論文

2013年11月8日

General schlesinger systems and their symmetry from the view point of twistor theory

Journal of Nonlinear Mathematical Physics
  • Hironobu Kimura
  • ,
  • Damiran Tseveenamijil

20
開始ページ
130
終了ページ
152
DOI
10.1080/14029251.2013.862441

Isomonodromic deformation of linear differential equations on ℙ1 with regular and irregular singular points is considered from the view point of twistor theory. We give explicit form of isomonodromic deformation using the maximal abelian subgroup H of G = GLN+1(ℂ) which appeared in the theory of general hypergeometric functions on a Grassmannian manifold. This formulation enables us to obtain a group of symmetry for the nonlinear system which is an Weyl group analogue NG (H)/H. © 2013 The authors.

リンク情報
DOI
https://doi.org/10.1080/14029251.2013.862441
Scopus
https://www.scopus.com/record/display.uri?eid=2-s2.0-84888874387&origin=inward
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84888874387&origin=inward