論文

査読有り
2018年5月1日

Role of apamin-sensitive small conductance calcium-activated potassium currents in long-term cardiac memory in rabbits

Heart Rhythm
  • Dechun Yin
  • Mu Chen
  • Na Yang
  • Adonis Z. Wu
  • Dongzhu Xu
  • Wei-Chung Tsai
  • Yuan Yuan
  • Zhipeng Tian
  • Yi-Hsin Chan
  • Changyu Shen
  • Zhenhui Chen
  • Shien-Fong Lin
  • James N. Weiss
  • Peng-Sheng Chen
  • Thomas H. Everett
  • 全て表示

15
5
開始ページ
761
終了ページ
769
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.hrthm.2018.01.016
出版者・発行元
Elsevier B.V.

Background: Apamin-sensitive small conductance calcium-activated K current (IKAS) is up-regulated during ventricular pacing and masks short-term cardiac memory (CM). Objective: The purpose of this study was to determine the role of IKAS in long-term CM. Methods: CM was created with 3–5 weeks of ventricular pacing and defined by a flat or inverted T wave off pacing. Epicardial optical mapping was performed in both paced and normal ventricles. Action potential duration (APD80) was determined during right atrial pacing. Ventricular stability was tested before and after IKAS blockade. Four paced hearts and 4 normal hearts were used for western blotting and histology. Results: There were no significant differences in either echocardiographic parameters or fibrosis levels between groups. Apamin induced more APD80 prolongation in CM than in normal ventricles (mean [95% confidence interval]: 9.6% [8.8%–10.5%] vs 3.1% [1.9%–4.3%]
P &lt
.001). Apamin significantly lengthened APD80 in the CM model at late activation sites, indicating significant IKAS up-regulation at those sites. The CM model also had altered Ca2+ handling, with the 50% Ca2+ transient duration and amplitude increased at distal sites compared to a proximal site (near the pacing site). After apamin, the CM model had increased ventricular fibrillation (VF) inducibility (paced vs control: 33/40 (82.5%) vs 7/20 (35%)
P &lt
.001) and longer VF durations (124 vs 26 seconds
P &lt
.001). Conclusion: Chronic ventricular pacing increases Ca2+ transients at late activation sites, which activates IKAS to maintain repolarization reserve. IKAS blockade increases VF vulnerability in chronically paced rabbit ventricles.

リンク情報
DOI
https://doi.org/10.1016/j.hrthm.2018.01.016
ID情報
  • DOI : 10.1016/j.hrthm.2018.01.016
  • ISSN : 1556-3871
  • ISSN : 1547-5271
  • SCOPUS ID : 85045709539

エクスポート
BibTeX RIS