MISC

2018年1月11日

Sums of gcd-sum functions with weights concerning the Gamma function and Bernoulli polynomials

  • Isao Kiuchi
  • ,
  • Sumaia Saad Eddin

記述言語
掲載種別
機関テクニカルレポート,技術報告書,プレプリント等

In this paper, we establish the following two identities involving the Gamma<br />
function and Bernoulli polynomials, namely $$ \sum_{k\leq x}\frac{1}{k^s}<br />
\sum_{j=1}^{k^s}\log\Gamma\left(\frac{j}{k^s}\right)<br />
\sum_{\substack{d|k d^{s}|j } }(f*\mu)(d)\quad {\rm and }\quad \sum_{k\leq<br />
x}\frac{1}{k^s}\sum_{j=0}^{k^{s}-1}<br />
B_{m}\sum_{\substack{d|k d^{s}|j } } (f*\mu)(d) $$ with any fixed integer $s&gt;<br />
1$ and any arithmetical function $f$. We give asymptotic formulas for the above<br />
with various multiplicative functions $f$. We also consider several formulas of<br />
Dirichlet series having coefficients $\gcd$-sum functions with weights<br />
concerning the Gamma function and Bernoulli polynomials.

リンク情報
arXiv
http://arxiv.org/abs/arXiv:1801.03653
URL
http://arxiv.org/abs/1801.03653v1
ID情報
  • arXiv ID : arXiv:1801.03653

エクスポート
BibTeX RIS