-7183
ID情報
  • ISSN : 0021-9258
  • ORCIDのPut Code : 44277892
  • SCOPUS ID : 0027325603
  • Web of Science ID : WOS:A1993LV65900043

エクスポート
BibTeX RIS