Papers

Peer-reviewed
2018

Efficient ammonia synthesis over a Ru/La0.5Ce0.5O1.75 catalyst pre-reduced at high temperature

Chemical Science
  • Yuta Ogura
  • ,
  • Katsutoshi Sato
  • ,
  • Shin-Ichiro Miyahara
  • ,
  • Yukiko Kawano
  • ,
  • Takaaki Toriyama
  • ,
  • Tomokazu Yamamoto
  • ,
  • Syo Matsumura
  • ,
  • Saburo Hosokawa
  • ,
  • Katsutoshi Nagaoka

Volume
9
Number
8
First page
2230
Last page
2237
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1039/c7sc05343f
Publisher
Royal Society of Chemistry

Ammonia is an important feedstock for producing fertiliser and is also a potential energy carrier. However, the process currently used for ammonia synthesis, the Haber-Bosch process, consumes a huge amount of energy
therefore the development of new catalysts for synthesising ammonia at a high rate under mild conditions (low temperature and low pressure) is necessary. Here, we show that Ru/La0.5Ce0.5O1.75 pre-reduced at an unusually high temperature (650 °C) catalysed ammonia synthesis at extremely high rates under mild conditions
specifically, at a reaction temperature of 350 °C, the rates were 13.4, 31.3, and 44.4 mmol g-1 h-1 at 0.1, 1.0, and 3.0 MPa, respectively. Kinetic analysis revealed that this catalyst is free of hydrogen poisoning under the conditions tested. Electron energy loss spectroscopy combined with O2 absorption capacity measurements revealed that the reduced catalyst consisted of fine Ru particles (mean diameter &lt
2.0 nm) that were partially covered with partially reduced La0.5Ce0.5O1.75 and were dispersed on a thermostable support. Furthermore, Fourier transform infrared spectra measured after N2 addition to the catalyst revealed that N2 adsorption on Ru atoms that interacted directly with the reduced La0.5Ce0.5O1.75 weakened the NN bond and thus promoted its cleavage, which is the rate-determining step for ammonia synthesis. Our results indicate that high-temperature pre-reduction of this catalyst, which consists of Ru supported on a thermostable composite oxide with a cubic fluorite structure and containing reducible cerium, resulted in the formation of many sites that were highly active for N2 reduction by hydrogen.

Link information
DOI
https://doi.org/10.1039/c7sc05343f
URL
http://orcid.org/0000-0002-3998-7012
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042601875&origin=inward Open access
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85042601875&origin=inward
ID information
  • DOI : 10.1039/c7sc05343f
  • ISSN : 2041-6539
  • ISSN : 2041-6520
  • eISSN : 2041-6539
  • ORCID - Put Code : 41048226
  • SCOPUS ID : 85042601875

Export
BibTeX RIS