2013年11月8日
General schlesinger systems and their symmetry from the view point of twistor theory
Journal of Nonlinear Mathematical Physics
- ,
- 巻
- 20
- 号
- 1
- 開始ページ
- 130
- 終了ページ
- 152
- 記述言語
- 英語
- 掲載種別
- 研究論文(学術雑誌)
- DOI
- 10.1080/14029251.2013.862441
Isomonodromic deformation of linear differential equations on ℙ1 with regular and irregular singular points is considered from the view point of twistor theory. We give explicit form of isomonodromic deformation using the maximal abelian subgroup H of G = GLN+1(ℂ) which appeared in the theory of general hypergeometric functions on a Grassmannian manifold. This formulation enables us to obtain a group of symmetry for the nonlinear system which is an Weyl group analogue NG (H)/H. © 2013 The authors.
- リンク情報