論文

査読有り 国際誌
2020年4月16日

The role of autonomously secreted PGE2 and its autocrine/paracrine effect on bone matrix mineralization at the different stages of differentiating MC3T3-E1 cells.

Biochemical and biophysical research communications
  • Hiraku Suzuki
  • ,
  • Noriyasu Ohshima
  • ,
  • Kazuaki Tatei
  • ,
  • Tomoyo Taniguchi
  • ,
  • Seiichi Sato
  • ,
  • Takashi Izumi

524
4
開始ページ
929
終了ページ
935
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.bbrc.2020.01.120

Bone is consisted of osteoblast-linage cells, bone-forming cells in various differentiation stages. However, it is not fully understood how communicate and interact these cells immigrated from bone marrow. In this study, we showed that prostaglandin E2 (PGE2) had a role in autonomous modification of matrix mineralization in osteoblastic cell line, MC3T3-E1, and interactions across the cells in different differentiation stages. Analysis using LC-MS/MS and inhibitors showed the autonomous secretion of PGE2 among the prostanoids in differentiation stages and that depend on COX-2, a key enzyme for production of PGE2. Treatment with inhibitors of PGE2 receptors and COX-2 indicated that secreted PGE2 regulates matrix mineralization in an autocrine/paracrine manner. In addition, we showed that the expression profile of PGE2 receptors (EP1-EP4) and PGE2 effects on matrix mineralization derived from it changed during cell differentiation. Treatment with inhibitors of PGE2 signaling in the early differentiation stage of MC3T3-E1 cells induced significant changes in matrix mineralization several days after. Stimulation with the extracts from culture medium of the matured cells including PGE2 and co-culture with the matured cells secreting PGE2 significantly promoted matrix mineralization of the early stage cells, in contrast, treatment with inhibitor of COX-2 and PGE2 receptors failed to do so. These results support that PGE2 plays important roles in the interaction system of osteoblast-linage cells in bone tissue to regulate matrix mineralization reflecting condition of bone-forming cells, that is, population and maturation.

リンク情報
DOI
https://doi.org/10.1016/j.bbrc.2020.01.120
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/32059846
ID情報
  • DOI : 10.1016/j.bbrc.2020.01.120
  • PubMed ID : 32059846

エクスポート
BibTeX RIS