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A B S T R A C T   

Be12Ti and Be12V are promising candidates for neutron multipliers in solid breeding blankets, which is used in a 
bulk form to achieve the fuel tritium self-sufficiency. Previously, significant anisotropic thermal expansions were 
predicted for Be12Ti and Be12V along different crystallographic axes using density functional theory (DFT) cal-
culations. Nevertheless, empirical confirmation through experimental data on thermal expansion anisotropy 
remains lacking. In this study, the thermal expansion behaviors of these materials were experimentally inves-
tigated by using high-temperature X-ray diffraction. Diffraction data were collected temperatures up to 873 K 
under vacuum condition, and structural refinement was carried out by Le Bail analysis using a partial structure. 
The results demonstrate that these materials exhibit moderate anisotropic expansion along the c-axis direction, 
contrary to previous prediction for Be12Ti. The average thermal expansion coefficients were compared with those 
of ceramic breeder pebble beds and structural steel material to discuss thermo-mechanical compatibility in a 
breeding blanket.   

Introduction 

In the breeding blanket of a fusion reactor, a neutron multiplier is 
used for a self-sufficient production of fuel tritium. Be intermetallics (i. 
e., beryllides) have been developed as advanced neutron multiplier. An 
advantage of beryllides is their oxidation resistance at elevated tem-
peratures, which can significantly reduce hydrogen production by the 
reaction with water vapor in a loss-of-coolant accident [1–3]. Experi-
mental investigations have shown that Be12Ti and Be12V exhibit supe-
rior irradiation resistance and tritium release properties compared with 
conventional pure Be neutron multiplier [4–9]. Computational assess-
ments have been extensively performed for Be-rich beryllides to inves-
tigate their electron structures [10,11], H and He retention [4,12,13], 
tritium diffusion [14], and defect formation [15,16]. While neutron 
multipliers were originally planned for use in the pebble form in blanket, 
current DEMO blanket design proposes loading it in block form to in-
crease the tritium breeding ratio and reduce the fabrication cost. In the 
water-cooled solid breeding blanket for JA-DEMO, the beryllide block 
contains Li2TiO3 ceramic breeder pebbles [17], while hexagonal ber-
yllide block is employed in the European helium cooled pebble bed 
(HCPB) blanket with Li4SiO4-Li2TiO3 bi-phasic pebbles [18,19]. 

Be12Ti and Be12V have tetragonal crystal structure with the unit cell 
parameters a = b ∕= c and α = β = γ = 90◦. The thermal expansion 

coefficient α is a fundamental and crucial parameter for blanket design 
because it is operated at elevated temperatures. A previous study has 
computationally investigated the thermal expansion coefficients α, the 
heat capacity, and thermal conductivity of Be12Ti and Be12V using 
density functional theory (DFT) in combination with the quasi-harmonic 
approximation [11]. It is predicted that Be12Ti and Be12V have signifi-
cant anisotropic thermal expansion characteristics towards opposite 
directions while having the same crystal symmetry; Be12Ti has a 
significantly high anisotropic thermal expansion along the a- and b-axes 
(αa/αc ~ 2.9 at 873 K), while Be12V preferentially expands along the c 
axis direction (αa/αc ~ 0.4 at 873 K). These magnitudes of anisotropy 
were at least two times larger than that of hexagonal close-packed Be 
(αa/αc = 0.8 at 873 K [20]). Such thermal expansion behavior requires 
an experimental validation because significant anisotropy could induce 
thermal stress when operating at high temperatures. However, no 
experimental data on anisotropy in thermal expansion have been re-
ported to date, an the only available data pertains to the average thermal 
expansion coefficient [21]. Herein, thermal expansion anisotropies of 
Be12Ti and Be12V were investigated using high-temperature X-ray 
diffraction (XRD). The diffraction patterns from polycrystal beryllide 
specimens were measured at high temperatures up to 873 K and 
analyzed by Le Bail method using a partial structure. The thermal 
expansion data obtained were compared with the computational results 
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and those of other blanket materials, including reduced activation 
ferritic martensitic (RAFM) steel and ceramic breeder pebble beds. 

Methods 

Be12Ti and Be12V specimens were prepared by plasma-sintering 
method [3]. The starting materials were Be (Materion Brush, USA, pu-
rity: 99.4 wt%), Ti (>99.9 wt%), and V (>99 wt%) powders. The 
powders were mixed at an atomic ratio of 92.3% (Be) and 7.7% (Ti or V). 
The powder mixtures were cold-pressed and then plasma-sintered at 
1050 ◦C for 20 min at 50 MPa. The sintered specimens were cut into 
plates with thickness of 1.2 mm. 

High temperature XRD was performed with RINT TTR-III diffrac-
tometer (Rigaku) using Co–Kα radiation in a 2θ range from 15 to 75◦ at 
intervals of 0.02◦. To avoid possible scale formation, hydrogen genera-
tion, or powder scattering in high temperature XRD, the experiments 
were conducted in a vacuum condition at relatively low temperatures (i. 
e. maximum 873 K). The measurements were performed by parallel 
beam mode. XRD patterns were collected at room temperature (RT), 
423, 473, 523, 573, 623, 673, 723, 773, 823, and 873 K by heating up at 
a heating rate of 10 K/min. During cooling, the data were collected at 
773, 673, 573, 473, and RT at a cooling rate of 50 K/min. Temperature 
of the sample was monitored using a thermo-couple attached to the 
sample holder. The measurements were performed under vacuum con-
ditions, in which the pressure was maintained at <1 Pa. Le Bail analysis 
using the partial structure was performed with the RIETAN-FP software 
[22]. Thermal expansion coefficient along a and c axis are calculated as 

αa = da/dT/a0 and αc = dc/dT/c0 where a0 and c0 are the lattice pa-
rameters at RT. The average thermal expansion coefficient is given by 
αV = d(V)1/3/dT/(V0)1/3 where V0 is the unit cell volume at RT. 

Results and discussion 

Fig. 1 shows the diffraction patterns of the Be12Ti and Be12V speci-
mens during heating and cooling measured at temperatures ranging 
from RT to 873 K. The peaks were indexed to the tetragonal structures of 
Be12Ti and Be12V with the space group of I4mmm. The weak peak at 
~59.3◦ in the Be12Ti specimen was unindexed, which could be an im-
purity phase. The peak intensity at 2 θ = 19.4◦ in the Be12V specimen 
became weak above 350 ◦C and remained constant at the background- 
level during the cooling process. Although the peak position corre-
sponds to the diffraction from the (110) plane of Be12V, the peak below 
350 ◦C could correspond to another Be–V intermetallic phase that 
decomposed during heating. The diffraction data in the 2 θ range from 
20 to 75◦ were used in the Le Bail analysis, in which the data from 58.7◦

to 59.5◦ were excluded for Be12Ti to exclude the unindexed minor peak. 
The reliability factors and refined lattice parameters of the Le Bail 

analysis with the partial structure are summarized in Table 1. Fig. 2 
shows the results of the analysis on the diffraction data at 873 K. The 
observed diffraction patterns were indexed with the I4mmm structure 
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Fig. 1. High temperature X-ray diffraction patterns of the (a) Be12Ti and (b) 
Be12V samples measured from room temperature (RT) to 873 K. Red cross in 
panel (a) represents impurity peak. 

Table 1 
Results of Le Bail analysis on the X-ray diffraction data of (a) Be12Ti and (b) 
Be12V at 300–873 K. The equations are linear functions with temperature T (K) 
obtained from the data measured during heating.  

T (K) Rwp RB S a (Å) c (Å) V (Å3) 

(a)       
303  8.86  4.70  1.18 7.3763(6) 4.2003(3) 228.54(3) 
423  8.93  4.42  1.19 7.3846(3) 4.2077(2) 229.46(2) 
473  8.99  4.85  1.19 7.3889(6) 4.2109(3) 229.89(3) 
523  9.16  4.42  1.21 7.3949(3) 4.2156(2) 230.53(2) 
573  9.11  4.04  1.20 7.3995(3) 4.2196(2) 231.03(2) 
623  9.24  4.18  1.22 7.4059(3) 4.2238(2) 231.67(2) 
673  9.21  0.28  1.21 7.4099(5) 4.2275(3) 232.11(3) 
723  8.83  4.40  1.16 7.4146(6) 4.2312(3) 232.61(3) 
773  9.12  4.33  1.20 7.4179(5) 4.2345(3) 233.00(3) 
823  8.95  3.76  1.17 7.4256(5) 4.2401(3) 233.80(3) 
873  8.98  4.01  1.18 7.4309(3) 4.2444(2) 234.37(2) 
773  8.99  4.10  1.18 7.4197(3) 4.2357(2) 233.18(2) 
673  9.31  4.45  1.23 7.4101(3) 4.2273(2) 232.12(2) 
573  8.77  4.28  1.16 7.3976(3) 4.2180(2) 231.83(2) 
473  9.26  0.42  1.22 7.3877(3) 4.2098(2) 229.76(1) 
300  8.51  3.41  1.20 7.3732(4) 4.1991(2) 228.28(2)  

Temperature dependency of the lattice parameters: a = b = 7.344 + 9.754 × 10–5 × T, 
c = 4.175 + 7.820 × 10–5 × T, V = 225.1 + 1.038 × 10–2 × T  

T (K) Rwp RB S a (Å) c (Å) V (Å3) 

(b)       
301  5.89  4.80  1.29 7.3383(4) 4.2301(3) 227.79(3) 
423  5.85  5.29  1.27 7.3498(5) 4.2385(4) 228.96(3) 
473  5.63  6.20  1.21 7.3558(4) 4.2432(3) 229.59(2) 
523  5.86  5.42  1.26 7.3619(4) 4.2465(3) 230.15(2) 
573  5.59  5.51  1.20 7.3676(3) 4.2501(3) 230.70(2) 
623  5.73  6.52  1.20 7.3720(4) 4.2534(3) 231.16(2) 
673  6.05  6.94  1.27 7.3816(4) 4.2597(3) 232.10(3) 
723  5.85  6.88  1.23 7.3869(4) 4.2629(2) 232.61(2) 
773  5.76  6.58  1.21 7.3920(5) 4.2684(2) 233.23(2) 
823  5.97  6.31  1.26 7.3952(4) 4.2703(2) 233.54(2) 
873  5.74  5.85  1.22 7.3973(6) 4.2731(3) 233.82(3) 
773  5.97  6.39  1.26 7.3904(5) 4.2682(3) 233.12(3) 
673  5.93  6.23  1.25 7.3803(4) 4.2595(2) 232.05(2) 
573  5.82  6.74  1.22 7.3678(6) 4.2500(3) 230.71(3) 
473  5.87  7.38  1.23 7.3536(6) 4.2392(4) 229.24(4) 
300  5.86  5.79  1.23 7.3380(5) 4.2293(4) 227.73(4)  

Temperature dependency of the lattice parameters: a = b = 7.304 + 1.109 × 10–4 × T, 
c = 4.206 + 7.847 × 10–5 × T, V = 224.3 + 1.121 × 10–2 × T  
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and fit well to the calculated pattern after the refinements. No new peak 
arising from phase transformation or surface oxidation was observed 
from the measured data. The reliability factors Rwp, RB, and S corre-
spond to the weighted profile R-factor, Bragg R-factor, and square root 

of goodness-of-fit [23]. Rwp is a discrepancy indicator, obtained by 
weighted sum of squared differences between experimental and 
computed intensities scaled by the weighted intensity. RB is obtained 
from experimental and computed Bragg reflection intensities. S is 
defined as a ratio of Rwp to the minimum Rwp reachable, thus S becomes 
1 in an ideal refinement. The profile fittings were considered satisfactory 
because the S factor was <1.3. Fig. 3 shows temperature dependencies of 
the lattice parameters and unit cell volumes using linear fitting. The 
results showed linear trend in the lattice parameters in this temperature 
range. Fig. 4 shows the thermal expansion along a- and c- axis, where a0 
and c0 are the lattice parameters at RT. In the data collected while both 
heating and cooling, the gradient of c/c0 was greater than that of a/a0 for 
Be12Ti and Be12V. It clearly indicates the anisotropic character of the 
thermal expansion in the beryllides, in which the tetragonal lattice 
preferentially expands along the c-axis direction. The direction of the 
thermal expansion anisotropy is contrary to the computational predic-
tion for Be12Ti, as shown in Fig. 5 and Table 2. The anisotropy was 
slightly greater for Be12Ti than that for Be12V (Fig. 4). The coefficients αa 
and αc at 873 K were 1.30 and 1.84 (×10–5 K− 1) for Be12Ti and 1.40 and 
1.77 (×10–5 K− 1) for Be12V. The ratios of αa/αc for Be12Ti and Be12V at 
873 K were obtained to be 0.71 and 0.79, respectively. These values are 
comparable with the αa/αc ratio of hexagonal close-packed Be (0.8 at 
873 K [20]). It is found that the anisotropy in thermal expansion is less 
significant than the computational prediction (αa/αc = 2.9 for Be12Ti 

Fig. 2. Le Bail analysis of the diffraction patterns of the (a) Be12Ti and (b) 
Be12V specimens at 873 K. The black circle, red solid line, blue solid line, and 
green tick marks denote the observed intensity Yobs, calculated intensity Ycalc, 
the difference Yobs − Ycalc, and calculated Bragg peak positions, respectively. 

Fig. 3. Temperature dependence of the lattice parameters (a) a, (b) c, and (c) 
lattice volume V with line fittings for the data obtained during heating. The 
equations of line fittings are shown in Table 1. 

Fig. 4. Thermal expansion of lattice parameters (a/a0 and c/c0) of Be12Ti (left) 
and Be12V (right) where a0 and c0 are the lattice parameters at room 
temperature. 

Fig. 5. Thermal expansion anisotropy in Be12Ti and Be12V. The experimental 
thermal expansion coefficients obtained during heating in this work are 
compared with the calculation data using density functional theory (DFT) [11]. 

K. Mukai et al.                                                                                                                                                                                                                                  



Nuclear Materials and Energy 36 (2023) 101473

4

and αa/αc = 0.4 for Be12V at 873 K) [11]. 
The beryllide block will be directly contacted with either ceramic 

breeder pebbles or RAFM structural steel in the solid breeding blankets 
[17,18]. To assess the thermal compatibility, the average thermal 
expansion coefficients αV were compared with those of the RAFM and 
ceramic breeder pebble bed, as shown in Fig. 6. The thermal expansion 
coefficient of Li2TiO3 pebble bed at RT to 973 K is reported to be (1.4 ±
0.2) × 10–5 K− 1 in the packing factor range of 65.3–68.3% [24]. It is 
reported that the thermal expansion coefficient of the pebble bed cor-
responds to 78% of the bulk material. Accordingly, the thermal expan-
sion coefficients of the pebble bed for the ceramic breeder candidate 
materials (Li2O, Li4SiO4, Li2ZrO3, and LiAlO2)[25–27] were estimated 
by multiplying the bulk values by 0.78. The volumetric thermal 
expansion coefficients αV (K− 1) of Be12Ti and Be12V at 873 K were given 
to be 1.46 × 10–5 and 1.51 × 10–5 K− 1, respectively. These values are in 
good agreement with the previous data by the thermo-mechanical 
analysis for Be12Ti and Be12V [21]. The thermal expansion coefficients 
of the bulk beryllides had a good agreement with those of the Li2TiO3 
and Li4SiO4 pebble beds. The αV values of the bulk beryllides also 
showed a good agreement with the empirical equation for the thermal 
expansion of the F82H steel [28]. In contrast, the estimated values for 
the Li2O pebble bed were larger than the αV of the beryllides, indicating 
a significant mismatch. The estimated coefficients for Li2ZrO3 and 
LiAlO2 were estimated to be 8.6 × 10–6 and 9.4 × 10–6 K− 1 at 873 K 
respectively, which were slightly lower than those for F82H and ber-
yllides. This comparison indicates that Be12Ti and Be12V are highly 

compatible with the promising candidates of ceramic breeder materials 
and RAFM steel. 

Conclusion 

In this study, the thermal expansions of the advanced neutron mul-
tipliers, Be12Ti and Be12V, were investigated using high-temperature X- 
ray diffraction (XRD) and subsequent Le Bail analysis with the partial 
structures. The results showed that the tetragonal unit cell of the ber-
yllides expanded preferentially along the c-axis direction, with a 
moderately anisotropic characteristic comparable with that of hexago-
nal close-packed Be. The ratios of thermal expansion along a- and c- 
axes, αa/αc, for Be12Ti and Be12V were 0.71 and 0.79 at 873 K, respec-
tively. In contrast, significant and opposite anisotropy computationally 
predicted for Be12Ti (i.e., αa/αc ~ 2.5 at 873 K) was not observed in this 
experiment. The volumetric thermal expansion coefficients of Be12Ti 
and Be12V at 873 K were 1.46 × 10–5 and 1.51 × 10–5 K− 1, respectively. 
The coefficients of the beryllides are in good agreement with those of 
F82H and pebble beds of Li2TiO3 and Li4SiO4, whereas a large mismatch 
is seen for Li2O pebble bed. 
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