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Neural network based prediction of the efficacy of
ball milling to separate cable waste materials
Jiaqi Lu 1,2✉, Mengqi Han2, Shogo Kumagai1✉, Guanghui Li2 & Toshiaki Yoshioka1

Material recycling technologies are essential for achieving a circular economy while reducing

greenhouse gas emissions. However, most of them remain in laboratory development.

Machine learning (ML) can promote industrial application while maximising yield and

environmental performance. Herein, an asynchronous-parallel recurrent neural network was

developed to predict the dynamic behaviour when separating copper and poly(vinyl chloride)

components from the cable waste. The model was trained with six datasets (treatment

conditions) at 3600 epochs. High accuracy was confirmed based on a mean-square error of

0.0015–0.0145 between the prediction and experimental results. The quantitative relation-

ship between the input features and the separation yield was identified using sensitivity

analysis. The charged weight of cables and impact energy were determined as the critical

factors affecting the separation efficiency. The ML framework can be widely applied to

recycling technologies to reveal the process mechanism and establish a quantitative rela-

tionship between process variables and treatment outputs.
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The life cycle of a material is commonly associated with high
resource depletion, greenhouse gas (GHG) emissions, and
other environmental impacts. Achieving sustainable

development goals requires promoting the advance of material
recycling technologies as an indispensable component of the
circular economy. Many laboratory (lab)-scale recycling tech-
nologies have been proposed for various types of wasted mate-
rials, e.g., rare-earth elements1, polymers2, and resources in
electronic3 and photovoltaic panel4 waste. However, the indus-
trial application of lab-scale recycling technologies is confronted
with the high cost of scaling-up tests and the uncertainty of
environmental impacts from the process and consumed
resources5. Thus, modelling recycling technologies with machine
learning (ML) can be a promising tool to predict potential con-
sumption and recovered materials on an industrial scale based on
experimental data6,7, revealing the optimal process design and
environmental benefits.

This study focused on an emerging mechanical approach for
separating copper (Cu) and poly(vinyl chloride) (PVC) from
electric cable waste8–10. The generation of global e-waste will
reach 74.7 million tonnes (Mt) by 203011, with a considerable
portion being wires and cables12. Improper plastic and metal
waste management may cause environmental pollution, such as
ecotoxicity13 and microplastic issues14. Widely applied energy
recovery process (e.g., incineration with power generation) also
complicate the mitigation of GHG emissions15. Thus, developing
an advanced recycling technology is essential to simultaneously
recover pure materials (i.e., Cu and PVC) with high efficiency and
accuracy.

There are many lab-scale processes for material recovery from
cable at lab-scale16, such as rotational moulding17, flotation18,
and freezing19. Our proposed approach consists of de-plasticising
the PVC covering and a ball milling process for the high-accuracy
separation (summarised in Supplementary Notes 1 of Supple-
mentary Information (SI)), where the separation mechanism
(Supplementary Notes 2 in SI) was revealed using the discrete
element method (DEM)20. Compared with the widely commer-
cialised nugget process with low Cu purity21, the separation
accuracy can reach over 99% of Cu purity. Although the organic
solvent was used in the process, only plasticisers will dissolve in
the solvents (which can be recycled by distillation10), and the
PVC resin remains in a solid state. Unlike that PVC is dissolved
by the organic solvent into a mixed wax state (vinlyloop
process)22, the solid-state PVC is more satisfying for removing
the organic solvent and recycling. The feasibility was also vali-
dated based on experiments with a bench-scale mill23.

This process has potential applications in the recycling of PVC
cable waste from household electrical appliances, such as televi-
sions and computers24. With appropriate pre-treatment, this
could also be applied to cable mixed in construction25 and
automobile26 waste. In terms of high-voltage transmission cables,
this process could be modified with a different solvent because the
covers are commonly made of polyethylene27. To advance such
industrial applications, a simulation approach can demonstrate
the separation mechanism28; however, predicting the separation
under various conditions and treatment times is currently not
possible because of the lack of a dynamic model. Based on the
literature review summarised in Table S1 of SI, many efficient
processes for cable separation have been developed at a lab scale;
however, process modelling was rare, especially for yield
prediction by ML.

ML is a data-driven tool that automatically and efficiently
determines parameters for a complex mathematic model29. Apart
from its wide application in artificial intelligence30, ML can
support the development of recycling technologies by predicting a
product with various input features31–33. However, in the current

application for modelling the recycling technologies, ML was used
as a big data model based on the complex algorithms without
considering the process mechanism. Consequently, establishing a
robust ML model for recycling technologies often requires
enormous data34. Furthermore, the treatment time is considered
an input feature without a dynamic mechanism6. Thus, an
advanced model for including the time series during the recycling
process and considering the process mechanism should be
developed with limited lab-scale data to accelerate the application
of technology. Existing studies modelled cable separation pro-
cesses as polynomial35 or support vector regression36; however,
none of these works carry out dynamic modelling of the process,
which is innovatively realised by recurrent neural network (RNN)
in this study. Previously, we have developed an RNN model
combined with the chemical reaction mechanism for predicting
the dechlorination degree of PVC in ethylene glycol/NaOH
solvent37. However, the separation of PVC and Cu from cable
waste is a physical process that requires a more general modelling
framework for predicting the dynamic behaviour without che-
mical kinetics.

In this study, a modified RNN was developed to model and
predict the dynamics of the separation. ML was not directly used
to predict the final separation yield based on the input features
(experimental conditions) and treatment duration, but to predict
the separation rate under various ball milling conditions during a
short timeframe. Because the basic RNN method carries out
parameter updating based on the real-time prediction loss, to
avoid overfitting based on the end stage of treatment, different
calculation timesteps were introduced in our model. Thus,
training and predictions were performed simultaneously for all
datasets (different experimental conditions and results) with
different timesteps, which is known as parallel and asynchronous
learning.

To accomplish this work, the input features, including the cable
properties and milling conditions of grinding balls, were refined
from our previous lab-scale experiments20. Then, the influence of
input features on separation rate was quantified with defined
multi-layer RNNs. With a linear piecewise function based on the
time-dependent separation yields from the experiments as
training data, the parameters in the networks were successfully
optimised by simultaneous training for all datasets with various
timesteps (i.e., asynchronous-parallel). The overall framework of
the asynchronous-parallel RNN model is depicted in Fig. 1a–f,
where the detailed explanation can be found in the section of
model framework in methods. The “black box” of the trained
model was examined with a sensitivity analysis to identify the
quantitative relationship between the separation yields and input
features, which can be explained by the process mechanism. The
proposed ML algorithm can be widely applied to a lab-scale
process for predicting the output and optimising the design,
revealing the potential cost and environmental performance for
industrial applications.

Results
Visualised training process to build a robust model. Model
training is the primary process in ML for determining the optimal
combination of parameters with the smallest error between pre-
diction and given experimental data. The change in Ysep over the
treatment time by the average and fluctuation range (calculated
by standard deviation) based on ten training iterations is illu-
strated in Fig. 2a–f to represent the internal operations of the
training process. Although Ysep during the training process is
predicted, it is not the final prediction result because the model
parameters are dynamically updated in real time. When the
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Fig. 1 Framework of the proposed asynchronous-parallel RNN model explaining varibale input and output during modeling training. Input variables
(orange round rectangles): a the datasets with different process designs; b the old separation yield (Ysep) at last epoch. The RNN model (c) for calculating
the Ysep at next epoch (d). With a stepwise function based on experimental Ysep as training labels (e), the parameters (green circles) in the RNN model can
be optimised (f).

Fig. 2 Visualisation of the training process to optimise model parameters by plotting the dynamic changing of separation yield (Ysep) versus treatment
time. a–c varying cable diameter and weight with fixed 15-mm ball (entries 1–3); d–f varying cable diameter and weight with fixed 20-mm ball (entries
4–6). The black-circle point represents the experimental separation yield (Ysep-exp) linked by a dashed line representing training labels, while the blue line
represents the average values of Ysep from 10-time training. The red area represents the fluctuation range based on the standard deviation of Ysep. For
clarity, subplots (a–f) are illustrated separately for each dataset even though they are simultaneously trained in the model.
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model is successfully trained and the parameters are fixed, the
prediction function can be executed.

The unsmooth increase in Ysep during the training process is
illustrated in Fig. 2. Based on the separation mechanism, some
time is required to form a crack throughout the cable covering
after a ball-to-cable collision. Thus, at the beginning of treatment,
the increase in Ysep is minimal, especially for Entry 3 with the 15-
mm ball and 2.7-mm cable. When Ysep starts to increase, the
parameters cannot be immediately optimised to reflect the rapid
growth, leading to an incremental error. However, the parameters
can be gradually updated by a gradient as a function of input
features toward the elevated rsep. Furthermore, if rsep is
overestimated, the parameters will be updated in the opposite
direction. Using the stepwise functions formed by the experi-
mental data as the training label will also cause a dramatic change
during some periods because of the considerable noise compared
with the actual values. To avoid the influence of such noise and
experimental errors on the training, a dropout method which
randomly omits neurons in hidden layers can be adopted to
mitigate overfitting38.

Because each experimental sample is simultaneously trained
with asynchronous timesteps (Fig. 2 only illustrates the training at
the highest dt), the parameters should be balanced to represent all
treatment conditions and the entire time series. The red areas in
each subplot of Fig. 2 are based on the standard deviation of Ysep

for 10-time training, where a larger area reveals periods with
higher uncertainty. From a global perspective, the uncertainty of
the training process is low because the red areas are limited. The
relative uncertainty is concentrated in the mid-term for the
treatment with 15-mm balls, while 20-mm balls will result in
more training fluctuations in the early and late stages. To reduce
this uncertainty, a better sampling-interval design can be
suggested. For example, increasing the data points around the
starting point of the separation when both the Ysep and rsep
change sharply. Meanwhile, experiments with a scaled-up ball
mill also reduce the randomness of ball-to-cable collision.
Because the model can be successfully trained to derive robust
parameters, the next step is to validate the prediction with fixed
model parameters.

Validation of prediction accuracy with trained model. With the
successfully trained model, the time series prediction of Ysep

throughout the treatment time was conducted for all conditions,
as depicted in Fig. 3a–f. Unlike during the training process, the
model parameters are fixed during the validation (and applica-
tion); thus, there is no fluctuation in the predicted Ysep after
multiple runs. The mean-square error (MSE) and coefficient of
determination (R2) are also calculated based on the predicted and
experimental Ysep values (rather than the stepwise functions) to
validate the model. A lower MSE and higher R2 (close to 1)
represent more accurate predicted results consistent with the
experimental data.

The prediction error is low because all MSEs are <0.015, while the
dynamic behaviour of Ysep under various treatment conditions is
well-fitted by the model (most of R2 > 0.95). Compared with the
training process, the changing curves of Ysep over the treatment time
are smoother with the fixed model parameters. The prediction errors
are relatively lower for separation of the 1.5-mm and 2.1-mm cables,
while considerable gaps exist between the prediction and experiment
with the 2.7-mm cables. Because the experimental data has error and
uncertainty caused by the randomness of ball-to-cable collision, it is
challenging to reflect this phenomenon with the current model. For
example, the growth of Ysep-exp almost stopped from t= 3600 s to
t= 4500 s, re-increasing to 1 until t= 6300 s. In contrast, the trained
model is not overfitted into a tortuous increase curve of Ysep to match

the noise from experimental fluctuation. With the prediction
performance validated for the established model, the next step is to
analyse how the input features affect the dynamic change in Ysep.

Insight of trained model based on sensitivity analysis. The
quantitative relationship between five input features (along with
the modelled relationship between ball diameter and impact
energy) and Ysep are examined with a sensitivity analysis to avoid
the transparency issue of trained models with a large number of
parameters. Figure 4 illustrates the comparison of Ysep under
various input features during a rapid growth period (t= 1800 s).
Concerning the influence of cable properties (Fig. 4a–c), the Ysep

is more sensitive to the charged weight than cable density and
diameter. The more-charged cables caused a greater allocation of
collision intensity, resulting in a decline in Ysep. This phenom-
enon can also be supported by the discrete element method
simulation on the different charging ball mill ratio39. Despite the
minor influence, the increase in cable diameter negatively affects
the separation. In principle, a lower density will cause a decreased
diameter for a certain weight and length of cables, and it has been
reported that small particles have less contact chance compared
with large ones40. For thicker cables, more collision power is
necessary to crush the PVC covering. The density of a cable
should vary according to the PVC and Cu composition, which
could result in different dynamic separation behaviours. How-
ever, the existing experimental findings and sensitivity analysis
regarding the impact of cable density are insufficient to conclude
a clear pattern.

The influence of mechanical factors on the ball milling process is
investigated in Fig. 4d–f. While maintaining constant impact energy,
the increase in ball diameter will lead to a slight decrease in Ysep. The
increase in ball diameter is not equivalent to the enhanced
mechanical efficiency of ball milling41. Based on the spatial structure
of a sphere array, a larger diameter will expand the gap volume
among the grinding balls—consequently, the collision probability and
rsep decrease. As depicted in Fig. 4e, a non-linear change in Ysep
occurs when varying the impact energy. Sufficient impact energy is
mandatory to crush the PVC covering through an inelastic collision.
Nevertheless, excess impact energy disperses the cable motion
according to momentum conservation and increases the amount of
Cu wire crushed into unrecyclable powder.

Thus, an optimal ball milling design exists for the efficient and
high-quality recovery of the PVC and Cu. It is hard to change
only the ball diameter with fixed impact energy because impact
energy calculations are based on the kinetic energy of grinding
balls decided by weight and velocity42. Thus, the relationship
between ball diameter and the impact energy was fitted by a cubic
function (Fig. S3 in SI) to conduct a more realistic sensitivity
analysis (Fig. 4f). The change in Ysep in Fig. 4f is a comprehensive
effect based on the single change in ball diameter and impact
energy in Fig. 4d, e. The smaller gap space of small balls can offset
the insufficient impact energy to enhance Ysep. The optimal values
of ball diameter are changed for 2.1-mm and 2.7-mm cables
compared with those in Fig. 4e. Therefore, the optimal ball
milling process design is vital for separating PVC and Cu from
cable waste with complex properties.

Discussion
This study proposes an advanced RNN framework for developing
solid waste recycling technology. Solid waste commonly has high
heterogeneity in substance composition, composite structure,
particle size, and physical and chemical properties. Furthermore,
there is considerable uncertainty in the design parameters and
operating conditions for a lab-scale recycling process. Mathe-
matical modelling assisted by ML is a promising strategy to solve
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this type of complex problem (with multi-dimensional variables)
because it quantifies the influence of process variables (input
features) on material recovery efficiency (predicted output). The
non-linear model can be optimised to suggest an energy-saving,
environmentally-friendly, economically-feasible design for emer-
ging recycling technologies43, which is the ultimate target of our
research. However, for the current result shown in Fig. 4, only the
local-optimal solution can be obtained for the maximum Ysep

with a fixed treatment time and cable type. In the future, the
applicability of the developed model for different process designs
and ball milling scales should be validated.

Although prediction accuracy is not the priority because this is
the first application of the proposed model to mechanical treatment
for cable separation, we summarised some potential improvements
to reduce prediction error. First, more experimental data during the
accumulation period of impact energy are favourable for accurately
predicting the start point of separation. Furthermore, the increase in
throughput with an up-scale reactor can reduce errors from the
experiment. The complexity of the model during construction can
be enhanced by pretreating the input features (e.g., applying the
power function), increasing the hidden layers, and introducing other
activation functions (e.g., ReLU, tanh, or their combination44). Such
techniques may increase the probability of a suitable non-linear
relationship between input features and predicted results. However,
the overfitting issue should be avoided when expanding the datasets
and model complexity.

The new findings can be combined with the previous experimental
results to derive critical points for the industrial application of PVC
and Cu recovery from cable waste by ball milling. Because the
charged cable weight and impact energy are critical factors for
separation, the increase in impact energy (e.g., by increasing the
rotation speed) should be accompanied when raising the throughput.

A moderate rotation speed may also exist to maximise the ball
milling efficiency45. For various cable specifications, the optimal
mechanical conditions differ in terms of separation efficiency. In
general, the optimal conditions vary based on the sample
properties46,47. Given that cable waste of various sizes is frequently
mixed, a straightforward solution is to combine grinding balls with
various diameters. Furthermore, intelligent operation can be achieved
by sampling the cable properties of each waste batch and predicting
the optimal conditions and required treatment time based on the
developed ML model with appropriate modifications. Meanwhile, the
ball milling conditions (e.g., rotation speed) can be dynamically
changed to generate sufficient impact energy in the early and middle
stages. The impact energy at the ending period can then be reduced
to avoid the crushing of Cu.

Prospect of industrial application. The annual generation of
e-waste was 53.6 Mt in 201911; meanwhile, it was reported that
~10 wt.% is of cable waste48. Because the applicability for the
complex and mixed cable waste was confirmed10, the industrial
application of the proposed high-accuracy cable separation pro-
cess can facilitate the recycling of 5.4 Mt of cable waste. Assuming
a 3:1 of PVC-to-Cu weight ratio based on the density, 4.1 and 1.3
Mt of PVC and Cu can be annually recycled, which is equivalent
to 7.5% and 5.3% of the produced virgin materials49,50, respec-
tively. For sustainability, this technology contributes to the cir-
cular economy associated with plastic and metal and creates more
value-added employment opportunities. Instead of the unsus-
tainable but sanitised landfilling and incineration in developed
countries, the manual stripping and open burning still exist in
developing countries51. The promotion of cable waste recycling is
indispensable for establishing a material circulation system
associated with e-waste, bringing more high-income employment.

Fig. 3 Comparison between Ysep-exp and the predicted Ysep versus treatment time for all experimental conditions based on the trained model with
optimised parameters. a–c varying cable diameter and weight with fixed 15-mm ball (entries 1–3); d–f varying cable diameter and weight with fixed 20-mm
ball (entries 4–6). MSE and R2 are calculated based on Ysep-exp and the predicted Ysep at the same treatment time (excluding the zero point).
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In terms of the environmental impacts, the industrial
application of cable waste recycling can avoid the ecosystem
contaminant (heavy metals and persistent organic pollutants) and
GHG emissions from thermal treatments52,53. However, the cable
separation process causes additional energy consumption and
potential pollution owing to the use of organic solvent. This study
aims to develop a prediction model for the industrial application.
The precise control of ball milling time and design optimisation
will definitely reduce the electricity consumption. Meanwhile, by
screening different solvents54, butyl acetate is preferred not for
the highest efficiency, but for the non-toxic and non-hazardous
properties55. Herein, a one-pot process was successfully devel-
oped for reducing the exposure of organic solvent9.

Considering GHG emissions, the recycling of 1-kg PVC or Cu
will avoid 2.50 and 6.45 kg CO2-e during the cradle-to-gate
production of virgin materials based on the ecoinvent database56.
For a bench-scale ball mill reactor, a 50-min treatment is
necessary for achieving complete separation of 65-g cable waste23,
in which the throughput and energy efficiency are not optimised.
Assuming the operating power of ball milling as 100W57, the
electricity consumption is 1.28 kWh/kg separated cable waste,
resulting in a 0.85 kg CO2-e/kg separated cable waste of GHG
emissions based on the current power grid of Japan. Thus, even
though the lab-scale treatment efficiency is low, the avoided GHG
emissions would be far higher than the additionally produced
ones. Overall, up to 14.05 Mt GHG can be globally mitigated
when the separation is widely applied. However, this calculation
does not include the solvent supplement, which must be
investigated in our future research.

The scaling-up potential is an essential issue for the industrial
application. The ball milling process consumes considerable
electricity, and the financial cost is high58, which hinders the

pilot-scale operation test. First, the electricity consumption can
also be simulated based on the DEM method59, where the energy
efficiency can be ex-ante assessed before the industrial applica-
tion. However, the DEM simulation on a large-scale ball mill
requires substantial computation time; so, the ML can also be
used for predicting the electricity consumption. Furthermore, the
process design and operation could be simultaneously optimised
through a non-linear programming method for minimising
financial cost60. To prevent the human exposure and cost
increase, the organic solvent loss should be mitigated by
controlling operation conditions (e.g., pressure and temperature)
and installing a vapour recovery system61.

In terms of a classic RNN model for time series prediction,
typically only one series of datasets is trained at a time62. The
simultaneous training with multiple series of datasets can facilitate
the model to learn general parameters applicable to different series63.
However, there is a phenomenon that the model is overfitted based
on data from the later period37. Thus, the asynchronous training with
multiple timesteps can mitigate the overfitting issue, which can be
proven by validating the trained model with fewer timestep numbers
shown in Figs. S5–7 in SI compared with Fig. 3. In addition, the
validation of the trained model with one timestep in Fig. S5, which
can be regarded as a conventional RNN, elucidates that the
prediction cannot be accomplished without asynchronous training.
The developed RNN model can be applied to other ball milling
processes, even to general industrial processes affected by dynamic
factors. For example, ball milling can facilitate the mechanochemical
treatment of solid waste64,65 which commonly operates as a batch
reactor. The RNN model can be adapted to predict chemical reaction
rates under various temperatures, reactant concentrations, and other
parameters. Moreover, ML has been widely applied in computational
fluid dynamics to improve simulation efficiency and accuracy66,67.

Fig. 4 Sensitivity analysis revealing the effect of the input features on the Ysep at t= 1800 s (30min). a cable density, b cable weight, c cable diameter,
d ball diameter, e impact energy, and f modelled impact energy versus ball diameter based on Supplementary Notes 3 in SI. For the calculation of subplots
(a–f), the ball diameter and impact energy are fixed at 17.5 mm and 0.2 J/s if neither are investigated as a variable.
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The multi-timestep training method proposed in this study has the
potential to be applied in such algorithms to improve parameter
optimisation.

Conclusions
An asynchronous-parallel RNN framework was developed to model
the complex operation of waste recycling technologies with multi-
dimensional variables. The algorithm’s feasibility was validated using
a case study on PVC and Cu recovery from cable waste with a de-
plasticiser and ball milling. The model was successfully trained based
on limited experimental data to optimise the parameters. Accurate
prediction can be achieved when predicting the dynamic behaviour
of the separation, resulting in an MSE of 0.0015–0.0145. Based on the
sensitivity analysis of the input features, the charged weight of cables
and the impact energy were identified as crucial variables affecting
separation efficiency. Besides several improvable points for the RNN
model, we suggested that the ML algorithm can support intelligent
design and operation for material recovery from cable waste. In the
future, our research will apply this strategy for scaling up the cable
separation process and other complex waste recycling processes (e.g.,
mechanochemical treatment of halogen-containing waste and pyr-
olysis of solid waste). ML will definitely support process optimisation
and mitigate the associated environmental impacts, which can be
widely applied to explore the process mechanisms and identify cri-
tical factors for accelerating the development of waste recycling
technologies.

Methods
Model framework. Based on the model framework in Fig.1, ‘Parallel’ does not
refer to the distributed calculation on different processors (e.g., cores of CPU and
GPU), but to the simultaneous model training of all datasets; ‘asynchronous’ refers
to the various timesteps (advance of treatment time) during a calculation epoch.
For one calculation step, the input features of a dataset include variables of process
design and the separation yield (Ysep) from the previous step (or initial zero).
Furthermore, a new dimension representing the calculation timestep (dt [s]) is
created for Ysep of each dataset. Asynchronous timesteps are introduced because
the model training will overfit the experimental results at the end of treatment
based on our previous study37. With the dimension of dt, the parameters can be
optimised to balance the prediction errors for the entire dynamic process.

With a three-dimensional (feature, dataset, and timestep) input tensor (Input),
artificial neural networks are defined to predict a new Ysep with the advance of
treatment time (t, [s]). In our previous ML modelling to predict a dechlorination
reaction of PVC waste by ball milling37, the output of each timestep was calculated
by a pre-defined function based on the process mechanism46. However, for the
cable separation by ball milling, only a qualitative mechanism was available20.
Artificial neural networks can support the automatic formation of a flexible but
robust relationship between the input and output without specified formulas to
quantify the separation rate (rsep [s−1]=dYsep/dt)30,68. Then, for each iteration in
one timestep calculation, all the model parameters are updated using a
backpropagation algorithm and the specified optimiser based on the error
calculated by the predicted and experimental Ysep (loss)69.

Input features and data sources. All the input features and data sources were
reused from our previous study20. The input features consist of four process variables
and simulated impact energy of the ball milling using the discrete element method.
With the limited scope of experimental data, the grinding ball diameters and the
cable densities, charged weights, and diameters are selected as the input features. The
impact energy reveals the collision intensity between grind balls and cables during
the ball milling process. The values of all input features are presented in Table 1.

The experimental Ysep versus treatment time under specific input features were
also obtained from our previous study20 as the training labels, which can be
accessed with the code at github.com/wilsherelu/Cable-separation-prediction.
However, for time series prediction by RNN, big data is commonly mandatory to
train the model successfully70,71. Thus, we processed the reported experimental
data into stepwise functions among the experimental Ysep over the treatment time.
Despite the noise introduced by this data processing, the model was well trained
based on the established RNN algorithm with the following deduction.

Mathematical expression of specific RNN model. In predicting the time series of
Ysep under different treatment conditions, the most critical calculation is to
quantify rsep. Based on the proposed separation mechanism, Eq. 1 is assumed to
establish a quantitative relationship between input features and rsep:

rsep ¼ k � ð1� cÞ � ð1� Y sepÞ; ð1Þ
where k [s−1] is a rate constant decided by specific input features; c [-] is a
constraint coefficient to control whether the cumulative collision between balls and
cables is sufficient to separate PVC and Cu. Therefore, when c= 1, no separation
occurs, while complete separation is achieved for c= 0 as an extension of the
treatment time. The term 1–Ysep is defined to exclude the separated cable sections.
In this study, in accordance with Ysep, rsep, k and c are tensors with dataset and
timestep dimensions. The next step is to model k and c based on the input features
using Eqs. 2, 3

kfdataset; dtg ¼ NNkðInputfdataset; feature; dtgÞ ð2Þ

cfdataset; dtg ¼ NNcðInputfdataset; feature; dtgÞ ð3Þ
The detailed RNN architecture (input, hidden, and output layers, neuron numbers
and activation functions) of NNk and NNc are included in Supplementary Notes 4
of SI. Given the calculated values of k and c, the predicted Ysep at the next timestep
can be derived by Eq. 4:

Y sepðt þ dtÞ ¼ Y sepðtÞ þ rsep � dt ð4Þ
Finally, the errors between the predicted Ysep and experimental data (Ysep-exp) can
be calculated by the customised loss function in Eq. 5, which weighs the absolute
and relative errors simultaneously. The relative error is favourable for balancing the
Ysep at different orders of magnitude; however, when Ysep-exp is low (<0.1%), a
small prediction error will cause a considerable loss, which leads to overfitting for
training periods with low Ysep. Thus, the absolute error should be a major com-
ponent based on trials with different combinations of weights.

Loss ¼ 0:99∑ðY sep�exp � Y sepÞ2 þ 0:01∑
Y sep�exp � Y sep

Y sep�exp

 !2

ð5Þ

Model programming, training, and validation were accomplished using PyTorch
1.11.0, the most widely applied open source library for deep learning with an
automatic differentiation system72. In this study, we did not modify the parameter
optimisation framework of the default RNN model in PyTorch; instead, we just
defined the aforementioned loss function and selected a widely applicable opti-
miser. We used the Adam method (β1= 0.9, β2= 0.999) for parameter optimisa-
tion based on the calculated loss73.

Data availability
Most of data supporting the findings of this study are available within the paper and and
have been released alongside the code on https://github.com/wilsherelu/Cable-
separation-prediction. For any remaining data, it is available from the corresponding
author upon reasonable request.

Code availability
The python code for the model can be found at https://github.com/wilsherelu/Cable-
separation-prediction (https://doi.org/10.5281/zenodo.7811446).

Table 1 Datasets of input features based on the previously reported experiments20.

Entry Ball diameter [mm] Cable diameter
[mm]

Cable weight
[g]

Cable density
[g/cm3]

Impact energy
[J/s]

Data numbers for error
calculation

1 15 1.5 6 2.83 0.147 4
2 15 2.1 12 2.89 0.156 5
3 15 2.7 21 3.06 0.129 8
4 20 1.5 6 2.83 0.376 4
5 20 2.1 12 2.89 0.421 4
6 20 2.7 21 3.06 0.468 4
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