論文

査読有り
2012年4月

Correlation effects in two-dimensional topological insulators

PHYSICAL REVIEW B
  • Y. Tada
  • ,
  • R. Peters
  • ,
  • M. Oshikawa
  • ,
  • A. Koga
  • ,
  • N. Kawakami
  • ,
  • S. Fujimoto

85
16
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1103/PhysRevB.85.165138
出版者・発行元
AMER PHYSICAL SOC

We investigate correlation effects in two-dimensional topological insulators (TI). In the first part, we discuss finite size effects for interacting systems of different sizes in a ribbon geometry. For large systems, there are two pairs of well separated massless modes on both edges. For these systems, we analyze the finite size effects using a standard bosonization approach. For small systems, where the edge states are massive Dirac fermions, we use the inhomogeneous dynamical mean-field theory (DMFT) combined with iterative perturbation theory as an impurity solver to study interaction effects. We show that the finite size gap in the edge states is renormalized for weak interactions, which is consistent with a Fermi-liquid picture for small size TIs. In the second part, we investigate phase transitions in finite size TIs at zero temperature focusing on the effects of possible interedge umklapp scattering for the edge states within the inhomogeneous DMFT using the numerical renormalization group. We show that correlation effects are effectively stronger near the edge sites because the coordination number is smaller than in the bulk. Therefore the localization of the edge states around the edge sites, which is a fundamental property in TIs, is weakened for strong coupling strengths. However, we find no signs for "edge Mott insulating states" and the system stays in the topological insulating state, which is adiabatically connected to the noninteracting state for all interaction strengths smaller than the critical value. Increasing the interaction further, a nearly homogeneous Mott insulating state is stabilized.

Web of Science ® 被引用回数 : 44

リンク情報
DOI
https://doi.org/10.1103/PhysRevB.85.165138
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000303117100004&DestApp=WOS_CPL
ID情報
  • DOI : 10.1103/PhysRevB.85.165138
  • ISSN : 1098-0121
  • Web of Science ID : WOS:000303117100004

エクスポート
BibTeX RIS