論文

査読有り
2021年1月

Every finite distributive lattice is isomorphic to the minimizer set of an M-concave set function

Operations Research Letters
  • Tomohito Fujii
  • ,
  • Shuji Kijima

49
1
開始ページ
1
終了ページ
4
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.orl.2020.10.012

© 2020 Elsevier B.V. M♮-concavity is a key concept in discrete convex analysis. For set functions, the class of M♮-concavity is a proper subclass of submodularity. It is a well-known fact that the set of minimizers of a submodular function forms a distributive lattice, where every finite distributive lattice is possible to appear. It is a natural question whether every finite distributive lattice appears as the minimizer set of an M♮-concave set function. This paper affirmatively answers the question.

リンク情報
DOI
https://doi.org/10.1016/j.orl.2020.10.012
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096163095&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85096163095&origin=inward
ID情報
  • DOI : 10.1016/j.orl.2020.10.012
  • ISSN : 0167-6377
  • SCOPUS ID : 85096163095

エクスポート
BibTeX RIS