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Abstract
Key message Sapwood density is coordinated with hydraulic capacity and non-structural carbohydrate reservesin 
xylem in the seasonally dry tropical forests.
Abstract Sapwood density (WD) is one characteristic underlying the divergence in life history strategies among species 
in seasonally dry tropical forests (SDTFs) since WD is liked to xylem hydraulic properties through its correlations with 
vessel anatomy, maximum photosynthetic capacity, and leaf phenology. However, it remains unclear how differences in WD 
contribute to the divergence in water conduction and non-structural carbohydrate (NSC) reserves during the dry season, 
the physiologically most severe period for woody plants. We hypothesized that heavy-wooded species maintain water 
conduction, photosynthesis, and translocation of carbon which result in high NSC reserves in xylem during the dry season. 
Using 13 deciduous tree species from a SDTF located in Northeast Thailand, we investigated the variation in WD and bark 
morphology in relation to hydraulic properties and NSC concentrations in xylem during the late-dry season. Percentage loss 
of conductivity (PLC) varied as a quadric function of WD: high PLC was observed in light- and heavy-wooded species. The 
maximum conductivity was not related to WD. The PLC was negatively related to the concentrations of soluble sugars and 
NSC in the trunk xylem, and these relationships underlined the negative association between WD and NSCs. We also found 
that species with thick bark showed relatively low PLC, and that dense-barked species exhibited higher NSC concentrations 
in branch xylem, but their linkages were generally weaker than WD. These results demonstrate that species hydraulics and 
NSC reserves are coordinated in SDTFs during the dry season, and that WD underlies these divergences.

Keywords Bark density · Xylem embolism · Hydraulic efficiency · Non-structural carbohydrates (NSC) · Seasonally dry 
tropical forest · Sapwood density

Introduction

Seasonally dry tropical forests (SDTFs) account for nearly 
42% of tropical forests around the world (Murphy and Lugo 
1986), and are characterized by the seasonal variations 

in resource availability, particularly in water. SDTFs are 
generally composed by diverse species with contrasting 
traits (phenological, physiological, and morphological 
characteristics) (Sterck et al. 2011; Méndez-Alonzo et al. 
2013). Thus, SDTFs have provided opportunities to study 
how species with different traits cope with seasonal drought 
(e.g., Kitajima et al. 1997; Brodribb et al. 2002; Ishida et al. 
2010). So far, studies have revealed that species’ responses 
to seasonal drought can be summarized by several traits that 
have proximal influences on carbon and water use strategies 
(e.g., acquisition and processing).

Sapwood density (WD) is a key trait defining where 
species in SDTFs occur along a spectrum of strategies for 
carbon gain and desiccation resistance, thus influencing 
life history strategies (Chave et al. 2009; Sterck et al. 2011; 
Méndez-Alonzo et al. 2012). Light wood is often associated 
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with high maximum hydraulic conductivity through having 
large vessels and maximum photosynthetic rate, which leads 
to high growth rates during the wet growing season (Santiago 
et al. 2004; Meinzer et al. 2008; Méndez-Alonzo et al. 2012; 
Hoeber et al. 2014). Such high conductivity, together with 
large water storage capacity (hydraulic capacitance) and 
stomatal closure at early desiccating conditions, prevents the 
drop in xylem water potential against drought, thus linking 
the low WD species to desiccation avoidance strategies 
(Bucci et  al. 2004; Meinzer et  al. 2008). In contrast, 
heavy wood is often associated with desiccation tolerance 
strategies such as increased resistance to drought-induced 
xylem embolism through enhanced implosion resistance 
of vessels (Hacke et al. 2001; Jacobsen et al. 2005; Pratt 
et al. 2007; Markesteijn et al. 2011; Fu et al. 2012; Janssen 
et  al. 2020). Consequently, heavy-wooded species can 
maintain hydraulic integrity among organs under desiccating 
conditions and are thus more likely to survive during severe 
drought than light-wooded species (Slik 2004; Nardini 
et al. 2013; Greenwood et al. 2017; Aleixo et al. 2019). 
In addition, WD is often associated with leaf phenology; 
species with high WD tend to retain leaves longer as the dry 
period progresses, whereas species with low WD often shed 
leaves earlier at the beginning of the dry season (Méndez-
Alonzo et al. 2012; Chen et al. 2021).

Although the linkages between WD and drought 
responses in xylem hydraulics have been well documented, 
it remains unclear how non-structural carbohydrate (NSC) 
reserves, another important physiological parameters that 
influence the metabolism, survival, and growth of trees, 
vary depending on species WD. SDTF trees face seasonal 
decoupling between carbon demand and supply due to the 
resource limitations (e.g., drought); thus, NSC reserves are 
important for buffering such asynchronies (Chapin et al. 
1990; Hartmann and Trumbore 2016). In particular, branch 
and stem xylem constitutes nearly 80% of the total NSC pool 
in SDTF trees (Würth et al. 2005) and contributes to the 
survival and recovery of trees during long-lasting drought 
(McDowell et al. 2008; O’Brien et al. 2014; Kannenberg 
et al. 2018; Trugman et al. 2018; Nakamura et al. 2021). 
As discussed above, heavy-wooded species are expected to 
maintain photosynthetic carbon gain for longer during the 
dry season through high cavitation resistance and longer leaf 
retention time. Therefore, assuming that metabolic demands 
(e.g., growth and maintenance) are similar among species, it 
is expected that heavy-wooded species show a more positive 
carbon balance during drought, which means relatively high 
xylem NSC concentrations (McDowell et al. 2008, 2011), 
particularly in the late dry season than light-wooded species 
that would deplete xylem-stored NSC relatively fast dur-
ing drought. We further expect that such positive WD–NSC 
relationship is tighter for organs far from the sources (e.g., 
trunk) than those close to them (e.g., distal branch) because 

translocation of carbon from source to sink organs requires 
NSC gradient and tissue hydration (hydrostatic pressure) 
(e.g., Sala et al. 2010; Dannoura et al. 2019). Heavy-wooded 
species are expected to maintain relatively high NSC con-
centrations and leaf tissue hydration even in the dry season 
than light-wooded species, through sustained photosynthesis 
and xylem water conduction during the dry season. These 
characteristics of heavy-wooded species will contribute to 
the maintenance of active mobilization and translocation of 
soluble sugars from sources (i.e., leaves) to distal sinks, such 
as trunk and roots, resulting in relatively high level of NSC 
within sink tissues during the dry season.

A positive linkage between water transport and NSC con-
centrations is also expected from the role of NSC (particu-
larly soluble sugars) in the maintenance of xylem hydraulic 
capacity (Salleo et al. 2004; Zwieniecki and Holbrook 2009; 
Yoshimura et al. 2016). Since most SDTF trees maintain 
xylem water transport capacity even in the driest period, 
despite large interspecific variations (Brodribb et al. 2002; 
Ishida et al. 2010), xylem NSC may underpin this phenom-
enon. However, the role of NSC in xylem water transport 
has not been examined in SDTFs because most studies have 
focused on either NSCs or xylem hydraulics (e.g., Brodribb 
et al. 2002; Würth et al. 2005; Ishida et al. 2010; Méndez-
Alonzo et al. 2012; Signori-Müller et al. 2022).

In addition to WD, bark morphology may also influence 
xylem hydraulics and NSC via various mechanisms, such as 
buffering fluctuations in water potential, embolism refilling, 
stem photosynthesis, and possibly phloem transport capacity 
during the desiccating conditions (Salleo et al. 2004; Zwie-
niecki and Holbrook 2009; Rosell et al. 2014). Although the 
mechanistic linkages between bark morphology and xylem 
physiology are not completely understood, we examined the 
coordination between bark morphology (total bark density 
and thickness) and xylem hydraulics and NSC concentra-
tions. Total bark density covaries with bark water content 
and possibly resistance to phloem transport against drought 
stress, as observed in xylem (e.g., Hacke et al. 2001) (e.g., 
Hacke et al. 2001), whereas bark thickness is associated with 
phloem conductive area and presence of stem photosynthesis 
among species (Rosell et al. 2014). Here, we focused on the 
branch as the influence of bark would be particularly large 
at the distal position where bark accounts for the greater 
volume and mass in stems (Rosell 2016).

In the present study, we examined the interspecific 
variation in sapwood density and bark morphology in 
relation to xylem water transport and NSC reserves in the 
driest period during the dry season, using 13 deciduous 
species from the SDTF in Northeast Thailand. Specifically, 
we measured the percentage loss of conductivity (PLC) 
and maximum hydraulic conductivity (Kmax) in branches as 
xylem water transport capacity and NSC concentrations in 
branches and trunks as xylem NSC reserves. We targeted 
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deciduous species to maximize interspecific variations in 
xylem hydraulic properties (Brodribb et al. 2002; Chen et al. 
2021). Specially, we tested the three hypotheses.

1) Species with higher WD anddenser and thicker bark 
maintain xylem water transport capacity (low PLC and 
high Kmax) even in the midst of dry season.

2) Species that maintain xylem water transport capacity 
have a positive carbon balance and high NSC concentra-
tions in both branch and trunk xylem, because of pro-
longed carbon assimilation rates even in the dry season. 
This trend is stronger for trunk than branch, since long-
distant transport of carbon requires higher NSC concen-
tration gradients and hydration status in the leaves.

3) Reflecting (1) and (2), species with higher WD and 
denser and thicker bark have high NSC concentrations 
in both branch and trunk xylem, particularly in trunk, in 
the midst of dry season.

Materials and methods

Study site and plant species

This study was conducted at the Sakaerat Environmental 
Research Station (SERS) on the southwestern edge of the 
Khorat Plateau in Nakhon Ratchasima Province, Northeast 
Thailand (14°27’N-14°33’N, 101°51’E-101°57’E). 
Elevations of the SERS ranged from 250 to 765 m, with 
mean annual temperature of 25.3  °C and mean annual 
precipitation of 1107 mm (during 2006–2017, data available 
from https:// www. tistr. or. th/ sakae rat/ Meteo rlogi cal. 

HTM). This site is characterized by a distinct dry season 
(< 30 mm/month in precipitation) that lasts for four months 
(from November–February). According to the Soil Map of 
the World (FAO/UNESCO 1974), the soil in this area is 
generally nutrient-poor and classified as Orthic Acrisols.

We selected 13 co-occurring and dominant tree species 
comprising seven families in SERS (Online Resource 1). 
Three to four healthy adult trees that received direct sun-
light from the canopy were selected for each species. Most 
sampled trees were between 18 and 41 cm in DBH (diam-
eter at breast height). All studied individuals were found 
in places with similar topographic conditions, and were at 
most 1.5 km apart. All tree species had the same growth 
forms (i.e., broad-leaved drought-deciduous trees) (Gardner 
et al. 2000). Plant nomenclature followed the World Flora 
Online (WFO 2021). A total of 12 xylem and bark traits 
were measured for each species (Table 1). Measurements 
and collection of xylem samples were conducted in Feb-
ruary 2020, which corresponds to the driest period during 
the dry season when extractable soil water reaches nearly 
zero (Murata et al. 2012). Most trees started to shed their 
leaves during the mid-dry season (January–February) and 
had almost no leaves during the study period (K. Kawai, 
personal observation), similar to other SDTFs in Thailand 
(Elliott et al. 2006; Williams et al. 2008; Ishida et al. 2014).

Xylem hydraulic properties

We measured the maximum xylem hydraulic conductivity 
(Kmax) and percentage loss of conductivity (PLC) using one 
to three sunlit branches with fully developed bark for each 
tree from February 15–20, 2020. Using a 15 m-long pole 

Table 1  Xylem and bark traits, including minimum species mean, the mean of species mean, the maximum species mean, and standard deviation 
(SD) of species mean of 13 tree species at the Sakaerat Environmental Research Station in Northeast Thailand

1 Log10-transformed before analysis.
2 Logit-transformed before analysis (for detail, see Materials and methods).
3 Showing P-values for one-way ANOVA used to evaluate species differences.
For each species’ trait data, see Online Resource 1.

Trait Symbol Unit Mean (SD) Min Max Species3

Maximum xylem-area-specific  conductivity1 Kmax kg  m− 1  s− 1  MPa− 1 2.37 (1.58) 0.24 4.70 0.021
Percentage loss of  conductivity2 PLC % 54.2 (24.2) 10.4 84.9 < 0.001
Mass-based soluble sugar concentration in the branch xylem SSB % 2.08 (0.74) 0.73 3.34 0.024
Mass-based starch concentration in the branch xylem STB % 0.45 (0.34) 0.03 1.22 0.042
Mass-based concentration of soluble sugar and starch in the branch xylem NSCB % 2.52 (0.77) 1.07 3.73 0.046
Mass-based soluble sugar concentration in the trunk xylem SST % 2.95 (1.42) 1.35 6.03 < 0.001
Mass-based starch concentration in the trunk xylem STT % 0.31 (0.20) 0.10 0.81 0.001
Mass-based concentration of soluble sugar and starch in the trunk xylem NSCT % 3.25 (1.42) 1.47 6.18 < 0.001
Sapwood density WD g  cm− 3 0.54 (0.08) 0.36 0.62 < 0.001
Total bark density BD g  cm− 3 0.52 (0.12) 0.34 0.78 < 0.001
Total bark  thickness1 BT mm 1.42 (0.64) 0.53 2.68 < 0.001

https://www.tistr.or.th/sakaerat/Meteorlogical.HTM
https://www.tistr.or.th/sakaerat/Meteorlogical.HTM
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pruner (Taketani Trading Co. Ltd., Osaka, Japan), branches 
were collected early in the morning (06:00–08:00) to 
avoid artificially-induced xylem embolism (Wheeler et al. 
2013), and were immediately re-cut under water. Most of 
the branches were > 1 m in length to reduce the likelihood 
of open vessels being present. The branches were then 
immediately transported to the laboratory with the cut ends 
submerged in water, where they were enclosed in black 
plastic bags to relax the xylem tension. The branch xylem 
did not include the heartwood portion, which is typically 
regarded as a different color.

Using the method of Sperry et al. (1988), we measured 
hydraulic conductivity in the longest branch segments 
without any side branches. The length and diameter of all 
samples ranged from 5.5−43.0 cm with a mean value of 
21.3 cm and from 2.2−6.4 mm with a mean value of 4.8 mm, 
respectively. After gently removing the bark at both ends, 
the branch sample was connected to the tubing system, and 
hydraulic pressure of approximately 5 kPa was applied to the 
end of the segments by placing the water bag containing 20 
mM KCl solution to c. 50 cm height from the sample. The 
other end was connected to a plastic bottle on an electronic 
balance using a tube, and the water flow rate from the seg-
ment was measured. The water flow rate was divided by 
the pressure per unit length of the segment to obtain initial 
xylem hydraulic conductivity (Kinitial). Subsequently, the 
same segment was flushed with 20 mM KCl solution under 
100 kPa for 15 min to remove air-induced xylem embolism, 
and the water-flow rate was measured again to yield the 
maximum xylem hydraulic conductivity (Kflushed). The KCl 
solution was filtered through a 0.2 μm pore diameter using 
a vacuum pump before the measurements. The PLC was 
calculated as follows:

After the measurements, the cross-sectional areas of the 
wood and pith at both ends were measured using a digi-
tal caliper, assuming a circular shape. The cross-sectional 
area of the xylem sapwood (As) was obtained by subtracting 
the pith area from the wood area. The value of Kflushed was 
divided by As to obtain the maximum xylem-area-specific 
conductivity (Kmax). We excluded Pterocarpus macrocarpus 
from the analysis because copious amounts of latex pro-
duced by the xylem disabled the measurement of PLC and 
Kmax. All the hydraulic measurements were performed at 
room temperature (approximately 30 °C) in our laboratory.

(1)PLC =

(

1 −
K
initial

K
flushed

)

× 100

Non‑structural carbohydrate concentrations 
in branch and trunk xylem

The concentrations of soluble sugars and starch were 
quantified in different stem segments from those used 
to calculate PLC and Kmax (however, the same branches) 
for 12 species (Rothmannia wittii was excluded). We also 
measured the concentrations of total NSC, assuming that 
it is the sum of soluble sugars and starch. In addition, we 
collected one stem core (3–4 cm in depth from the cambium) 
per individual tree from 13 species using an increment borer 
(5.15 mm in diameter; Haglöf, Långsele, Sweden) at 1.3 m 
height from February 14–21, 2020. As NSC concentrations 
vary with time of day, particularly in branch wood (Yoneda 
et al. 2002; Tixier et al. 2018), we standardized the sampling 
time to be early in the morning (06:00–08:00) and in 
the morning (9:30–11:30) for branch and trunk xylem, 
respectively. These stem cores did not include the heartwood 
portion, typically regarded as a different color.

After collecting the samples, they were immediately 
transported to the laboratory in a dark cooler box. Then, 
we swiftly measured sample dimensions of branch (see sec-
tion the below) and trunk xylem, followed by the immediate 
removal of bark before oven-drying (65 °C, >72 h). After 
drying, the pith was removed for branch xylem and the rem-
nants were ground to a fine powder using a mill, followed by 
extraction in 80% (v/v) ethanol three times. The supernatant 
was extracted via centrifugation and used to quantify the 
soluble sugar content using the phenol-sulfuric acid method 
(Dubois et al. 1951). The starch in the remaining pellets 
was depolymerized to glucose by amyloglucosidase, and its 
content was quantified using the mutarotase–glucose oxidase 
method (Glucose C-II test; Wako, Tokyo, Japan).

Sapwood density and bark morphology

We measured the sapwood density and the density and thick-
ness of total bark in branch, using the same branch segments 
for NSC measurements and additional segments from dif-
ferent branches (in total, n = 1–2 per individual tree). First, 
we determined the fresh volume of the samples with and 
without bark by measuring the diameter and length of the 
sample, assuming a cylindrical shape, using a digital caliper. 
The total bark thickness (BT) was calculated as the average 
difference between the sample diameter with and without 
bark. Then, the xylem and bark samples were oven-dried 
(65 °C, > 72 h) and weighed. Branch wood density (WD) 
and total bark density (BD) were calculated as the dry mass 
of wood and bark divided by their fresh volume, respec-
tively. Our measurements did not distinguish the inner bark, 
which is involved in phloem transport, from the outer bark 
because of the difficulty in visual classification. However, 
we considered that our values of total bark mainly reflected 
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those of inner bark based on its predominantly consolidation 
and on the positive correlations between inner- and total-
bark density (Rosell et al. 2014) and between inner-bark and 
outer bark thickness among species (Rosell 2016).

Statistical analysis

All analyses were performed using R(version 3.6.1; R Core 
Team 2019). We calculated the mean trait values for each 
species, and some trait values were transformed before 
analysis to improve the normality and homoscedasticity 
of the residuals in the regressions (Table 1). Traits ranging 
in (0, ∞) were  log10-transformed. PLC which ranges in a 
limited range [0, 100] was first added minimum non-zero 
PLC values among samples (1.05%) and expressed in the 
proportional range [0, 1], then logit-transformed as rec-
ommended by Warton and Hui (2011). We examined the 
hypothesized relationships among species using Pearson’s 
product-moment correlation. When a significant correlation 
(P < 0.05) was observed, the line was fitted using the stand-
ardized major axis using the R package ‘smatr’ (Warton 
et al. 2012). Species differences in traits were examined by 
one-way ANOVA.

Results

The co-occurring 13 deciduous tree species in the SDTF in 
Thailand showed markedly different xylem traits, particu-
larly starch concentration in branch  (STB), maximum xylem-
specific conductivity (Kmax), percentage loss of conductiv-
ity (PLC), and total bark thickness (BT) (Table 1, Online 
Resource 1). The  STB varied 38.2-fold (0.03−1.22%), Kmax 
varied 19.6-fold (0.24−4.70  kg  m− 1   s− 1   MPa− 1), PLC 
varied 8.2-fold (10.4−84.9%), and BT varied by 5.0-fold 
(0.53−2.68 mm) among species (all, P < 0.05). Sapwood 
density showed 1.7-fold variation among species. Total bark 
density (BD) varied more than wood density (2.3- vs. 1.7-
fold), with statistically similar mean values (paired t-test, 
P = 0.28). BD and wood density were highly and positively 
correlated (Table 2). The BT was not significantly related to 
wood or bark density.

The concentrations of soluble sugars were, on average, 
13.1-fold higher than that of starch in both branches and 
trunks (paired-t test, both P < 0.001). The soluble sugar 
concentration was, on average, 1.5-fold higher in the trunk 
than in the branch (P = 0.03), whereas the concentrations 
of starch and NSC were not significantly different between 
them (P = 0.29; P = 0.08, respectively, Online Resource 2). 
In addition, soluble sugar concentrations were not signifi-
cantly related to starch concentrations in either the branch 
(P = 0.68) or trunk (P = 0.85).

Sapwood density, bark morphology, and xylem 
hydraulics

Differently from Hypothesis 1, PLC was independent of 
wood density (WD, r = 0.06, P = 0.85). However, except 
for Xylia xylocarpa with the lowest PLC, we obtained the 
relationship represented by a quadric function with a down-
ward convexity (R2 = 0.54, P = 0.05, all coefficients P < 0.05, 
n = 11, Fig. 1a). WD was not correlated with maximum 
xylem-specific conductivity (Kmax, P = 0.49, Fig. 1d). There-
fore, the native conductivity before removing the air-induced 
embolism was strongly and negatively correlated with PLC 
among species (r = − 0.71, P = 0.01, data not shown).

We also found that lower PLC was associated with thicker 
bark (Fig. 1c, r = − 0.59, P = 0.04), but not with total bark 
density (Fig. 1b, r = 0.07, P = 0.82). Similar to wood, the 
bark traits were not related to Kmax (Fig. 1e, f, P > 0.46).

Xylem hydraulics and NSC reserves

Consistent with our Hypothesis 2, high PLC was associated 
with low concentrations of soluble sugars and total NSC 
in the trunk, a distal sink from the source, and not in the 
branch, when excluding the species with the highest NSC 
(Morinda coreia, Fig. 2a, e). PLC was not related to starch 
concentrations in either the branch or trunk (Fig. 2c). Kmax 
was not related to xylem NSC concentrations (Fig. 2b, d, f).

Sapwood density, bark morphology, and NSC 
reserves

Contrary to our Hypothesis 3, dense wood and bark were 
not necessarily associated with high NSC concentrations 
(Fig. 3), except for a marginally-significant positive rela-
tionship between branch starch concentrations and WD 
(R2 = 0.27, P = 0.08, Fig. 3d). We found negative correla-
tions between WD and the concentrations of soluble sugars 
(R2 = 0.38, P = 0.03, Fig. 3a) and NSC (R2 = 0.43, P = 0.02, 
Fig. 3g) in the trunk when removing the species with the 
lowest WD (Canarium subulatum). Dense bark was associ-
ated with low starch concentrations in the trunk (Fig. 3e) and 

Table 2  Correlations between 
sapwood density and bark 
morphology for 13 tree species 
at the Sakaerat Environmental 
Research Station in Northeast 
Thailand 1   Log10-transformed before anal-

ysis.
WD: sapwood density, BD: Total 
bark density, BT: Total bark thick-
ness, ns: not significant
**P < 0.01 

WD BD

BD 0.70 **
BT1 – 0.19 ns – 0.24 ns
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high NSC concentrations in the branch (Fig. 3h), whereas 
bark thickness was not correlated with any index of xylem 
NSC concentrations (Fig. 3c, f, i).

Discussion

Sapwood density (WD) and bark morphology varied greatly 
among 13 deciduous tree species. Their variation was associ-
ated with species differences in xylem hydraulics and NSC 
reserves during the dry season in the SDTF in Northeast 
Thailand. We discuss the possible mechanisms underlying 
the observed relationships and their ecological implications.

Coordination between sapwood density, bark 
morphology, and water transport

Heavy wood is often constituted of vessels with high 
implosion resistance, reflecting the positive correlation of 
lumen-to-wall ratios between fibers and vessels (Jacobsen 
et al. 2005). Thus, species with higher WD are usually 
associated with higher resistance to drought-induced 

xylem embolism (Hacke et al. 2001; Jacobsen et al. 2005; 
Markesteijn et  al. 2011; Janssen et  al. 2020). We thus 
hypothesized that heavy-wooded species exhibit low degree 
of native embolism (low PLC) and high conductivity (Kmax) 
during the late dry season. However, in the present study, 
the PLC did not vary linearly along the WD, but varied as 
a quadric function with a downward convexity (Fig. 1). As 
a result, higher PLC was observed in species with higher or 
lower WD. WD was not related to Kmax (Fig. 1d), showing 
that Kmax is strongly regulated by vessel features rather than 
WD (e.g., Lens et al. 2011).

The increased PLC for species with high WD seems 
counterintuitive, but may reflect that such woody plants have 
more negative water potential, due to their loose stomatal 
control and excessed transpiration (Hoffmann et al. 2011), 
or to retaining a large leaf area under desiccating conditions 
(Méndez-Alonzo et al. 2012; Wolfe et al. 2016), or to prefer-
ence for dry microhabitats. Positive correlations of WD with 
PLC or drought-induced branch dieback have been often 
observed during severe droughts in the temperate and tropi-
cal forests (Hoffmann et al. 2011; Chen et al. 2021), imply-
ing that species with high WD show narrow safety margins 

Fig. 1  Relationships between xylem hydraulic properties and 
sapwood density and bark morphology for 12 tree species in a 
seasonally dry tropical forest in Northeast Thailand. The percentage 
loss of conductivity in the branch xylem (PLC) against (a)  wood 
density, (b) total bark density, and (c) total bark thickness. Maximum 
xylem-area-specific conductivity (Kmax) against (d)  wood density, 

(e)  total bark density, and (f)  total bark thickness. PLC was logit-
transformed (unitless; see Materials and methods). Error bars 
represent 1 standard error (SE). The solid curves indicate significant 
relationship among traits, excluding the species with the lowest PLC 
(Xylia xylocarpa), denoted by a black arrow in (a). The line in (c) was 
fitted by the standardized major axis regression
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for hydraulic failure. Branch dieback is frequently observed 
in trees even at the study site in SDTFs, including species 
with high WD (K. Kawai, personal observation).

Bark morphology can influence xylem water transport 
through its correlations with the hydraulic capacitance and 
xylem anatomy. We found that thicker bark was associ-
ated with lower PLC (Fig. 1c), suggesting that thick bark 
functions in water storage and alleviates increasing xylem 
tension under desiccating conditions (Rosell et al. 2014). 
Thus, thick bark can be viewed as a measure of desiccation 
avoidance strategies. Thick bark is often thought to pro-
vide high fire resistance by protecting the cambium against 

lethal temperatures during forest fires (Pinard and Huffman 
1997; Hoffmann et al. 2003; Brando et al. 2012). Our results 
suggest that woody species with thick bark in SDTFs have 
increased fire resistance and drought resistance.

Coordination of xylem water transport and NSC 
reserves

In the present study, the concentrations of soluble sugars 
(i.e., the easily usable form of NSCs for trees) were generally 
higher than those of starch. This phenomenon means that 
(1) tree growth ceases before photosynthesis (Kamo et al. 
1995; McDowell et al. 2011; Nakai et al. 2018), and then 
soluble sugar concentrations increase and that (2) starch is 
converged to soluble sugars to maintain tree metabolisms 
(e.g., respiration, osmotic adjustment, and xylem refilling) 
(Muller et al. 2011; Fatichi et al. 2014; MacNeill et al. 2017; 
Signori-Muller et al. 2021; Signori-Müller et al. 2022).

Xylem hydraulics and NSC reserves determine the safety 
from hydraulic failure and carbon depletion, respectively, 
thus influencing drought survival of trees (McDowell et al. 
2008; Anderegg et al. 2016; Trugman et al. 2018; Nakamura 
et al. 2021). The linkages and feedback processes between 
these two elements have been proposed (Sala et al. 2010; 
McDowell et al. 2011; Kono et al. 2019). However, the direct 
examination is still limited in the fields, particularly in SDTF 
trees. Consistent with Hypothesis 2 that xylem hydraulics 
capacity and NSCs reserves in xylem are positively coordi-
nated, we revealed that species with low cavitation levels and 
higher native conductivity had relatively high NSCs within 
the trunk xylem (Fig. 2a, e). The similar phenomenon has 
been reported in subtropical trees (Yoshimura et al. 2016). 
There are at least two possible explanations for this phenom-
enon of trees. First, species that maintain water conduction 
would maintain photosynthesis and tissue hydration longer 
as the dry period progresses. Such species could maintain 
mobilization and translocation of carbon during the drought, 
leading to high NSC concentrations at the distal sinks (e.g., 
McDowell et al. 2008; McDowell et al. 2011). In contrast, 
species that reduce water transport capacity from roots to 
canopy and photosynthesis earlier in the dry season would 
lose capacity to translocate carbon and thus consume their 
NSC by respiration and osmoregulation, resulting in low 
NSC levels in the late dry season.

Second, it has recently been shown that soluble sugars 
within sapwood contribute to maintaining xylem hydraulic 
capacity by osmotically-driven water induction into 
embolized vessels via sugar deposition (Zwieniecki and 
Holbrook 2009), avoiding an increase in PLC. However, 
PLC was not significantly correlated with NSC in the 
branch (Fig. 2a, c, e). This decoupling may reflect that the 
branch NSC pool is small and sensitive to external and 
internal factors in the natural conditions (Newell et  al. 

Fig. 2  Relationships between mass-based concentrations of soluble 
sugars, starch, and non-structural carbohydrates (NSC) in branch 
and trunk xylem with xylem hydraulic properties for 12 tree 
species in a seasonally dry tropical forest in Northeast Thailand. 
The concentration of soluble sugars against (a)  percentage loss 
of conductivity at branch xylem (PLC) and (b)  maximum xylem-
area-specific conductivity (Kmax). The concentration of starch 
against (c)  PLC and (d)  Kmax. The concentration of NSC (the sum 
of that of soluble sugars and starch) against (e) PLC and (f)  Kmax. 
Black and white circles indicate values for branch and trunk, 
respectively. Error bars represent 1 standard error (SE). The solid 
lines indicate significant relationships among traits and were fitted 
by the standardized major axis regression. The solid lines in (a) and 
(e) indicate the trends excluding the species with the highest NSC 
(Morinda coreia), denoted by black arrows. Note that the scale is 
different for starch concentration. *P < 0.05
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2002; Hartmann and Trumbore 2016). For example, species-
specific sink activities such as preparation for leafing or 
flowering (an internal factor) will drive the branch NSC 
and thus hide the relationships between PLC and NSC in 
branches.

Coordination between sapwood density, bark 
morphology, and NSC reserves

Consistent with the positive linkages between hydraulics 
and NSC levels (Fig. 2) and with WD − PLC relationship 

(Fig. 1), the concentrations of soluble sugars and NSC 
within trunk xylem decreased linearly with WD (Fig. 3). 
These results suggest that sapwood density underlies species 
differences in NSC reserves, possibly through its influence 
on xylem water transport. The starch concentrations in the 
branch xylem were weakly and positively correlated with 
WD (Fig. 3d) and were not significantly correlated with 
xylem hydraulics among species (Fig. 2c, d). Therefore, 
branch hydraulics would not explain the observed variation 
in starch concentrations. These facts may indicate that 
most of the starch is stored within living fibers, possibly 

Fig. 3  Relationships between mass-based concentrations of soluble 
sugars, starch, and non-structural carbohydrates (NSC) in xylem 
with sapwood density and bark morphology for 13 tree species 
in a seasonally dry tropical forest in Northeast Thailand. The 
concentration of soluble sugars against (a)  wood density, (b)  total 
bark density, and (c)  total bark thickness. The concentration of 
starch against (d)  wood density, (e)  total bark density, and (f) total 
bark thickness. The concentration of NSC (the sum of that of soluble 
sugars and starch) against (g) wood density, (h) total bark density, and 

(i)  total bark thickness. Black and white circles indicate values for 
branch and trunk, respectively. Error bars represent 1 standard error 
(SE). The solid and dotted curves indicate significant and marginally-
significant relationships among traits, respectively. The lines in 
(a), (d), (e), (g), and (h) were fitted by the standardized major axis 
regression. The solid and dashed trends in (a) and (g) indicate the 
trends excluding the species with the lowest wood density (Canarium 
subulatum), denoted by black arrows. Note that scale is different for 
starch concentration. † 0.05 ≤ P < 0.10, *P < 0.05
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contributing to embolism resistance and avoidance from 
carbon depletion (Pratt and Jacobsen 2017).

We expect that species with denser and thicker bark 
maintain phloem transport capacity and relatively high 
NSC concentrations in both branch and trunk xylem dur-
ing the dry season among woody plants, because such hard 
bark might provide high mechanical resistance to phloem 
deformation (Hacke et al. 2001). There was a positive rela-
tionship between NSC concentrations and BD in the branch 
(Fig. 3h). However, this relationship was not observed in the 
trunk. Rather, the dense-barked species showed low starch 
levels in the trunk (Fig. 3e). This suggests that, in con-
trast to our expectation, dense-barked species greatly lose 
phloem transport capacity greatly during drought, resulting 
in the accumulation and reduction of NSC in branches and 
trunks, respectively. Given the positive correlation between 
sapwood and bark density (Table 2), it is further suggested 
that species with dense wood and bark in branch show low 
drought resistance in the transport capacity of both water 
(Fig. 1a) and photosynthates.

Ecological implications

The variability of rainfall seasonality, including the mag-
nitude, timing of onset, and duration of the dry season, has 
recently increased in SDTFs (Feng et al. 2013). Intensified 
drought induces changes in forest composition based on spe-
cies desiccation resistance (Phillips et al. 2010; McDow-
ell et al. 2018). Our study reveal that sapwood density is 
a useful proxy for the safety of xylem water conduction 
and NSC reserves in SDTF trees. If the drought period and 
intensity during the dry season continue to increase, tree 
species with high WD would face a greater risk of drought-
induced mortality in terms of water conduction and stored 
NSC (Figs. 1 and 2). Thus, under ongoing global warming, 
the recent increase in prolonged drought events may select 
for tree species with low to medium WD. Recent some stud-
ies have demonstrated increasing abundance of deciduous 
tree species, which have typically low WD (Méndez-Alonzo 
et al. 2012) in SDTFs (Fauset et al. 2012; Aguirre-Gutierrez 
et al. 2019), leading to the changes of forest structure and 
functions.

Conclusion

Among the examined 13 deciduous tree species in SDTF, 
(1) xylem hydraulic properties are coordinated with NSC 
reserves during the dry season and (2) sapwood density 
underlies these functional divergences. Sapwood density 
(WD) is a robust and useful proxy for the species sensitivity 
to drought stress among tree species in SDTFs. Woody 
plants with high WD have been often recognized as 

dehydration-tolerant trees globally (e.g., Greenwood et al. 
2017; O’Brien et al. 2017). However, our study showed that 
heavy-wooded species would be sensitive to drought stress. 
Future studies are needed to clarify when and where tree 
species are highly tolerant/vulnerable to extreme drought 
under recent rapid global warming, in relation to WD.
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