論文

査読有り 国際誌
2019年11月14日

Transcriptional regulatory model of fibrosis progression in the human lung.

JCI insight
  • John E McDonough
  • Farida Ahangari
  • Qin Li
  • Siddhartha Jain
  • Stijn E Verleden
  • Jose Herazo-Maya
  • Milica Vukmirovic
  • Giuseppe DeIuliis
  • Argyrios Tzouvelekis
  • Naoya Tanabe
  • Fanny Chu
  • Xiting Yan
  • Johny Verschakelen
  • Robert J Homer
  • Dimitris V Manatakis
  • Junke Zhang
  • Jun Ding
  • Karen Maes
  • Laurens De Sadeleer
  • Robin Vos
  • Arne Neyrinck
  • Panayiotis V Benos
  • Ziv Bar-Joseph
  • Dean Tantin
  • James C Hogg
  • Bart M Vanaudenaerde
  • Wim A Wuyts
  • Naftali Kaminski
  • 全て表示

4
22
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1172/jci.insight.131597

To develop a systems biology model of fibrosis progression within the human lung we performed RNA sequencing and microRNA analysis on 95 samples obtained from 10 idiopathic pulmonary fibrosis (IPF) and 6 control lungs. Extent of fibrosis in each sample was assessed by microCT-measured alveolar surface density (ASD) and confirmed by histology. Regulatory gene expression networks were identified using linear mixed-effect models and dynamic regulatory events miner (DREM). Differential gene expression analysis identified a core set of genes increased or decreased before fibrosis was histologically evident that continued to change with advanced fibrosis. DREM generated a systems biology model (www.sb.cs.cmu.edu/IPFReg) that identified progressively divergent gene expression tracks with microRNAs and transcription factors that specifically regulate mild or advanced fibrosis. We confirmed model predictions by demonstrating that expression of POU2AF1, previously unassociated with lung fibrosis but proposed by the model as regulator, is increased in B lymphocytes in IPF lungs and that POU2AF1-knockout mice were protected from bleomycin-induced lung fibrosis. Our results reveal distinct regulation of gene expression changes in IPF tissue that remained structurally normal compared with moderate or advanced fibrosis and suggest distinct regulatory mechanisms for each stage.

リンク情報
DOI
https://doi.org/10.1172/jci.insight.131597
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/31600171
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948862
ID情報
  • DOI : 10.1172/jci.insight.131597
  • PubMed ID : 31600171
  • PubMed Central 記事ID : PMC6948862

エクスポート
BibTeX RIS