論文

2017年

Relation of semi-classical orthogonal polynomials to general schlesinger systems via twistor theory

Trends in Mathematics
  • Hironobu Kimura

2
開始ページ
399
終了ページ
414
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1007/978-3-319-52842-7_12
出版者・発行元
Springer International Publishing

We study the relation between semi-classical orthogonal polynomials and nonlinear differential equations coming from the isomonodromic deformation of linear system of differential equations on P1. There aremany works establishing this kind of relations between the Painlevé equations and semi-orthogonal polynomials with the weight functions taking from the integrands for hypergeometric, Kummer, Bessel, Hermite, Airy integrals. Some extension of these results is obtained for the semi-classical orthogonal polynomials with the weight functions coming from the general hypergeometric integrals on the Grassmannian G2,N. To establish the desired relations, we make use of the Atiyah-Ward Ansatz construction of particular solutions for the 2 × 2 Schlesinger system and its degenerated ones.

リンク情報
DOI
https://doi.org/10.1007/978-3-319-52842-7_12
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85022057445&origin=inward

エクスポート
BibTeX RIS