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Abstract—We propose a new model for hit phenomena. Our
model is based on the Integer-Valued autoregressive model
in form of a stochastic difference equation, and it describes
behaviors of count data sequences. Utilizing our model, we give
a theoretical formulation of the concept “hit”, and a systematic
method deciding whether given time series count data contains
“hit”.

I. INTRODUCTION

The Intentions of humans living in society can be mea-
sured by using social network systems. In this paper, we
focus our attention on the decay of intention in societies
that appears in the time variation of the number of blog
or twitter posts per day. In psychology, it is well-known
that a forgetting curve has exponential form [1]. On the
other hand, Crane and Sornette found that the forgetting
curve jas a power-law form from other experiments [2]. For
Japanese social media, Sano et al. found that power laws
generally approximate the functional forms of growth and
decay with various exponents values between −0.1 and −2.5
[3], [4]. Contrarily, in formulating a mathematical model for
hit phenomena [5], Ishii et al. indicated that the decay of
the reputation of a movie is exponential using the observed
data concerning the reputation of 25 movies on blogs. This
exponential decay is built into the model. In [6], some count-
series data concerned with social scandals scandals were
found to have neither an exponential form nor a power
law. In order to analyze such data, a model combining both
functions was introduced.

All of these models for hit phenomena are continuous
and described by ordinary differential equations. We are
interested in a discrete analog of these models. In this
paper, we focus on the case of the exponential decay and
apply the integer-valued autoregressive (INAR) model to
hit phenomena. This model is a basic tool for time series
analysis. A standard autoregressive model has the form of a
stochastic difference equation. Each element in a sequence
of the standard autoregressive model takes a real number.
The INAR model is an analogy of the model for count-data

sequences; thus, any element in a sequence of this model
takes a non-negative integer value. For the basic properties
of INAR models, see [7] and [8].

The concept of ’hit’ can be considered to be an explosive
growth of an index that express intentions of humans in
society. Counts of posting of blogs and sales of certain goods
are examples of such indices. Our model is a stochastic dif-
ference equation that describes a low which such phenomena
follows. We utilize this model to mathematically formulate
the concept of a ”hit”.

The organization of this paper is as follows. In Section
II, we review basic results concerning the INAR model. In
Section III, we introduce a new model for hit phenomena
based upon the INAR model. Estimation of parameters in
the model is also discussed. Utilizing this model, we obtain
a mathematical formulation of the notion of a hit. After a
theoretical discussion, we give an example with fictitious
data generated by a computer. In Section IV, we apply our
method to data in the real world.

II. REVIEW OF THE INAR MODEL

In this section, we review the basic properties of the INAR
model. For the standard AR model, basic results include the
theorem for the stationarity condition and the Yule–Walker
equation. Analogies of these results hold in the case of the
INAR model.

A. Definition

Before explaining the INAR model, let us recall the well-
known AR model. The AR model of order 𝑝 is a sequence of
random variables (𝑋𝑡)𝑡∈Z that satisfy a stochastic difference
equation:

𝑋𝑡 =

𝑝∑
𝑖=1

𝑐𝑖𝑋𝑡−𝑖 + 𝜀𝑡 (1)



2514

where 𝑐𝑖 is a real number and 𝜀𝑡 is a random variable with
the standard normal distribution. 1

The INAR model is an analogy of the AR model for the
count-data sequences introduced in [7]. Since each element
of a count-data sequence takes a non-negative integer value,
the stochastic difference equation (1) does not work well.
In fact, a linear combination of the elements of a count
data sequence with real number coefficients can easily take
a non-integer value. For this reason, the INAR model does
not adopt a linear combination of random variables in the
past history of the sequence.

Let 𝑟 ∈ R𝑝 be parameters. We assume that 0 ≤ 𝑟𝑖 ≤
1 (𝑖 = 1, . . . ,𝑚),

∑𝑝
𝑖=1 𝑟𝑖 ≤ 1. For a non-negative integer-

valued random variable 𝑋 , let (𝑟1 ∗𝑋𝑡, 𝑟2 ∗𝑋𝑡, . . . , 𝑟𝑝 ∗𝑋𝑡)
be a vector of random variables such that

P (𝑟𝑖 ∗𝑋𝑖 = 𝑘𝑖, 1 ≤ 𝑖 ≤ 𝑝∣𝑋 = 𝑥) =
𝑥!

𝑘1! ⋅ ⋅ ⋅ 𝑘𝑝!𝑟
𝑘1
1 ⋅ ⋅ ⋅ 𝑟𝑘𝑝

𝑝

where 𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑝 = 𝑥 and 𝑘𝑖 ∈ Z≥0 (1 ≤ 𝑖 ≤ 𝑝).
Note that 𝑟𝑖 ∗𝑋 denotes a new random variable rather than
the product of 𝑟𝑖 and 𝑋 . The INAR model of order 𝑝 is a
sequence of random variables 𝑋𝑡 satisfying the following
stochastic difference equation:

𝑋𝑡 := 𝑌𝑡 +

𝑝∑
𝑖=1

𝑟𝑖 ∗𝑋𝑡−𝑖 (𝑡 ∈ Z) (2)

where {𝑌𝑡}𝑡∈Z is a sequence of non-negative integer-valued
random variables 2

B. Yule–Walker Equation

In the AR model, the method of least squares for the
estimation of the coefficient in (1) derives the Yule–Walker
equation. An alogous argument is successful in the case of
the INAR model. Here we shortly review a discussion of the
Yule-Walker equation for the INAR model.

To estimate the parameters of the INAR model, we
minimize the following sum of squared errors:

𝑁∑
𝑡=𝑝+1

(𝑋𝑡 − 𝐸 (𝑋𝑡∣𝑋𝑠 = 𝑥𝑠, 𝑡− 1 ≥ 𝑠 ≥ 𝑡− 𝑝))
2
. (3)

When we have an outcome 𝑋𝑡 = 𝑥𝑡 (𝑡 = 1, . . . , 𝑁), the
sum of the squared errors (3) can be written as

𝐿(𝜇𝑦, 𝑟1, . . . , 𝑟𝑝) :=

𝑁∑
𝑡=𝑝+1

(
𝑥𝑡 − 𝜇𝑦 −

𝑝∑
𝑖=1

𝑟𝑖𝑥𝑡−𝑖

)2

1We also need the following technical assumption: the random variable 𝜀𝑡
is independent from the 𝜎-algebra 𝜎 (𝑋𝑠, 𝑠 < 𝑡) generated by the random
variables 𝑋𝑠(𝑠 < 𝑡). For an explanation of 𝜎-algebra and other basic
information concerning probability theory, see [9].

2We also assume that 𝑟𝑖 ∗𝑋𝑡−𝑖 is independent from 𝜎 (𝑋𝑠, 𝑠 < 𝑡− 𝑖)
and that 𝑌𝑡 is independent from 𝜎 (𝑋𝑠, 𝑠 < 𝑡).

where we set 𝜇𝑦 := 𝐸 (𝑌𝑡). Since the derivatives of 𝐿 can
be written as

∂𝐿

∂𝜇𝑦
= −2(𝑁 − 𝑝)

⎛
⎝�̄�0 − 𝜇𝑦 −

𝑝∑
𝑗=1

�̄�𝑗𝑟𝑗

⎞
⎠ ,

∂𝐿

∂𝑟𝑖
= −2(𝑁 − 𝑝)

⎛
⎝𝛾𝑖0 − �̄�𝑖𝜇𝑦 −

𝑝∑
𝑗=1

𝛾𝑖𝑗𝑟𝑗

⎞
⎠ ,

the minimum point of 𝐿 satisfies the equation⎛
⎜⎜⎜⎝

�̄�0

𝛾𝑖0
...

𝛾𝑝0

⎞
⎟⎟⎟⎠ . =

⎛
⎜⎜⎜⎝

1 �̄�1 ⋅ ⋅ ⋅ �̄�𝑝

�̄�1 𝛾11 ⋅ ⋅ ⋅ 𝛾1𝑝
...

...
. . .

...
�̄�𝑝 𝛾𝑝1 ⋅ ⋅ ⋅ 𝛾𝑝𝑝

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
𝜇𝑦

𝑟1
...
𝑟𝑝

⎞
⎟⎟⎟⎠ (4)

Here we substitute

�̄�𝑖 :=
1

𝑁 − 𝑝

𝑁∑
𝑡=𝑝+1

𝑥𝑡−𝑖,

𝛾𝑖𝑗 :=
1

𝑁 − 𝑝

𝑁∑
𝑡=𝑝+1

𝑥𝑡−𝑖𝑥𝑡−𝑗 .

Equation (4) is the Yule–Walker equation for the INAR
model.

III. MODEL FOR HIT PHENOMENA

A. Model

In this section, we apply the INAR model to hit phenom-
ena. Since power laws are very important in the analysis
of social data, we assume that the increments of the time
series obey the Pareto distribution. Recall the definition
of the INAR model (2). According to this definition, we
only assume that 𝑌𝑡 is a non-negative integer-valued random
variable. Hence, we can take any distribution with support
Z≥0 for the distribution of 𝑌𝑡. In order to describe the power
law in the increment of count-data sequances, we assume
that

P (𝑌𝑡 = 𝑘) =

∫ ∞

0

𝜆𝑘
𝑡

𝑘!
𝑒−𝜆𝑡

𝛼

(𝜆𝑡 + 1)𝛼+1
𝑑𝜆𝑡, (5)

where 𝛼 > 0 is a parameter. Form view point of Bayesian
statistics, the variable 𝑌𝑡 is a Poisson random variable with
parameter 𝜆𝑡, and the prior distribution of the parameter 𝜆𝑡

is Pareto with parameter 𝛼. Hence, our INAR model for
hit phenomena can be written as the following stochastic
difference equation:

𝑋𝑡 := 𝑌𝑡 +

𝑚∑
𝑖=1

𝛽𝑖 ∗𝑋𝑡−𝑖 (𝑡 ∈ Z).

Here the distribution of 𝑌𝑡 is defined by (5), and 𝛼 and
𝛽 = (𝛽1, . . . , 𝛽𝑚)⊤ are the parameters of this model.
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B. Estimation

Suppose that the outcome 𝑋𝑡 = 𝑥𝑡 and the parameter
𝛼 ∈ R, 𝛽 ∈ R𝑝 are given. Solving the Yule–Walker equation
(4), we can estimate 𝜇𝑦 = E (𝑌𝑡). Since the parameter 𝛼 can
be written as

𝛼 = 1 +
1

E (𝑌𝑡)
,

we can estimate parameters 𝛼 and 𝛽.
In order to estimate the value of each 𝑌𝑡, we utilize the

Bayesian statistics. We assume that the random variable 𝜆𝑡

with Pareto distribution is the parameter of the Poisson ran-
dom variable 𝑌𝑡. From the view point of Bayesian statistics,
the prior probability of 𝜆𝑡 is 𝑃 (𝜆𝑡) = 𝛼/(𝜆𝑡 + 1)𝛼+1 and
the posterior distribution of 𝜆𝑡 is

𝑃 (𝜆𝑡∣𝑥𝑡, . . . , 𝑥𝑡−𝑚)

=
𝑃 (𝑥𝑡∣𝜆𝑡, 𝑥𝑡−1, . . . , 𝑥𝑡−𝑚)𝑃 (𝜆𝑡∣𝑥𝑡−1, . . . , 𝑥𝑡−𝑚)

𝑃 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑡−𝑚)
.

Here we substitute

𝑃 (𝑥𝑡∣𝜆𝑡, 𝑥𝑡−1, . . . , 𝑥𝑡−𝑚)

=
∑

(𝑘0,...,𝑘𝑚)∈𝐾

𝜆𝑘0
𝑡

𝑘0!
𝑒−𝜆𝑡

𝑝∏
𝑖=1

(
𝑥𝑡−𝑖

𝑘𝑖

)
𝑟𝑘𝑖
𝑖 (1− 𝑟𝑖)

𝑥𝑡−𝑖−𝑘𝑖

(
𝐾 :=

{
(𝑘0, . . . , 𝑘𝑚)∣ 0 ≤ 𝑘𝑖 ≤ 𝑥𝑡−𝑖,

𝑘0 + ⋅ ⋅ ⋅+ 𝑘𝑚 = 𝑥𝑡

})
,

𝑃 (𝜆𝑡∣𝑥𝑡−1, . . . , 𝑥𝑡−𝑚) =
𝛼

(𝜆𝑡 + 1)𝛼+1
,

𝑃 (𝑥𝑡∣𝑥𝑡−1, . . . , 𝑥𝑡−𝑚)

=

∫ ∞

0

𝑃 (𝑥𝑡∣𝜆𝑡, 𝑥𝑡−1, . . . , 𝑥𝑡−𝑚)
𝛼

(𝜆𝑡 + 1)𝛼+1
𝑑𝜆𝑡.

In Section IV, we demonstrate that applying the Bayesian
method obtains good accuracy, however, it requires a long
computation time. Hence, we consider an alternative method
with low computational complexity. For the estimation of 𝜆𝑡,
we utilize the maximum likelihood method. Since the bino-
mial distribution can be approximated by a Poisson distribu-
tion, we can approximate the distribution of 𝑋𝑡 by the Pois-
son distribution of the mean 𝜆𝑡 := 𝑎𝑡 +

∑𝑝
𝑖=1 𝛽𝑖𝐸(𝑋𝑡−𝑖).

Hence, the likelihood function can be written as

∏
𝑡

𝜆𝑥𝑡
𝑡

𝑥𝑡!
𝑒−𝜆𝑡

𝛼

(𝑎𝑡 − 1)𝛼+1

Since the derivative of its logarithm with respect to 𝑎𝑡 is

𝑥𝑡

𝜆𝑡
− 1− 𝛼+ 1

𝑎𝑡 − 1
,

we can easily find which the 𝑎𝑡 value that maximizes the
likelihood.

C. Formulation of a “hit”

In our model, we assume that the increment of count-
data sequences follows a Pareto distribution. By the method
described in the previous subsection, the parameter 𝛼 of
the Pareto distribution and the parameter 𝜆𝑡 of the Poisson
random variable 𝑌𝑡 can be estimated. We denote by 𝜆′

𝑡 the
estimated value of 𝜆𝑡. The probability that the parameter 𝜆𝑡

is greater than the estimated value 𝜆′
𝑡 can be estimated as

P (𝜆𝑡 > 𝜆′
𝑡) =

1

(1 + 𝜆′
𝑡)

𝛼
.

When the probability is less than 𝑞 (0 ≤ 𝑞 ≤ 1), we say that
a hit of level 𝑞 occurred at 𝑡. This is our formulation of the
notion of a hit.

D. Example

In order to describe how our model and method work, we
generate a fictitious count-data sequence with a computer
and apply our method to the data.

We generate a fictitious count-data sequence (𝑥1, . . . , 𝑥𝑁 )
with length 𝑁 = 10′000 in the case where 𝑚 = 2 and

𝛼 = 2.001,
(
𝑟1 𝑟2

)⊤
=
(
0.8 0.1

)⊤
. (6)

In Figure 1, we show the values of the count-data sequence
form 𝑡 = 1 to 𝑡 = 500. The black line shows the values of
𝑥𝑡 and the red line shows those of 𝑦𝑡, which is an outcome
of 𝑌𝑡.
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Figure 1. An example of Poisson AR model

This fictitious count-data sequence determines each coef-
ficient of the Yule–Walker equation (4), and we solve it in
the cases where 𝑁 = 100, 200, . . . , 10000. Figure 2 shows
the result. The left graph in Figure 2 shows the estimated
values of 𝛼, and the right shows those of 𝛽. The black and
red lines show the values of 𝛽1 and 𝛽2 respectively. As the
length of the count-data sequence increases, the estimated
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Figure 2. Parameter estimation for 𝛼 and 𝛽

values of parameters converge to the true value. Figure 3
shows the estimation result of 𝑎𝑡. The black line shows the
expectation value of the posterior distribution of 𝑎𝑡 and the
red line shows the true value of 𝑎𝑡.
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Figure 3. Estimation for 𝑎𝑡

IV. APPLICATION OF THE INAR MODEL TO REAL DATA

In this section, we apply our model and method to data
in the real world. In particular, we use the audience-rating
data provided by Video Research Ltd. (a Japanese market-
research company) for 42 prefectures in Japan, omitting only
5 provinces for reasons that will be described later). These
data include audience survey of television programs as well
as media research, including listening-rate surveys of the
radio programs. By cooperation from this company, this data
is views of the outflow of per minute in the TV news of
the day, have taken up continues, the inflow number. Figure
4 shows count sequences of the data. The data comprises
of four items (all,keep,in, and out), and the items have the
following relations at each time 𝑘:

all[𝑘] = keep[𝑘] + in[𝑘],

keep[𝑘] = all[𝑘 − 1]− out[𝑘].

0 10 20 30 40 50 60

0
50

10
0

15
0

time

all
keep
in
out

Figure 4. Count data sequences of tvw.csv

Solving the Yule–Walker equation (4) in the case where 1 ≤
𝑚 ≤ 3, we can estimate the parameters 𝛼 and 𝛽. Table I
shows this result.

𝑝 𝛼 E (𝑌𝑡) 𝛽1 𝛽2 𝛽3

1 1.375735 2.661453 0.960710 - -
2 1.295989 3.378499 1.355874 -0.401148 -
3 1.254385 3.931049 1.282080 -0.208174 -0.125711
4 1.230873 4.331384 1.257210 -0.254269 0.127991

Table I
ESTIMATED VALUES OF 𝛼 AND 𝛽

Since we assumed that 0 ≤ 𝛽𝑖 ≤ 1, the estimated values
are not suitable except in the case where 𝑝 = 1. On the
other hand, the mean of the item in is 2.507937, and the
estimated value of E (𝑌𝑡) should be near to this value. We
confirm that the estimated value is nearest to the mean when
𝑝 = 1.

In order to estimate the “advertisement effect,” we apply
the Bayesian analysis discussed in Subsection III-B. Figure
5 (a) shows the result of the Bayesian analysis with 𝑝 = 1,
𝛼 = 1.375735 and 𝛽 = (0.960710), which are the results of
the Yule–Walker equation. Figure 5(b) shows the maximal
points of the approximation of the likelihood function. The
black lines in both figures show the count series of the
item “in.” The expectations of posterior distribution for 𝑎𝑡
estimate the value of “in” better than the approximated
likelihood function.
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