論文

査読有り 筆頭著者
2009年9月

Cell-Size-Dependent Spindle Elongation in the Caenorhabditis elegans Early Embryo

CURRENT BIOLOGY
  • Yuki Hara
  • ,
  • Akatsuki Kimura

19
18
開始ページ
1549
終了ページ
1554
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.cub.2009.07.050
出版者・発行元
CELL PRESS

Cell size is one of the critical parameters controlling the size of intracellular structures. A well-known example is the constant nuclear-to-cytoplasmic ratio (N/C ratio) [1-5]. The length of the metaphase spindle is proportional to cell size, but it has an upper limit during early embryogenesis [6]. During anaphase, the mitotic spindle elongates and delivers the centrosomes and sister chromatids near the centers of the nascent daughter cells. Here, we quantified the relationship between spindle elongation and cell size in the early embryo of Caenorhabditis elegans and propose possible models for cell-size-dependent spindle elongation. Quantitative measurements revealed that the extent and speed of spindle elongation are correlated with cell size throughout early embryogenesis. RNAi knockdown of G alpha proteins and their regulators revealed that the spindles failed to fully elongate and that the speed of spindle elongation was almost constant regardless of cell size. Our results suggest that spindle elongation is controlled by two qualitatively distinct mechanisms, i.e., G alpha-dependent and -independent modes of elongation. Simulation analyses revealed that the constant-pulling model and the force-generator-limited model reproduced the dynamics of the G alpha-independent and G alpha-dependent mechanisms, respectively. These models also explain how the set length of spindles is achieved.

リンク情報
DOI
https://doi.org/10.1016/j.cub.2009.07.050
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000270400400026&DestApp=WOS_CPL
URL
https://www.sciencedirect.com/science/article/pii/S0960982209014766
ID情報
  • DOI : 10.1016/j.cub.2009.07.050
  • ISSN : 0960-9822
  • Web of Science ID : WOS:000270400400026

エクスポート
BibTeX RIS