論文

査読有り
2017年7月

NLR network mediates immunity to diverse plant pathogens

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  • Chih-Hang Wu
  • ,
  • Ahmed Abd-El-Haliem
  • ,
  • Tolga O. Bozkurt
  • ,
  • Khaoula Belhaj
  • ,
  • Ryohei Terauchi
  • ,
  • Jack H. Vossen
  • ,
  • Sophien Kamoun

114
30
開始ページ
8113
終了ページ
8118
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1073/pnas.1702041114
出版者・発行元
NATL ACAD SCIENCES

Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins to respond to invading pathogens and activate immune responses. An emerging concept of NLR function is that "sensor" NLR proteins are paired with "helper" NLRs to mediate immune signaling. However, our fundamental knowledge of sensor/helper NLRs in plants remains limited. In this study, we discovered a complex NLR immune network in which helper NLRs in the NRC (NLR required for cell death) family are functionally redundant but display distinct specificities toward different sensor NLRs that confer immunity to oomycetes, bacteria, viruses, nematodes, and insects. The helper NLR NRC4 is required for the function of several sensor NLRs, including Rpi-blb2, Mi-1.2, and R1, whereas NRC2 and NRC3 are required for the function of the sensor NLR Prf. Interestingly, NRC2, NRC3, and NRC4 redundantly contribute to the immunity mediated by other sensor NLRs, including Rx, Bs2, R8, and Sw5. NRC family and NRC-dependent NLRs are phylogenetically related and cluster into a well-supported superclade. Using extensive phylogenetic analysis, we discovered that the NRC superclade probably emerged over 100 Mya from an NLR pair that diversified to constitute up to one-half of the NLRs of asterids. These findings reveal a complex genetic network of NLRs and point to a link between evolutionary history and the mechanism of immune signaling. We propose that this NLR network increases the robustness of immune signaling to counteract rapidly evolving plant pathogens.

リンク情報
DOI
https://doi.org/10.1073/pnas.1702041114
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/28698366
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000406189900090&DestApp=WOS_CPL
ID情報
  • DOI : 10.1073/pnas.1702041114
  • ISSN : 0027-8424
  • PubMed ID : 28698366
  • Web of Science ID : WOS:000406189900090

エクスポート
BibTeX RIS