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Abstract: This study proposes a novel numerical simulation model that represents the degree of
understanding and cognition of information on social networks as continuous phase field variables.
Information opinions are defined as phase field variables q�, q⌫, q⇠ , modeling the inclination of
individual users’ opinions. The simulation reflects the characteristics of communication media with
immediacy and bidirectionality, specifically social networking services (SNS), dynamically repro-
ducing the propagation of information and feedback mechanisms.The model sets internal judgment
conditions as parameters, simulating psychosocial processes such as confirmation bias, social in-
fluence, forgetfulness, and opinion rigidity. This allows for a numerical analysis of how individual
users process information and how opinions evolve as a result. Furthermore, the model describes the
phase separation dynamics of information between filter bubbles and non-bubble regions, detailing
the interactions and evolution of opinions at the boundaries of spaces with different information
concentrations. The spatial distribution of opinions and their dynamics under conditions where
different opinions coexist and interact are simulated from the perspective of phase separation and
interaction energy. This research utilizes a phase field model to elucidate the complexities of opinion
formation on real-time, bidirectional media like SNS. It quantitatively demonstrates how information
spreads and opinions solidify, revealing the mechanisms of opinion evolution inside and outside
filter bubbles. By combining theoretical frameworks with observational data from actual social
networks, it analyzes the impact of information concentration on opinion evolution and the outcomes
of social interactions on opinion distribution. The model aims to provide a foundation for deepening
our understanding of significant social phenomena in contemporary digital communication, such as
opinion polarization and echo chamber formation on SNS.

Keywords: 1.Phase Field Modeling, 2. Social Media Dynamics, 3. Opinion Evolution, 4. Informa-
tion Phase Separation

1. Introduction
The intersection of sociophysics and digital communication
has opened a novel vista for understanding human behavior
and opinion dynamics. The digital age has transformed how
opinions are formed, evolved, and propagated, especially on
platforms such as social networking services (SNS). Captur-
ing this complexity requires innovative models that reflect
both the immediacy of information exchange and the myriad
cognitive processes at play within individuals. This study
introduces a comprehensive numerical simulation model that
encapsulates these aspects using a phase field approach to
represent the understanding and cognition of information as
continuous variables.

Our model delineates information opinions as phase field
variables q�, q⌫, q⇠ , corresponding to the inclination to-
wards opinions A, B, and C, respectively. These variables
enable a dynamic simulation of opinion evolution on SNS

by incorporating the immediacy and bidirectionality inher-
ent in digital communication. This approach allows for the
real-time propagation of information and its feedback mech-
anisms, akin to the physical phenomena of phase separation
and pattern formation observed in materials science.

Incorporating principles from sociophysics, we draw
upon the foundational work of Galem (1982) and subse-
quent research that utilized statistical physics-based meth-
ods to model opinion dynamics. These studies highlighted
the existence of critical thresholds in societal behaviors, akin
to phase transitions in physical systems. By adapting these
concepts, we simulate the internal judgment conditions that
govern how individuals process information. These con-
ditions include psychosocial processes such as confirmation
bias, social influence, forgetfulness, and opinion rigidity. The
model sets these as parameters, offering a numerical analysis
of individual and collective opinion evolution.

Our simulation also delves into the dynamics of phase
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separation, particularly in the context of filter bubbles—a
phenomenon prevalent in modern SNS usage. By consider-
ing the interactions and evolution of opinions at the boundary
between high and low information concentration spaces, we
simulate the spatial distribution of opinions and their inter-
play. This is done through the lens of phase separation and
interaction energy, which allows for a granular examination
of the conditions under which different opinions coexist and
how they influence one another.

The study’s foundation rests on the Cahn-Hilliard equa-
tion(equation used to describe the dynamics of phase sepa-
ration and to model the time variation of the concentration
fields of the components. It is often used in conjunction with
the Allen-Kahn equation, and both are key components of the
phase-field model to describe the evolution of multiphase sys-
tems.). And Ginzburg-Landau, Allen-Cahn equation, Phase
Field Models(This method can be extended to handle phase
changes involving order/disorder transitions, and Landau the-
ory is used to describe phase transitions and expresses the
free energy as a function of the constitutive variables. It pro-
vides the theoretical framework underlying the phase-field
model and can handle spatial variations in order parameters.
Traditionally used to describe phase interface motion. Also
Potts model or Q-state Potts model: a statistical physical
model used specifically to simulate the microstructure of al-
loys and the dynamics of phase boundaries. By extending
this equation to accommodate the multi-component system
of opinion dynamics, we offer a sophisticated model that
captures the nuances of opinion formation and evolution in
non-equilibrium social systems. This model takes into ac-
count the complexities of individual interactions, providing
insight into the mechanisms of opinion polarization and echo
chamber formation on SNS.

The significance of this research lies in its potential to
deepen our understanding of contemporary social phenom-
ena. By integrating theoretical frameworks with empirical
data from SNS, we aim to elucidate the role of information
concentration on opinion dynamics and the effects of social
interactions on opinion distribution. This endeavor is par-
ticularly pertinent in light of recent global events that have
highlighted the importance of opinion dynamics in societal
transformations and conflicts.

In summary, our study presents a novel approach to mod-
eling opinion dynamics in digital communication, offering a
theoretical and computational framework for analyzing the
complex interplay of individual cognitive processes and col-
lective behaviors. Through this work, we strive to provide
insights into the digital citizenry’s opinion formation and
evolution, contributing to the broader field of sociophysics
and its applications in understanding the digital society.

2. Opinion Distribution Preview
Opinion dynamics theory is applied to compute simulations
of human behavior in society. Preview our research, we
introduce distrust into the bounded trust model in order to
discuss the time transition and trust between the two. For
a fixed agent, 1  8  # , the agent’s opinion at time C is
�8 (C). As a trust coefficient, we modified the meaning of the
coefficient ⇡8 9 in the bounded trust model. Here, we assumed
that ⇡8 9 > 0 if there is trust between them and ⇡8 9 < 0 if
there is distrust between them. For the calculations in this
paper, ⇡8 9 was assumed to be constant. Thus, the change in
the opinion of agent 8 can be expressed as follows:

��8 (C) = �U�8 (C) + 28�(C)�C +
#’
9=1

⇡8 9 � 9 (C)�C (1)

⇡8 9q(�8 , � 9 ) (� 9 (C) � �8 (C)) (2)

q(�8 , � 9 ) =
1

1 + exp(V( |�8 � � 9 | � 1)) (3)

Here, in order to cut off the influence from people whose
opinions differ significantly(3), we use the following sig-
moidal smooth cutoff function, which is a Fermi function
system. In other words, the model hypothesizes that people
do not pay attention to opinions that are far from their own.
We will have a separate discussion on the introduction re-
garding this Fermi function system in the future. Here, ⇡8 9

and ⇡ 98 are assumed to be independent. Usually, ⇡8 9 is an
asymmetric matrix.

2.1 Phase field modeling of information states
The simulation evolves the opinions (or states) of three differ-
ent populations, denoted as q�, q⌫, and q⇠ . These opinions
are distributed across a spatial grid and are updated over time
based on a set of dynamical rules that take into account dif-
fusion, bias, forgetfulness, and the rigidity of opinions.

Parameters
The following parameters are used in the simulation:

Number of simulation steps: =D<_BC4?B = 100

Size of spatial grid: # = 100

Strength of bias towards a particular opinion:
180B_BCA4=6C⌘ = 0.1

Strength of social influence:
B>280;_8= 5 ;D4=24_BCA4=6C⌘ = 0.5

Rate of forgetfulness: 5 >A64C 5 D;=4BB_BCA4=6C⌘ = 0.1

Time step width: �C = 0.01

Spatial grid width: �G = 1.0



Fig. 1: q�, q⌫, q⇠ , Opinion'86838CH, ⌫80B, C = 100

Dynamical Rules
The update rules for the opinions q�, q⌫, and q⇠ at each grid
point are given by:

mq�

mC

=
q�(8 � 1) � 2q�(8) + q�(8 + 1)

�G2

� >?8=8>=_A86838CH(8) · (q⌫ (8) + q⇠ (8))
+ 180B(8) � 5 >A64C 5 D;=4BB(8) · q�(8)

mq⌫

mC

=
q⌫ (8 � 1) � 2q⌫ (8) + q⌫ (8 + 1)

�G2

� >?8=8>=_A86838CH(8) · (q�(8) + q⇠ (8))
� 180B(8) � 5 >A64C 5 D;=4BB(8) · q⌫ (8)

mq⇠

mC

=
q⇠ (8 � 1) � 2q⇠ (8) + q⇠ (8 + 1)

�G2

� >?8=8>=_A86838CH(8) · (q�(8) + q⌫ (8))
� 5 >A64C 5 D;=4BB(8) · q⇠ (8)

where 8 ranges from 1 to # � 1 and represents the spa-
tial grid point. The terms involving �G2 represent diffusion,
and >?8=8>=_A86838CH(8) represents the rigidity of opinions
at each grid point.

Initial Conditions
Initial states for q�, q⌫, and q⇠ are random distributions
over the interval [0, 1]. A random seed is set to ensure
reproducibility of the simulation.

Phase field modeling of information states:
Variables representing information opinions are

q�, q⌫, q⇠ , . . . (4)

Each individual has these variables and their values represent
the degree of inclination toward the opinions q�, q⌫, q⇠ ,.
Information diffusion is represented by the time variation of
these phase-field variables.

Information Propagation and Feedback
Suppose that the information q�, q⌫, and q⇠ have dif-

ferent diffusion coefficients. Let q� > q⌫ > q⇠ , whereby
q� > q⌫ > q⇠ are more diffuse in that order.

Feedback is the mechanism by which one’s state changes
under the influence of information from others.

Internal judgment conditions

Confirmation bias: individuals selectively accept infor-
mation that is consistent with their own opinions.

Social influence: sets parameters for susceptibility to the
opinions of others.

Forgetting: models that information disappears from the
individual over time.

Opinion rigidity: sets the conditions that determine
whether one adheres to opinion q�, q⌫, or q⇠ .

Modeling phase separation dynamics
Model information exchange between filter bubbles and

non-bubble regions as a phase interface. Considering interac-
tion energy, it simulates the dynamics when different opinions
come into contact.

Dynamics of opinion change
Computes the spatial distribution of populations with dif-

ferent opinions. Introduces parameters that control the "mix-
ing" of opinions.

When applying the phase-field model to social diffusion
of information, the degree of inclination toward the opinions
(q�, q⌫, q⇠ ) held by individuals is modeled as the phase-
field variables q�, q⌫ and q⇠ . These variables represent the
state of opinion across time and space for each individual.
By including internal judgment conditions such as confirma-
tion bias, social influence, forgetting, and opinion rigidity,
the dynamics of information diffusion and individual opinion
change can be captured.

Phase separation dynamics models the phenomenon of
matter separating into different phases (e.g., liquid and gas).
Applying this concept to the modeling of opinions, one can
simulate "filter bubbles" or phase boundaries of opinions that
form between groups with differing opinions.

Interaction energy is used to show the dynamics of ten-
sion and competition when individuals with different opinions
come into contact. It corresponds to the interfacial energy
between the different phases; the higher this energy, the less
likely the different opinions are to mix and the more likely
bubble formation will be promoted.

Allen-Kahn Equation The Allen-Kahn equation is com-
monly used to model the dynamics of phase separation. This
equation is used to describe the evolution of phase boundaries
in phase field modeling.

Opinion mixing parameter: This controls how easily
opinions are exchanged between individuals. The higher it is,



the more easily opinions are exchanged and the blurrier the
phase boundaries.

We simulate the evolution of opinions across a spatial
grid. Each point on the grid represents an individual’s incli-
nation towards one of three opinions, denoted as q�, q⌫, and
q⇠ .

Model Parameters

#: Number of spatial grid points.

num_steps: Total number of simulation steps.

bias_strength: Strength of the opinion bias.

social_influence_strength: Strength of social influence
on opinion change.

forgetfulness_strength: Rate of forgetting an opinion.

3C: Time step width.

3G: Spatial grid width.

Initial Conditions

The initial state of opinions q�, q⌫, and q⇠ is set randomly
for each grid point.

Dynamics Update

The opinion dynamics are updated according to the following
equation for each opinion q at every grid point 8:

3q

3C

= ⇡

3
2
q

3G
2 � � (q) + ⌫ � �q (5)

where

⇡ represents the diffusion term, modeling the spread of
opinions.

� (q) is the interaction energy with other opinions at the
interface, computed as opinion_rigidity ⇥ (qother).
⌫ represents the bias towards an opinion.

� is the forgetfulness rate.

The simulation iterates over the specified number of steps,
updating the opinions according to the dynamics described
above.

2.2 Opinion Dynamics Update Function
The opinion dynamics update function calculates the new
state of opinions in a spatially distributed population. This
function takes into account the interaction energy between
different opinions and the tendency of opinions to mix.

Parameters

q�, q⌫, q⇠ : Arrays representing the distribution of
opinions A, B, and C, respectively, over a spatial grid.

interaction_energy: Array representing the interaction
energy at the interface between different opinions.

mix_parameter: Array representing the degree to which
opinions mix with each other.

3C: Scalar representing the time step.

3G: Scalar representing the spatial step.

Dynamics

The function updates the opinion states according to the fol-
lowing equations:

Mixing effect:
M�,8 = mix_parameter[8] · (q⌫,8 + q⇠ ,8)
"⌫,8 = mix_parameter[8] · (q�,8 + q⇠ ,8)
"⇠ ,8 = mix_parameter[8] · (q�,8 + q⌫,8)

Diffusion (with �;;4= � ⇠0⌘=C4A<)
�q�,8 =

q�,8�1�2q�,8+q�,8+1
3G2 � ⇢�,8 + "�,8

�q⌫,8 =
q⌫,8�1�2q⌫,8+?⌘8⌫,8+1

3G2 � ⇢⌫,8 + "⌫,8

�q⇠ ,8 =
q⇠,8�1�2q⇠,8+?⌘8⇠,8+1

3G2 � ⇢⇠ ,8 + "⇠ ,8

Temporal evolution:
q
0
�,8 = q�,8 + 3C · �q�,8

q
0
⌫,8 = q⌫,8 + 3C · �q⌫,8

q
0
⇠ ,8 = q⇠ ,8 + 3C · �q⇠ ,8

Return

The function returns the updated arrays q0�, q
0
⌫, q

0
⇠ after ap-

plying the opinion dynamics for a single time step.

Model Description

The update_phi function simulates the opinion dynamics
over a one-dimensional lattice where each site has an opinion
value for three distinct choices: A, B, and C. The update rules
incorporate several mechanisms: selective acceptance based
on confirmation bias, opinion change due to social influence,
information loss through forgetfulness, and opinion rigidity.

Equations and Parameters

The state of each opinion at site 8 is updated at each time step
based on the following discrete-time dynamical equations:



Social Influence:
S�,8 = social_influence[8] · (q�,8�1 + q�,8+1)
(⌫,8 = social_influence[8] · (q⌫,8�1 + q⌫,8+1)
(⇠ ,8 = social_influence[8] · (q⇠ ,8�1 + q⇠ ,8+1)

Forgetfulness:
F�,8 = forgetfulness[8] · q�,8

�⌫,8 = forgetfulness[8] · q⌫,8

�⇠ ,8 = forgetfulness[8] · q⇠ ,8

Opinion Rigidity:
R�,8 = opinion_rigidity[8] · q�,8

'⌫,8 = opinion_rigidity[8] · q⌫,8

'⇠ ,8 = opinion_rigidity[8] · q⇠ ,8

Diffusion:
D�,8 =

q�,8�1�2q�,8+q�,8+1
3G2

⇡⌫,8 =
q⌫,8�1�2q⌫,8+q⌫,8+1

3G2

⇡⇠ ,8 =
q⇠,8�1�2q⇠,8+q⇠,8+1

3G2

Temporal Evolution:
q
(=4F)
�,8 = q�,8 + 3C · (⇡�,8 + ⌫�,8 + (�,8 � ��,8 + '�,8)

q
(=4F)
⌫,8 = q⌫,8 + 3C · (⇡⌫,8 + ⌫⌫,8 + (⌫,8 � �⌫,8 + '⌫,8)

q
(=4F)
⇠ ,8 = q⇠ ,8 + 3C · (⇡⇠ ,8 + ⌫⇠ ,8 + (⇠ ,8 � �⇠ ,8 + '⇠ ,8)

Parameters

bias: An array representing the strength of confirmation
bias for each site.

social_influence: An array representing the strength of
social influence at each site.

forgetfulness: An array indicating the rate at which
information is forgotten at each site.

opinion_rigidity: An array indicating the degree to
which an opinion at a site resists change.

dt: The time step for the simulation.

dx: The spatial step representing the distance between
sites

The update_opinion_dynamics function iteratively
updates the state of opinions within a population con-
sidering various psychological and social factors.

Parameters and Variables

– #: The number of agents or nodes in the system.
– 3C: The time step for the simulation.

– 3G: The spatial resolution for the simulation.
– threshold: The threshold for opinion rigidity.
– bubble_strength: The strength of the filter bub-

ble effect.
– bubble_tolerance: The tolerance within which

the filter bubble effect applies.

Update Equations

The dynamics of the opinion states are updated accord-
ing to the following equations:

for 8 = 1 to # � 1 :
Interface Energy: ⇢8 = rig[8] (q⌫,8 + q⇠ ,8)
Social Influence: (8 = soc_inf[8] (q⌫,8 + q⇠ ,8 � 2q�,8)

Confirmation Bias: ⌫8 = bias[8]q�,8

Opinion Rigidity: '8 = rig[8]q�,8 if q�,8 > thresh else 0
Filter Bubble: �8 = (q�,8�1 + q�,8+1)bub_str

if |q�,8�1 � q�,8+1 | < bub_tol else 0
Update Rule: q

0
�,8 = q�,8 + 3C · (⇢8 + (8

+ ⌫8 + '8 + �8) · (1 � forget[8])

Where the abbreviations are as follows:

– rigid: opinion rigidity
– soc_inf: social influence
– thresh: threshold for opinion rigidity
– bub_str: bubble strength
– bub_tol: bubble tolerance
– forget: forgetfulness

The same set of equations applies to q⌫ and q⇠ , with
appropriate substitutions.
The function returns the updated opinion arrays and the
change in opinions due to each factor.

Gradient Calculation and Evolution Recording

– The gradients of the opinion distributions q�, q⌫,
and q⇠ with respect to the spatial grid are com-
puted at each simulation step. This is achieved by
using the np.gradient function which approx-
imates the derivative using central differences in
the interior and first differences at the boundaries.

– The resulting gradient arrays are
stored in corresponding evolution
matrices (phi_A_grad_evolution,
phi_B_grad_evolution,
phi_C_grad_evolution), with each row
corresponding to a time step in the simulation.



– The gradient at each step and position represents
the rate of change of the opinion value, which can
be indicative of the dynamics of opinion formation
and spread.

– Mathematically, the gradient at each grid point 8
and time step C is given by:

Gradient at position 8 and time C : ⌧8,C =
mq(8, C)
mG

where mq(8, C)/mG denotes the partial derivative of
the opinion value with respect to space at position
8 and time C.

– The absolute value of the gradient is taken to con-
sider the magnitude of change without regard to
the direction of change (i.e., whether the opinion
is increasing or decreasing at that point).

– The absolute gradients are recorded for visualiza-
tion purposes. A heatmap can be used to display
how the gradients evolve over time, providing in-
sight into the areas with the most dynamic opinion
changes.

– After the gradients are calculated for each opinion
type (�, ⌫, and⇠), a heatmap is created for each to
visualize the spatial distribution of opinion change
intensities over the course of the simulation.

– The heatmaps show the magnitude of the opinion
gradients across the spatial domain at each time
step, with warmer colors typically representing
higher rates of change.

Opinion dynamics over a series of discrete time steps.
Below is a detailed explanation of the processes, asso-
ciated mathematical formulations, and parameters in-
volved. The opinion states q�, q⌫, and q⇠ for three
different opinions are updated using two distinct func-
tions:

(1) update_phi function updates the opinion states
based on bias, social influence, forgetfulness, and
opinion rigidity.

(2) update_opinion_dynamics function then fur-
ther updates these states considering interaction
energies and mixing parameters.

The update rules for the opinion states within each time
step C are described by the following equations:

q
0
�, q

0
⌫, q

0
⇠ = update_phi(q�, q⌫, q⇠ , . . .)

q
0
�, q

0
⌫, q

0
⇠ = update_op_dynamics(q0�, q0⌫, q0⇠ , . . .)

Each update considers the effects of neighboring opin-
ions and the tendency to maintain one’s current state due
to rigidity or bias.

Interfaces are calculated to determine the points where
opinion changes are significant:

interfaces- = calculate_interface(q-, threshold)

where - can be �, ⌫, or ⇠, representing the different
opinions, and threshold is a predetermined value that
defines what constitutes a significant change in opinion.

After updating the opinions and calculating the inter-
faces at each step, the simulation results are visualized:

Process:

– For each simulation step, the function
Result_histograms is called to draw his-
tograms of the opinion states (q�, q⌫, and
q⇠ ).

– The opinions at each step are added to their respec-
tive lists for further analysis.

– After accumulating the data from multiple steps,
histograms of all opinion states are plotted to visu-
alize the overall distribution.

– phi_A_data, phi_B_data, phi_C_data: Lists
containing the opinion states for each simulation
step.

– bins: The number of bins or intervals used to
divide the range of opinion states for the histogram.

Equations:

– Result represent the frequency distribution of opin-
ion states, divided into bins.

– Frequency(q) = Õ
all steps Count(q 2 bin)

Cumulative Distribution Function Calculation

Process:

– A cumulative distribution function (⇠⇡�) is cal-
culated for each opinion state to show the probabil-
ity that a variable takes a value less than or equal
to a certain value.

– The ⇠⇡� is obtained by normalizing the cumula-
tive sum of the histogram counts.

Parameters:

– all_phi_A, all_phi_B, all_phi_C: Lists con-
taining all opinion states across the simulation
steps.



– bins: Defines the intervals for the histogram,
which is used to calculate the ⇠⇡�.

Equations

– ⇠⇡� (q) = Cumulative Sum(Count(qG ) )
Total Count

– The ⇠⇡� is as a function of opinion states.
– Result(bin edges,⇠⇡�)

Parameters

The parameters used in the simulation include:

– bias - Represents the confirmation bias for each
opinion.

– social_influence - Measures the social influ-
ence affecting each opinion.

– forgetfulness - Accounts for the tendency to
forget or abandon an opinion.

– opinion_rigidity - Reflects the resistance to
change one’s opinion.

– interaction_energy - Quantifies the energetic
cost or benefit of having adjacent differing opin-
ions.

– mix_parameter - Controls the degree to which
opinions mix or influence each other.

– dt - The time step size.
– dx - The spatial resolution of the simulation.

These parameters are adjusted to model various scenar-
ios of opinion dynamics within a population.

As a final step, the CDF of each process is derived. This
experiment function update_opinion_dynamics sim-
ulates the evolution of opinions within a population. It
considers the effects of interaction energy, social in-
fluence, confirmation bias, opinion rigidity, and filter
bubbles.

– q�, q⌫, q⇠ : Current opinion states for groups A,
B, and C.

– opinion_rigidity: Resistance to change in
opinion.

– bias: Tendency to favor an opinion.
– social_influence: Effect of society on individ-

ual opinion.
– forgetfulness: Likelihood of changing opinion

over time.
– dt: Time step for the simulation.
– dx: Spatial resolution for the simulation.
– threshold: Threshold for opinion rigidity.
– bubble_strength: Strength of the filter bubble

effect.

– bubble_tolerance: Tolerance for difference
within a filter bubble.

Equations:

q
0
-,8 = q-,8 + 3C ·

h
�-,8 + (-,8 + ⌫-,8+

'-,8 + �-,8

i
· (1 � forgetfulness[8])

The update rule for each opinion state q-,8 is given by:

�-,8 = interface energy,
(-,8 = social term,

⌫-,8 = bias term,

'-,8 = rigidity term,

�-,8 = bubble term.

The simulation runs for a number of steps, updating the
opinions according to the above rule and recording the
changes in various terms such as bias, social influence,
and forgetfulness.

Gradient Calculation, Evolution Recording

For each opinion state, the gradient is calculated to de-
termine the rate of change across the spatial dimension.
The absolute values of these gradients are recorded to
visualize the evolution of opinion changes.

– Time series of changes in bias, social influence,
forgetfulness, and opinion rigidity.

– Heatmaps of the gradients of opinion evolution,
showing where opinions are changing most rapidly.

– Cumulative distribution functions for different
scores, illustrating the distribution of effects like
social term and rigidity across the population.

The update function is implemented with the @jit dec-
orator from the #D<10 to optimize performance. The
simulation iterates over the number of steps, calling the
update function and storing the results. It tracks the
evolution of opinions and the total changes in various
factors.

Diffusion effects(with �;;4= � ⇠0⌘=C4A<) And The
function update_opinion_dynamics updates the
opinions within a population considering interface ener-
gies, diffusion effects.

– q�, q⌫, q⇠ : Arrays representing the opinion states
of three different groups.

– opinion_rigidity: Represents how strongly in-
dividuals resist changing their opinions.



– bias: Represents the individual biases towards
their current opinion.

– dt: The time step for the opinion update.
– dx: The spatial step used for calculating diffusion.

Update Rule

The update rule for opinion q- at position 8 is given by
the equation:

q
0
-,8 = q-,8 + 3C

 
q-,8�1 � 2q-,8 + q-,8+1

3G
2 �

�-,8 + ⌫- � �- · q-,8

!

where:

– �-,8 is the interface energy due to the interaction
with other opinions.

– ⌫- is the bias term for opinion - .
– �- is the forgetfulness factor applied to opinion - .

The function returns the updated opinions and the mean
diffusion scores for each opinion group.

Simulation Execution:

A loop iterates over a number of steps, updating the
opinions and recording the mean diffusion scores at each
step.

– Time series plots show the evolution of each opin-
ion at each step.

– Heatmaps visualize the evolution of opinions and
their gradients over time.

– Cumulative distribution functions (⇠⇡�B) of
mean diffusion scores are plotted to analyze the
distribution of diffusion effects across the simula-
tion steps.

Cumulative Distribution Function (⇠⇡�)

The ⇠⇡� is plotted for mean diffusion scores to under-
stand the probability distribution of these scores over the
simulation steps.

Fig. 2: q�, q⌫, q⇠ , Opinion'86838CH, ⌫80B, C = 1000

3. Discussion

From Figure 2

(1) Characteristics of spatial distribution

– Opinions A, B, and C show different intensities
and peaks at different times.

– Opinion A shows large fluctuations in the initial
time step and may be spatially unevenly distributed
in the early stages compared to the other two opin-
ions.

– Opinions B and C show more consistent trends and
are expected to remain stable over time.

(2) Trends in Information Propagation and Feedback

– The large initial fluctuations in Opinion A may
indicate that information is propagating rapidly and
the feedback loop is active.

– Since all opinions show constant movement be-
tween time steps 20 and 60, it can be assumed
that information propagation and feedback are rel-
atively stable during this period.

(3) Trends in internal judgment conditions

– Judging from the large fluctuations in Opinion A,
it is possible that internal judgment conditions are
more sensitive than other opinions, or that opinions
are adopted or rejected more frequently.

(4) Parameters controlling the "mixing" of opinions

– To analyze the "mixing" of opinions, it is necessary
to quantify the degree to which individual opinions



overlap, but it is difficult to directly calculate the
parameter from this graph alone. This requires
additional data to quantify the distance between
opinions and the frequency of overlap.

(5) Trends in phase boundaries between filter bubbles
and non-bubble regions

– Points where opinions cross according to time step
(e.g., near time step 40 where opinions B and C
cross) indicate that an exchange of opinions may be
occurring between filter bubbles and non-bubble
regions.

(6) Tendency of dynamics when different opinions
come into contact considering interaction energy

– The sharp fluctuations at the points of contact be-
tween opinions, especially between opinion A and
opinion B and opinion C, suggest high interac-
tion energy and strong dynamics between different
opinions.

– Peaks and low valleys in opinions could mean that
different opinions are influencing each other, and
convergence or divergence of opinions may be seen
at these points.

Social Discussion

(1) Characteristics of spatial distribution
Variations in opinion A may reflect a lively de-
bate inspired by a particular social event or media
coverage. For example, political developments or
scandals may trigger social reactions, and rapidly
disseminated information may generate a wave of
opinions.
The consistency exhibited by opinions B and C may
reflect more established beliefs or cultural values
developed over time. It is suggested that these
opinions are based on social consensus rather than
new information.

(2) Information Propagation and Feedback Trends
The initial rapid fluctuations shown by Opinion A
may point to an information explosion or viral trend
on social media. This indicates that emotional
responses and immediate sharing are accelerating
the dynamics of information propagation.
The more stable trends exhibited by opinions B and
C may indicate that these opinions are generally
better understood and represent slowly changing
social values and attitudes.

(3) Trends in internal judgment conditions
The fluctuations exhibited by Opinion A may re-
flect themes that are prone to intensifying debate,
e.g., political elections or individuals’ opinions on
social movements are likely to change.

(4) "Mixedness" of opinions
Areas of overlapping opinions on the graph may
indicate a community or forum where people with
different opinions and positions interact and influ-
ence each other. This may reflect a segment of
society where diverse opinions coexist, e.g., mul-
ticultural cities or academic settings.

(5) Information exchange between filter bubble and
non-bubble areas.
Points of intersection of opinions suggest moments
of dialogue between different social bubbles or
communities. For example, they may represent the
dynamics at a public discussion or a social event
where diverse viewpoints are exchanged.

(6) Interaction energy and dynamics
The sharp fluctuations seen between opinions may
reflect tensions or clashes between different social
groups or opinion clusters. The dynamics may
indicate social divisions caused by, for example,
election results or policy changes.

From Figure 3

(1) Characteristics of spatial distribution
It can be seen that Opinion � is more concentrated
at certain times of the day (probably after time
step 600). This may suggest that opinion � has
temporarily experienced an event in which it is
strongly represented in society. Opinions ⌫ and
⇠ maintain a relatively constant distribution over
time, while the concentration of ⌫ has increased
over time.

(2) Tendency of information propagation and feed-
back
The increasing concentration of opinion � over
time may indicate a tendency for certain informa-
tion to spread rapidly and for feedback on it to
continue. The relatively even spread of opinions ⌫
and ⇠ suggests that these opinions have a consis-
tent propagation pattern.

(3) Trends in internal judgment conditions
The concentration of Opinion � becomes clearer
toward the latter half of the period, which may
suggest that an internal judgment mechanism is at
work as a response to new information or events.



Fig. 3: Opinion �,⌫, ⇠ Evolution, C = 1000

(4) Parameters controlling the "mixing" of opin-
ions
While it is difficult to calculate parameters directly
from this information, analyzing correlations and
temporal continuity among opinions may provide
insight into the parameters that regulate the degree
of mixing.

(5) Trends in phase boundaries between filter bub-
ble and non-bubble regions
The time step of increasing concentration in Opin-
ion � may indicate an increase in filter bubbles.
Opinions ⌫ and ⇠ may indicate less filter bubbles
or very extensive bubbles.

(6) Trends in interaction energy and dynamics
The abrupt changes seen in Opinion � may indi-
cate strong interactions or clashes between differ-
ent opinions; ⌫ and ⇠ may have mild interactions
or little interaction; ⇠ and ⇡ may have very strong
interactions or clashes between different opinions;
and � and ⇡ may have very strong interactions or
clashes between different opinions.

(7) Characteristics as a gradient map
The heat map of Opinion � has a large gradient of
change over time and shows rapid changes during a
specific time period. This may indicate that opin-
ions are changing rapidly due to some external
factors. Opinions ⌫ and ⇠ show relatively uni-
form gradients, indicating that their concentration
changes gradually over time.

Social Discussion

(1) The case of Opinion � (e.g., the sudden rise of
the environmental protection movement)
The sudden rise in support for Opinion � over time
may represent a phenomenon in which, for exam-
ple, after a major environmental disaster, opinions
about environmental protection rapidly gain sup-
port throughout society.

(2) The case of Opinion ⌫ (e.g., a stable but gradu-
ally gaining support for a healthy lifestyle)
Opinion ⌫ is gaining support evenly but steadily
over time. This may reflect, for example, a situa-
tion where interest in healthy lifestyles and organic
foods is slowly spreading and gaining support.

(3) The case of Opinion ⇠ (e.g., traditional values
that are slowly being lost)
Opinion ⇠ shows a gradual decrease in concen-
tration as the time step progresses. This could
suggest, for example, that traditional values and
culture are gradually losing favor in modern soci-
ety.
The trend of the gradient can be considered as
follows:
Opinion � tends to increase in slope over time.
This may indicate that an event or topic suddenly
gains importance in society and rapidly spreads
discourse. This type of gradient tends to be seen
when social movements or emergencies occur.
Opinions ⌫ and ⇠ show a more gradual gradient,
indicating that social change is gradual. For ex-
ample, this is how opinions are formed over time,
such as economic trends or long-term changes in
health awareness.

From Figure 4

(1) Spatial Distribution of Opinion Classes �-⇠
Opinion � shows a sharp gradient at certain time
steps, indicating moments of intense change or a
strong shift in opinion � at those points in time.
Opinion ⌫ shows less intense gradients, suggest-
ing more gradual changes in opinion ⌫ over time.
Opinion ⇠ also shows significant gradients at cer-
tain time steps, indicating strong shifts similar to
opinion � but possibly at different times or with
different patterns.

(2) Trends in Information Propagation and Feed-
back
The gradients in opinion � suggest moments of
rapid spread or shifts in opinion, possibly due to



a feedback loop where a certain trigger caused
the opinion to become suddenly more prominent.
Opinion ⌫ and ⇠’s gradients suggest more con-
sistent propagation over time, possibly indicating
sustained discussions or debates that slowly shift
public opinion.

(3) Trends in Internal Judgment Conditions
The sharp gradients in opinions � and ⇠ could in-
dicate that the internal conditions or thresholds for
change are met abruptly, resulting in sudden shifts
in opinion. The smoother gradients in opinion ⌫

suggest a more continuous reassessment or gradual
evolution of internal judgment conditions.

(4) Parameters Controlling the ’Mix’ of Opinions
These parameters would be related to the rate of
change seen in the gradients. A more significant
gradient suggests a less mixed opinion, while a
smoother gradient suggests a more homogeneous
mixing of opinions.

(5) Interface Trends Between Filter Bubbles and
Non-Bubble Regions
The sharp changes in gradients could indicate the
boundaries of filter bubbles where the opinion is
either reinforced or rapidly changes due to new
information breaking through.

(6) Dynamics of Interaction Energy When Differ-
ent Opinions Meet
The intensity of the gradients at certain points sug-
gests high interaction energy, where a collision of
differing opinions might lead to significant shifts
or conflicts.

(7) Characteristics as Gradient Maps
These gradient maps show where and when the
most significant changes in opinion occur. High-
intensity areas indicate points of likely social or
informational upheaval.
Overall, these gradient maps could be indicative
of how public opinion or sentiment about certain
topics changes over time. They might reflect real-
world events like political campaigns, social move-
ments, or the spread of news stories, where public
opinion can shift rapidly in response to new infor-
mation or due to reinforcing feedback within social
or communication networks. The exact dynamics
would depend on the context of these opinions and
the external factors influencing them.

Social Discussion

Impact of Political Events: During election cycles or
important political events, one opinion (e.g., Opinion

Fig. 4: Gradient of Opinion �,⌫, ⇠ Evolution, C = 1000

q�) may show a sudden gain or loss of support. This sud-
den change may reflect the impact of a political speech
or scandal.

Spread of a Social Movement: A gradual spreading
gradient, such as Opinion q⌫, may indicate a social
movement gaining power over time. It suggests a ten-
dency to gain acceptance only slowly in the beginning,
but eventually spread rapidly.

Fluctuations in Cultural Trends: The slope of Opinion
q⇠ may indicate a change in a fad or cultural trend. A
steeper gradient at a particular time point may indicate
increased social interest or rapid adoption of a new trend.

Hypothetical Considerations

Hypothetical considerations that can be read from the
time changes and gradient trends include:

– The Ever-Changing Flow of Information: These
maps show how rapidly information spreads
through social networking sites and news media
to influence social opinion. The more rapid the
flow of information, the more rapidly social opin-
ion can change.



Fig. 5: CDF of Mean Diffusion Scores �,⌫, ⇠C = 1000

– Impact of Filter Bubbles: Areas of rapid change
in opinion may represent points where filter bub-
bles burst or, conversely, new bubbles are formed.
This may capture the moment when beliefs that
are reinforced within a particular community are
challenged by outside information.

– Gradients and Social Conflict: Steep gradients
seen between some opinions indicate areas of par-
ticularly active social conflict and debate, and these
represent situations where conflicts of opinion are
likely to occur.

From Figure 5

(1) Characteristics of Spatial Distribution

– Mean Diffusion q�: The distribution extends
longer to the right, suggesting that this opinion
class may be more widely and uniformly dis-
tributed than the other two.

– Mean Diffusion q⌫: The CDF rises sharply, sug-
gesting that opinion B is concentrated in a partic-
ular area.

– Mean Diffusion q⇠ : This curve indicates that
opinion C is somewhat widely diffused, but not
as widely as A.

(2) Information Propagation and Feedback Tendency

Information seems to propagate most efficiently within
Opinion q�. Information propagates within a relatively
narrow range for q⌫ and q⇠ , and the feedback loop may
be strong within those ranges.

(3) Tendency of internal judgment conditions

The degree of diffusion of each opinion class may be
related to the internal judgment process by which indi-
viduals or groups form or change their opinions based on
new information; q� may indicate more open judgment
conditions, while q⌫ and q⇠ may indicate more strict or
limited judgment conditions.

(4) Parameters for mixing of opinions

Parameters that control opinion mixing may be inferred
from the degree of overlap in diffusion scores between
different opinion classes. For example, the area where
the q� and q⇠ curves overlap indicates the point where
opinion mixing occurs.

(5) Trend of phase boundary between filter bubble
and non-bubble areas

Areas where the CDF rises sharply indicate that fil-
ter bubbles are likely to be present and information
is spreading rapidly within those bubbles. Flat areas
may indicate slow propagation of information outside
the bubbles.

(6) Dynamics trends when different opinions come
into contact

The dynamics when different opinions come into con-
tact are more pronounced at the point where the curves
intersect. This point indicates the point where the differ-
ent opinion classes are diffused to the same degree and
interaction is likely to occur.

While this CDF graph provides important insights into
the degree of opinion diffusion and how it proceeds, it
should be kept in mind that these interpretations are hy-
pothetical without a specific social context or additional
data.

Social Discussion

Assumptions of the Speech Case

– Mean Diffusion A (widespread diffusion):
Speech or arguments that are widely accepted in
society, such as the growing concern for environ-
mental protection or health, may fit this pattern.
Over time, the theme shows a certain resonance
with almost all social groups.



– Mean Diffusion B (Concentration in a Specific
Domain): Discourse related to a niche hobby or
specific ideology is expected to be rapidly shared
within a relatively narrow cluster. For example,
information related to a particular subculture or a
particular political belief.

– Mean Diffusion C (limited diffusion): More
widely diffused but not as widespread as A, this
might include new scientific discoveries or limited
regional interests.

Trends as Time-Varying

– Clusters that grow over time: Over time, a par-
ticular opinion or topic may gradually gain social
acceptance. For example, a new advance in tech-
nology or a cultural trend may gradually gain main-
stream acceptance.

– Rapid diffusion: A social or cultural event (e.g.,
a scandal or urgent news story) can spread rapidly
within a particular community, possibly causing a
rapid rise, such as Mean Diffusion B.

Trends in Information Diffusion (Allen-Kahn Term)

– Information homogenization: Diffusion patterns
such as Mean Diffusion A suggest that informa-
tion is spread evenly over a wide area and accepted
by diverse communities. In this case, the Allen-
Kahn term can indicate a tendency for information
to be exchanged among different clusters and ho-
mogenized over time.

– Localized information enhancement: The Mean
Diffusion B pattern indicates a tendency for in-
formation to be locally enhanced within a given
community. The Allen-Kahn term may indicate
that information exchange within such clusters is
very active, but limited between clusters.

4. Conclusion

In this paper, we:

(1) Calculate the interaction energies at the phase in-
terfaces:

interface_energyA , interface_energyB , interface_energyC

(2) Social effects:

social_termA , social_termB , social_termC

(3) Application of confirmation bias:

bias_termA , bias_termB , bias_termC

(4) Applying rigidity of opinion:

rigidity_termA , rigidity_termB , rigidity_termC

(5) Taking into account the effect of filter bubbles:

bubble_termA , bubble_termB , bubble_termC

From Figure 6

We would like to discuss the results from the CDF of
. . .

– Characteristics of Spatial Distribution
* Interface Energy (interaction en-

ergy at the phase interface):
Looking at the CDF for Group 1,

Interface EnergyA , Interface EnergyB ,

and Interface EnergyC

are similar, and there is an overall
distribution with high score val-
ues. This may mean that the en-
ergy at which different opinion
clusters interact is high and that
there is high friction of opinions
between clusters.

(1) Information Propagation and Feedback Ten-
dency

– Social Term (Social Influence): In the CDF of
Group 2, Social TermA shows a slower rise
in CDF than the other two, indicating less
overall social influence; Social TermB rises
very rapidly, which may mean strong informa-
tion feedback in some groups; Social TermC
is similar to Social TermB , but and is rising
slightly more slowly.

(2) Trends in Internal Decision Conditions
– Bias Term (Confirmation Bias): In the Group

3 CDF, Bias TermA rises most slowly, sug-
gesting the least fixed nature of opinions,
while Bias TermB and Bias TermC rise very
steeply, which may indicate a high presence
of confirmation bias in the group.

(3) Parameters Controlling for the "Mixedness" of
Opinions

– Rigidity Term (Rigidity of Opinions): The
CDFs for Group 4 are related to the Rigid-
ity Term: the CDF for Rigidity TermA is



the flattest, indicating that opinions are flex-
ible and tend to mix; Rigidity TermB and
Rigidity TermC are very steep, meaning that
opinions are more rigid and less likely to mix.
To calculate the parameters that control mix-
ing, we need to quantify the range of score val-
ues where information is actively exchanged
based on the shape of these CDFs.

(4) Information Exchange Between Filter Bubble
and Non-Bubble Regions

– Bubble Term (Effect of Filter Bubble):
In the Group 5 CDF, Bubble TermA and
Bubble TermC almost overlap, indicating that
information bubbles are similar within each
cluster; Bubble TermB shows a slightly differ-
ent distribution than these, which may mean
that there are differences in information ex-
change between bubble and non-bubble re-
gions.

(5) Interaction Energy and Opinion Dynamics

– Looking at the CDF of interaction energy, the
dynamics when different opinions come into
contact shows that the energy between clus-
ters of opinions is high, as seen in Group 1,
suggesting a situation where conflicts and ar-
guments are likely to occur. High energy is
less likely to result in a change of opinion and
may intensify conflict.

Social Discussion

Interaction energy at the phase interface

This energy suggests how active the exchange of opin-
ions and beliefs is between different social clusters, or
how prone to conflict they are. For example, the phase
interface energy is likely to be high between groups that
are clearly divided, such as political left-right or reli-
gious conflicts. This means that when their opinions
come into contact with each other, either the debate be-
comes more active or the conflict intensifies.

Rigidity of Opinions

Rigidity of opinion indicates that opinions within a
group are unlikely to change. In the real world, this
is often seen in groups with strong ideologies and com-
munities with a strong sense of in-group solidarity. For
example, an extreme political group or a strict religious
community may fall into this category.

Fig. 6: Cumulative Distribution Function for Group ⇠⇡�

Score value �,⌫, ⇠C = 1000



Confirmation Bias

Confirmation b ias describes t he t endency o f individu-
als to accept only information that supports their beliefs 
and ignore or deny conflicting i nformation. Social me-
dia echo chambers, in which only voices of agreement 
reverberate, are a classic example of this phenomenon. 
Social divisions can deepen as people are exposed only 
to sources that reinforce their views.These factors play 
an important role in the dynamics between groups and in 
the formation of social discourse. For example, political 
debates during elections, social movements and protests, 
religious dialogues, and scientific discussions (e.g., de-
bates about vaccines or climate change) are all possible. 
Understanding how the above parameters are affected in 
these debates would be helpful in developing strategies 
to promote dialogue and reduce fragmentation.
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