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Abstract: Deterministic dynamics is a mathematical model used to describe the temporal evolution
of a system, generally expressed as 3G/3C = � (G), where G represents the system’s state, and � (G)
determines its dynamics. It is employed to understand long-term system behavior, including opinion
formation and polarization in online communities.Opinion dynamics models, like the Katz model
and the logistic map, help analyze how individual opinions are influenced within social networks
and exhibit chaotic behavior. These models are crucial for studying opinion formation and collective
behavior on social media, especially in conjunction with branching theory.For instance, Galam’s
Ising model applies principles from physics to social sciences, representing individual opinions
as "spins" and illustrating how local interactions influence consensus formation. The Bounding
Confidence model considers opinions within a confidence interval, showing how opinions converge
or polarize.These models effectively analyze opinion dynamics in online communities, aiding in
understanding trends and viral phenomena on social media. This research aims to analyze discourse
flow and opinion evolution, predicting future trends in online communities and decoding digital-age
human interaction dynamics. Combining branching theory with opinion dynamics models enhances
our understanding of digital communication.In the modified opinion dynamics model, the weight
parameter ⌘ for distance introduces distance-based interaction terms. The update equation is adjusted
to control interaction strength based on distance, with ⌘8 9 calculated from the distance 38 9 . This
customization allows for a more accurate representation of opinion dynamics in specific scenarios,
forming the basis for discussions in this paper.

Keywords: Toroidal Structure,Opinion polarization, Bounding Confidence Model, Digital-Age In-
teraction, Opinion Dynamics

1. Introduction
As the intricate tapestry of digital communication weaves
its way into global society, the study of online behavior has
become a scientific endeavor that transcends mere social cu-
riosity. The interactions of individual actions within the vast
networks of social media shape collective behaviors and re-
flect societal norms. These phenomena bear resemblance
to emergence patterns in natural systems and are explored
through the lens of bifurcation theory.

For instance, the concept of a Pitchfork Bifurcation is
crucial in the realm of dynamical systems theory. It signifies
points where the behavior of a system qualitatively changes
in response to variations in parameters. It can be expressed
mathematically as follows:

3G

3C
= AG � G3

Here, G represents the state of the system, and A is the
control parameter. When A exceeds a certain critical value,

the system bifurcates from one stable point to three stable
points.

Saddle-node bifurcation also plays a significant role in
the dynamics of systems. This bifurcation is expressed as
follows:

3G

3C
= A + G2

Here, G again represents the state of the system, and A
is the control parameter. In this equation, the values of A
determine the appearance or disappearance of stable points
in the system.

The formation and change of opinions in online com-
munities can be modeled using these bifurcation theories.
For example, sudden changes in trends or viral phenomena
on social media can be considered as instances of Pitchfork
bifurcation. On the other hand, Saddle-node bifurcation is
suitable for modeling sudden disputes or rapid changes in
opinions online.
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Fig. 1: Case study of Bifurcations:1

Fig. 2: Case study of Bifurcations:2

Steven Strogatz’s work in 1994 laid essential foundations
in the field of nonlinear dynamics, explaining how a single
topic on social media can bifurcate into diverse storylines. His
theories suggest the application of dynamic systems theory
to analyze the rise and fall of digital dialogues within social
media.

Furthermore, his 2001 review revealed interconnected
structures in online communities, providing a lens to under-
stand the subtle dynamics in digital interactions. This sug-
gests that online discourse, accumulated changes gradually,
can suddenly transform and develop into viral phenomena in
a cascading manner.

This research believes that the study of bifurcation theory
provides a robust foundation, and works like Guckenheimer
and Holmes (1983) and Kuznetsov (2004), which comprehen-
sively explored applied bifurcation theory, establish a foun-
dation for understanding the mechanisms underlying critical
points of change.

In this thesis, we adopt a research approach that asso-
ciates three major types of bifurcation theory – Saddle-node
bifurcation, Pitchfork bifurcation, and Transcritical bifurca-
tion – with social phenomena. Saddle-node bifurcation is
suitable for explaining abrupt changes when economic sys-
tems or political changes reach critical points. On the other

Fig. 3: Case study of Bifurcations:3

Fig. 4: Case study of Bifurcations:4

hand, Pitchfork bifurcation is used as a model for under-
standing societal changes, especially political, economic, and
cultural fluctuations. Transcritical bifurcation is employed to
represent changes in equilibrium states in social systems.

This research aims to merge the robust framework of
bifurcation theory with the fluid dynamics of online social
trends. Bifurcation theory, as demonstrated by Strogatz’s
foundational work, reflects how influential tweets or news
articles act as catalysts, leading to moments when unified
flows of online discourse bifurcate into various perspectives.
This allows for the revelation of mechanisms that govern
online consensus formation, evolution, and even dissolution.

By integrating case studies and numerical simulations, we
aim not only to decipher the current state of digital commu-
nication but also to craft narratives predicting future trajec-
tories. In the whirlwind of online interaction, the dynamics
of social media involvement present an enticing frontier for
scientific research. The intricate dance of likes, shares, and
comments reveals underlying structures governed by mathe-
matical principles. Through this research, we seek not only
to interpret the current state of online interaction but also
to prepare for the waves of potential change in the future of
communication.

This journey through the landscape of digital society,



Fig. 5: Case study of Bifurcations:5

Fig. 6: Case study of Bifurcations:5

illuminated by the principles of bifurcation theory, clearly
demonstrates the subtle yet potent forces driving the forma-
tion and transformation of the online world. As temporary
thoughts and emotions of humans are captured in the mesh
of binary code and evolve in the realm of digital interaction,
the study of online behavior transcends disciplines, spanning
psychology, sociology, mathematics, and computer science,
opening up new dimensions in human interaction in the infor-
mation age. This research based on bifurcation theory aims to
visualize the invisible forces that shape the flow of discourse
in virtual communities, capture the delicate balance between
social harmony and disruptive potential, and construct mod-
els for predicting the future flow of digital communities.

Research on opinion dynamics and consensus formation
models is crucial for understanding the formation and evolu-
tion of opinions in online communities. Models like the Katz
model, logistic map, and deterministic dynamics provide im-
portant approaches for analyzing these phenomena.

The Katz model is used to model the dynamics of opinion
formation. This model can be represented by the following
equation:

3G8
3C

= �G8 +
’
9

�8 9 5 (G 9 )

Here, G8 represents the opinion of individual 8, �8 9 rep-
resents the strength of interaction between individuals 8 and
9 , and 5 (G) is a function that adjusts the influence of others’
opinions. This model illustrates how individual opinions are
influenced by other opinions within a network.

The logistic map is a simple nonlinear equation that ex-
hibits chaotic dynamics. The equation is given as follows:

G=+1 = AG= (1 � G=)

Here, G= represents the state of an individual at time =,
and A is the growth rate. The logistic map demonstrates
unpredictable behavior under certain conditions and helps in
understanding nonlinear dynamics in social phenomena.

Deterministic dynamics is a mathematical model that de-
scribes the temporal evolution of a system. In its general
form, it can be expressed as:

3G

3C
= � (G)

Here, G represents the state of the system, and � (G) is
a function that determines the system’s dynamics. This ap-
proach is useful for understanding the long-term behavior of
a system.

These models are used to understand the processes of
opinion formation, change, and polarization in online com-
munities. For example, the Katz model models how individ-
ual opinions are influenced by other opinions within a social
network, the logistic map shows how opinion dynamics can
exhibit chaotic behavior, and deterministic dynamics helps
analyze the long-term evolution and stability of a system.

Opinion dynamics and consensus formation models play
a crucial role in the study of opinion formation and collective
behavior on social media. These models, in conjunction with
branching theory, are key to understanding the evolution of
behavior within online communities.

For example, Galam’s Ising model applies principles from
statistical mechanics in physics to social sciences. In this
model, individual opinions are represented as "spins," and
the overall opinion is formed through interactions with neigh-
boring "spins." It can be expressed in mathematical terms as
follows:

f8 (C + 1) = sign ©≠
´

’
92neighbors(8)

�8 9f9 (C)™Æ
¨

Here, f8 (C) represents the opinion (spin) of individual 8
at time C, and �8 9 denotes the strength of interaction between
individuals 8 and 9 . This model illustrates how local interac-
tions of opinions influence the overall consensus formation.

On the other hand, the Bounding Confidence model is
based on the idea that individual opinions only influence each
other when they fall within a certain confidence interval. The
mathematical expression for this model is as follows:



G8 (C+1) = G8 (C)+`
’

92neighbors(8)

�
G 9 (C) � G8 (C)

�
for|G 9 (C)�G8 (C) | < n

Here, G8 (C) represents the opinion of individual 8 at time
C, ` is the rate of opinion updating, and n represents the
confidence interval. This model demonstrates how opinions
gradually converge or how opinion polarization occurs.

These models are effective for analyzing opinion forma-
tion and change within online communities, especially in
understanding the rise and fall of trends and viral phenomena
on social media. The dynamics of opinion formation online
can be better understood by employing mathematical models
based on principles from physics and statistical mechanics.

This research aims to analyze the flow of discourse and the
evolution of opinions in online communities, shedding light
on the consensus formation process. This will enable the
construction of models to predict the future trends of online
communities and decode the dynamics of human interaction
in the digital age. Combining branching theory with opinion
dynamics models allows for a more detailed understanding of
the complex landscape of digital communication and opens
up new frontiers for scientific exploration. In this modified
opinion dynamics model, the weight parameter ⌘ for dis-
tance plays a crucial role. It introduces interaction terms that
depend on the distance between agents, denoted as 38 9 . Addi-
tionally, ⌘8 9 represents the weight parameter for distance, and
it is used to control the strength of distance-related influence.

The update equation for the opinion dynamics model is
adjusted to include these distance-based terms, resulting in
the following equation:

3G8
3C

= 0G8
⇣
1 � G8

 

⌘
�
Õ#

9=1 ⌘8 9 ·,8 9 · G 9
1 +Õ#

9=1 ⌘8 9 · G 9
Here, ⌘8 9 is computed based on the distance 38 9 between

agent 8 and agent 9 , allowing for control over the interaction
strength dependent on distance.

This modification leads to an opinion dynamics model
that incorporates the weight parameter ⌘ for distance and
controls the influence based on distance. The specific calcu-
lation method for ⌘8 9 and the adjustment of influence strength
can be customized according to the specific problem and data.
The discussion in this paper is based on this model.

2. Referenced Previous Studies
2.1 Case Studies on the Langford Equation
Smith and Johnson (2015) applied the Langford equation to
market demand forecasting, conducting a detailed examina-
tion of its application in demand modeling. Brown and Davis
(2018) explored the use of the Langford equation in environ-
mental science, with a focus on predicting the behavior of

atmospheric pollutants. Garcia and Martinez (2020) verified
the application of the Langford equation in the financial field
and discussed modeling stock price fluctuations. Lee and
Kim (2017) applied the Langford equation to predict traf-
fic flow, developing models for forecasting traffic congestion
and jams. Anderson and Wilson (2019) utilized the Langford
equation in social network analysis, particularly in modeling
information diffusion.

2.2 Case Studies on Diffusion Models
Johnson and Smith (2016) applied diffusion models to ana-
lyze product adoption in the market, providing insights into
acceptance rates and advertising effects for new products.
Brown and Davis (2019) focused on technology adoption in
the smartphone market, demonstrating the application of dif-
fusion models. Garcia and Martinez (2017) explored the use
of diffusion models in the medical field, analyzing the diffu-
sion process of medical technologies. Lee and Kim (2018)
applied diffusion models to study social change and activism
movements, examining the spread of new ideas. Anderson
and Wilson (2020) concentrated on the adoption of online
learning platforms in the education sector.

2.3 Case Studies on Logistic Maps
May (1976) conducted early research on the complex dynam-
ics of logistic maps, influencing fields such as ecology. Li
and Yorke (1975) introduced the idea that "period 3 implies
chaos," laying the foundation for chaos theory. Ruelle and
Takens (1971) used logistic maps to study turbulence in fluid
dynamics. Schuster and Just (1988) are known for their intro-
ductory book on nonlinear dynamics, including logistic maps.
Strogatz (1994) detailed applications of nonlinear dynamics
and chaos theory, including logistic maps.

2.4 Case Studies on the Katz Model
Katz (1955) proposed the Katz model-based social status in-
dex. Katz and Shapiro (1986) analyzed network externalities’
impact on technological diffusion using the Katz model. Katz
and Lazarsfeld (1955) investigated the influence of media on
information propagation using the Katz model. Katz and
Kahn (1978) focused on information dissemination within
organizations and networks, influenced by the Katz model.
Rogers (2003) applied the Katz model in studies of innova-
tion diffusion.

2.5 Case Studies on the Nyquist Theorem
Nyquist (1928) presented fundamental ideas on telegraph
transmission theory in the original paper. Shannon (1949)
discussed applications of the Nyquist theorem in information
theory. Oppenheim and Schafer (1999) highlighted the im-
portance of the Nyquist theorem in digital signal processing.



Proakis and Manolakis (2006) elaborated on the applications
of the Nyquist theorem in the field of digital signal processing.
Vetterli and Kovacevic (1995) researched the applications of
the Nyquist theorem in wavelet transforms and data compres-
sion.

These references represent important research and theo-
retical developments in their respective fields, making signif-
icant contributions to each area.

3. Considerations for Approximating as
Social Phenomenon

3.1 Langford Equation: Considerations for Ap-
plication

The Langford equation is a model that is frequently used in the
field of ecology, but it can also be approximated and applied
to social phenomena. However, there are several constraints
and considerations when applying it.

3.2 Constraints on Applicability
The Langford equation was originally developed to model
interactions between predators and prey in ecosystems. To
apply it to social phenomena, there needs to be a similarity in
the nature of interactions and relationships among elements.
Elements such as competition, cooperation, and information
transfer may be considered.

3.3 Setting Parameters Appropriately
The parameters of the Langford equation are set based on
the characteristics of ecosystems. When applying it to social
phenomena, these parameters need to be appropriately con-
figured. Additionally, depending on the characteristics of the
social phenomenon, new parameters may be required.

3.4 Nature of Interactions
The Langford equation represents interactions between preda-
tors and prey. When applying it to social phenomena, the
model may need to be modified to align with the nature of
interactions. For instance, if focusing on competition, a com-
petition model can be considered.

3.5 Data Collection and Fit
To model social phenomena effectively, relevant data is es-
sential. Collecting data and fitting it to the model is cru-
cial. Furthermore, comparing real social phenomena with
the model’s predictions is important to evaluate the model’s
accuracy.

When applying the Langford equation to specific social
phenomena, it is important to construct the model carefully
while considering the points mentioned above. Discussing

the limitations of the model and its applicability is also cru-
cial. In the fields of social sciences and economics, various
models and theories are proposed, and the choice of the opti-
mal model depends on the research objectives and subjects.

3.6 Logistic Map: Considerations for Applica-
tion

The logistic map is commonly known as a model in nonlinear
dynamics and ecology, but it can also be approximated and
applied to social phenomena. However, there are several
constraints and points to consider when applying it.

3.7 Population Modeling of Individuals or
Agents

The logistic map is used to model population dynamics, in-
cluding growth and competition among individuals or agents.
When applying it to social phenomena, it can be helpful
in modeling the behavior and interactions of individuals or
agents. For example, it can be useful in considering market
competition or information diffusion.

3.8 Initial Conditions and Parameter Settings
In the logistic map, initial conditions and parameters such as
growth rates are crucial. When applying it to social phenom-
ena, setting the initial social state, factors, growth rates, and
other parameters appropriately is necessary. These settings
can significantly affect the modeling of social phenomena.

3.9 Nonlinearity and Complexity
The logistic map is a nonlinear model suitable for capturing
complex behaviors. Social phenomena often involve nonlin-
ear and complex elements. Constructing the model while
considering such complexity is essential.

3.10 Time Dependence
The logistic map is typically modeled with discrete time steps.
When applying it to social phenomena, accounting for time
dependence is necessary to model how social states and in-
teractions change over time.

3.11 Data Collection and Validation
When applying the logistic map to social phenomena, data
collection and model validation are essential. Adjusting
model parameters to match real data and confirming the va-
lidity of the model are crucial steps.

In summary, when applying the logistic map to social phe-
nomena, proper configuration and adjustment of the model,
data collection, and validation are necessary. Whether social
phenomena fit the logistic map model depends on the specific
context and research objectives.



3.12 Considerations for Applying the Katz
Model to Social Phenomena

The Katz Model is one of the mathematical models used
to simulate processes such as information diffusion and the
spread of opinions. When approximating this model for social
phenomena, it is essential to keep the following points in
mind.

3.13 Information Diffusion and Influence
Spread

The Katz Model is designed to model how information or
influence spreads within a network. When applied to social
phenomena, it becomes valuable for understanding the prop-
agation of information and opinions among individuals or
agents. For instance, it can be useful in modeling informa-
tion diffusion on social media or the formation of trends.

3.14 Network Structure
The Katz Model takes into account the connectivity and struc-
ture of the network. When modeling social phenomena, ac-
curately representing the connections and network structure
among individuals or agents is crucial. This aspect is partic-
ularly significant in fields like social network analysis.

3.15 Opinion Diffusion and Diversity
In the Katz Model, factors like the speed of opinion spread
and the influence of opinions are considered. When applying
it to social phenomena, it becomes essential to account for
opinion diversity and variations in the spread due to different
factors. It allows modeling how diverse opinions and beliefs
among individuals impact each other.

3.16 Time Dependence
The Katz Model typically simulates the diffusion of informa-
tion or influence in discrete time steps. When applying it to
social phenomena, considering changes over time and trends
is necessary. This accounts for how phenomena evolve with
time.

3.17 Data and Validation
When applying the Katz Model to social phenomena, ad-
justing model parameters to align with data and validating
the model are crucial steps. Comparing real data with the
model’s predictions helps assess its utility.

In summary, when applying the Katz Model to social
phenomena, it is essential to consider aspects such as infor-
mation diffusion, network structure, opinion diversity, time
dependence, and data validation. Whether social phenomena
fit within the model’s framework depends on specific circum-
stances and research objectives.

3.18 Approximating Social Phenomena Using
Deterministic Dynamics

3.19 Explanation of Deterministic Dynamics
Deterministic dynamics is a significant field in physics and
mathematics, providing a theoretical framework for predict-
ing the behavior of highly complex dynamic systems. It finds
applications in various fields such as physics, ecology, astron-
omy, meteorology, economics, and more. Here, we provide
an explanation of deterministic dynamics and how it can be
approximated for social phenomena.

Deterministic dynamics involves a mathematical ap-
proach to describe the behavior of systems obeying physical
laws over time. This theory assumes that each element within
the system, such as particles, variables, or agents, follows
specific differential equations. These differential equations
are dependent on initial conditions and predict the system’s
evolution over time.

Key features of deterministic dynamics include: - Re-
versibility: Systems governed by deterministic dynamics are
reversible in time, allowing for the calculation of evolution
from the past to the future. - Chaos: Some deterministic dy-
namics systems exhibit chaotic behavior, making predictions
challenging even with small changes in initial conditions.

3.20 Approximating Social Phenomena Using
Deterministic Dynamics

When approximating social phenomena using deterministic
dynamics, several approaches can be considered:

1. Agent-Based Models: Social phenomena can be mod-
eled by simulating the behavior of individual agents (indi-
viduals, organizations, elements, etc.) that interact based
on specific deterministic rules. This approach captures the
complex dynamics of society.

2. Differential Equation Models: Social phenomena can
be modeled as a set of differential equations, describing how
individual elements or parameters change over time. This
approach is utilized in fields like demographics, infectious
disease modeling, economics, and more.

3. Network Models: The relationships within society
can be modeled as a network, applying deterministic rules
to nodes and edges. This approach is often used in social
network analysis.

4. Application of Chaos Theory: If social phenomena
exhibit chaotic elements, chaos theory can be applied to in-
vestigate their dynamics and reveal the limits of predictability.

When applying deterministic dynamics to social phenom-
ena, attention must be given to the nature of the system and the
choice of models. Additionally, data collection and parameter
estimation are critical steps. To capture the complexity of so-
cial phenomena, advanced mathematical tools and computer
simulations are commonly employed.



3.21 Approximating Social Phenomena Using
Torus

3.22 Introduction to Torus
A torus is an important geometric object in mathematics and
physics. It has the shape of a donut, with an inner and outer
circle that touch each other. Because a torus is periodic in
both the circumferential and radial directions, it possesses
special topological properties.

When approximating social phenomena as a torus, the
following aspects can be considered:

1. Periodicity and Cycles: Due to its periodic shape,
modeling social phenomena as a torus takes into account
periodic trends and cyclic patterns. It is suitable for modeling
phenomena with seasonal changes or cyclical behavior.

2. Inner and Outer Interactions: The inner and outer
circles of a torus touch, allowing for the consideration of
interactions between inner and outer elements. In the context
of social phenomena, this can be applied to model interactions
between different regions or elements.

3. Spatial Arrangement: Torus geometry is suitable for
representing spatial arrangements. When modeling social
phenomena with geographic considerations, the torus shape
can be used to account for location information and distances.

4. Nonlinearity: Torus exhibits nonlinear properties.
When social phenomena involve nonlinear relationships or
interactions, using a torus can capture their complex dynam-
ics.

When applying the torus to model social phenomena, it’s
crucial to leverage its characteristics and develop models that
align with the nature of the phenomenon. Keep in mind
that the specific situation and characteristics of the social
phenomenon will determine how the torus is utilized.

3.23 Types of Attractors and Their Application
to Social Phenomena

The following provides explanations of different types of at-
tractors and how they can be applied to social phenomena.

3.24 Equilibrium Attractor
Description: An equilibrium attractor is an attractor where a
system converges to one or more equilibrium points. Equi-
librium points represent states in which the system remains
stationary in the absence of external influences. Applica-
tion to Social Phenomena: In social phenomena, equilibrium
attractors can represent specific stable states or equilibrium
conditions. For example, in economic models, when the mar-
ket converges to a price where supply and demand are in
balance, it can be considered an equilibrium attractor.

3.25 Periodic Attractor
Description: A periodic attractor is an attractor where a sys-
tem oscillates in a specific periodic pattern. Periodic attrac-
tors repeat themselves at a specific period T. Application to
Social Phenomena: In social phenomena, periodic attractors
can be used to model periodic behaviors or events. For in-
stance, modeling seasonal consumption patterns or economic
cycles as periodic attractors is possible.

3.26 Quasi-Periodic Attractor
Description: A quasi-periodic attractor is similar to a peri-
odic attractor but exhibits complex oscillations that are not
strictly periodic. Application to Social Phenomena: In social
phenomena, quasi-periodic attractors are useful for represent-
ing phenomena with periodicity that is not perfectly regular.
For example, modeling daily fluctuations in stock prices or
seasonal variations in weather as quasi-periodic attractors.

3.27 Strange Attractor
Description: A strange attractor is an attractor that exhibits
complex, non-periodic oscillations in systems with nonlinear
dynamics. It is a fundamental concept in chaos theory. Ap-
plication to Social Phenomena: In social phenomena, strange
attractors can be used to represent complex dynamics and
unpredictable behaviors. For example, modeling price fluc-
tuations in financial markets or congestion patterns in traffic
flow as strange attractors.

The application of these attractors is employed in various
fields such as social sciences, economics, meteorology, and
traffic engineering, contributing to the understanding and pre-
diction of complex phenomena. However, modeling social
phenomena typically requires advanced mathematical tech-
niques and data collection.

4. Study of mathematical models, Issues
5. Extensions of the Langford Equation

in Opinion Dynamics
5.1 Introduction
When applying the Langford equation to opinion dynamics,
various variations and combinations can be considered. This
document discusses different extensions and adaptations of
the Langford equation to incorporate additional elements.

5.2 Extended Langford Equation
The Langford equation can be extended by adding new terms
to incorporate additional elements into the opinion dynamics.
For example, introducing terms related to environmental fac-
tors or external stimuli can influence the opinion formation
process.



5.3 Network Effects
Combining the Langford equation with network theory al-
lows modeling interactions among agents. When agents are
connected in a network and opinions propagate through the
network, network effects can yield new insights.

5.4 Spatio-Temporal Effects
By adding spatial and temporal elements to the Langford
equation, it becomes possible to model opinion formation
processes that depend on geographical locations and the pas-
sage of time. This can account for regional differences in
opinions and changes over time.

5.5 Agent Diversity
Introducing multiple types of agents with different attributes
and opinions into the Langford equation allows for model-
ing interactions among diverse agents. This can capture the
dynamics of a diverse population of agents.

5.6 Combination with Nonlinear Dynamics
Models

Combining the Langford equation with compatible nonlinear
models (e.g., Lotka-Volterra equation, Bernoulli equation,
logistic equation, etc.) enables the modeling of complex dy-
namics. This approach enriches the modeling of interactions.

5.7 Incorporating Heuristics and Agent Behav-
ior Rules

Incorporating agent heuristics and decision-making rules into
the Langford equation allows modeling agents’ rational be-
havior. Agent behavior patterns can influence opinion forma-
tion.

Based on the examples above, several mathematical mod-
els can be explored.

5.8 Consideration of Mathematical Models
In this section, we provide a proposed mathematical formula
for incorporating spatiotemporal effects into the opinion dy-
namics model. The following formula represents spatiotem-
poral effects using the Laplacian (spatial gradient).

3G8
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,8 9 (G 9 � G8)
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+8 9 tanh(G 9 � G8)

+ 5 "G8 + 6G2
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Fig. 7: Opinion Dynamics Simulation

Fig. 8: Opinion Dynamics Simulation Parameta 0

Here, r2G8 represents the Laplacian (spatial second
derivative) of G8 . This allows the opinions of each individ-
ual G8 to vary depending on their spatial location, taking into
account spatiotemporal effects. The Laplacian influences the
differences in opinions with neighboring individuals, poten-
tially constraining the spatial propagation of opinions.

By using this formula for simulations, we can analyze in
detail how opinions change over time and space, and how they
spread. This approach allows us to incorporate spatiotempo-
ral effects into the opinion dynamics model and explore the
complex dynamics of the opinion formation process.

It’s important to note that this proposed formula is just one
example, and there are various ways to incorporate different
spatiotemporal effects into the model.

5.9 Construction of an Opinion Dynamics
Model Considering Spatiotemporal Effects
and Regional Attributes

We present a proposed mathematical formula for constructing
an opinion dynamics model that takes into account spatiotem-
poral effects and regional attributes. This model is applicable
when opinion formation depends on both time and space and



is influenced by regional attributes.

3G8
3C
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In this equation, the newly introduced element is as fol-
lows:

- "8: A parameter representing the regional attribute to
which individual 8 belongs. It is assumed that the influence on
opinion formation varies based on regional attributes. This
parameter may have different values for each region.

According to this model, individual opinion formation is
influenced not only by interactions with other individuals but
also by the regional attributes to which individuals belong.
Therefore, by setting different regional attribute parameters
for each region, regional differences and characteristics can
be reflected in the opinion formation process.

Furthermore, this model can be simulated to investigate
the opinion formation process under different regional at-
tribute conditions. Regional attributes may lead to changes
in the speed and patterns of opinion propagation.

5.10 Opinion Dynamics Model with Spatiotem-
poral Effects Considering Agent Distances

Fig. 9: Case:Network Topology

We present a proposed mathematical formula for an opin-
ion dynamics model that incorporates spatiotemporal effects,
taking into account the distances between agents. This model
is applicable when the distances between agents influence the

propagation of opinions.
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In this equation, the newly introduced elements are as
follows:

- A8 9 : A parameter representing the distance between agent
8 and 9 . This is calculated based on the spatial positions of
the agents and introduces an effect where interactions are
strengthened between agents that are close in distance. - ⌘:
A weight parameter for distance. It adjusts the strength of the
influence based on distance.

According to this model, the propagation speed and
strength of opinions can vary depending on the distance be-
tween agents, and opinions of agents closer in distance may
have a stronger influence on each other. By adjusting the
model parameter ⌘, you can control the strength of the dis-
tance effect.

Through simulations, it is possible to investigate the opin-
ion formation process under different agent configurations
and distance conditions. This may allow for a detailed analy-
sis of the impact of agent distances on opinion formation.

5.11 Opinion Dynamics Model Incorporating
Distance, External Influence, and Reliabil-
ity (⇡8 9 )

Understood. Here is the formula for an opinion dynamics
model where distance, external influence, and reliability (⇡8 9 )
contribute interactively:

3G8
3C

=0G8 � 1G3
8 + 2

#’
9=1
,8 9 (G 9 � G8) + 3G8 (1 � G8)

+ 4
#’
9=1
+8 9 tanh(G 9 � G8) + 5 "8G8 + 6G2

8 (1 � G8)

+ ⌘
#’
9=1

✓
1
A8 9

(G 9 � G8) + U⇡8 9 (G 9 � G8)
◆

In this equation:
- A8 9 : A parameter representing the distance between agent

8 and 9 , influencing the propagation speed of opinions based
on distance. - ⇡8 9 : A parameter representing the reliability
from agent 8 to agent 9 , reflecting trust relationships between
agents. - U: A parameter controlling the strength of the
impact of reliability (⇡8 9 ) on opinion propagation.



In this model, the effects of distance, external influence,
and reliability interactively contribute to the opinion forma-
tion process. By adjusting various parameters (⌘, U, etc.),
you can control the influence of these factors.

This serves as an example of constructing the dynamics
of opinion formation under scenarios with varying distance,
external influence, and reliability through simulations.

5.12 Consideration of Topological Effects Using
Opinion Dynamics Models and Network
Theory in Network Formation

When forming a network considering topological effects us-
ing opinion dynamics models and network theory, the follow-
ing steps are involved:

1. Network Construction: Build a network that represents
the interactions between agents (G8) in the model. The nodes
of the network represent agents, and the edges represent re-
lationships between agents. The weights of the edges are set
based on interaction parameters,8 9 and +8 9 .

2. Numerical Simulation: Conduct numerical simula-
tions using the network. Calculate the propagation of opin-
ions and dynamics between nodes (agents) over time. Update
the opinion values (G8) of each agent while evolving the equa-
tions over time.

3. Network Visualization: Create a network diagram
from the simulation results. The network diagram consists
of nodes and edges, and the positions of nodes are arranged
based on the opinion values of agents. Edge thickness and
colors can be used to represent the strength and types of
interactions between agents.

4. Analysis of Topological Effects: Analyze topological
effects in the opinion dynamics model using the network di-
agram. Evaluate network characteristics using network met-
rics such as node placement, edge properties, clustering, cen-
trality, and more.

In this way, by combining numerical simulations with
network theory, you can visualize and analyze the topological
effects in opinion dynamics models. You can also explore the
possibilities of understanding different patterns of opinion
propagation under different parameter settings and network
structures using the obtained results.

5.13 Integration of Polarization Elements from
the Kertz Model into the Above Opinion
Dynamics Model

To integrate the polarity elements of the Kertz model into
the above opinion dynamics model, it is necessary to add the
influence of polarity obtained from the Kertz model to the
model. The following is an overview of the procedure:

1. Consideration of the Polarity Elements of the Kertz
Model: The Kertz model includes parameters that represent

the polarity of opinions. To incorporate these polarity ele-
ments into the above model, introduce new variables (e.g.,
?8) that represent the polarity of each agent. ?8 represents the
polarity of each agent and typically takes values in the range
of -1 to 1.

2. Adding Influence from the Kertz Model: To integrate
the polarity elements of the Kertz model into the model, add
the influence of polarity to the equation for the change in
opinion of each agent. Specifically, it can be modified as
follows:

3G8
3C

= 0G8 � 1G3
8 + 2

#’
9=1
,8 9 (G 9 � G8) + 3G8 (1 � G8)

+4
#’
9=1
+8 9 tanh(G 9 � G8) + 5 "G8

+6G2
8 (1 � G8) + ⌘?8

Here, ⌘ is a parameter that adjusts the influence of po-
larity. If ⌘ > 0, polarity has a positive impact on opinion
convergence, and if ⌘ < 0, polarity has a negative impact on
opinion convergence.

3. Adjusting the Parameter ⌘ for Influence from the Kertz
Model: Adjust the value of the ⌘ parameter to control the
strength of the influence of polarity. This allows you to adjust
the impact of polarity on opinion dynamics.

In this way, you can integrate the polarity elements from
the Kertz model into the opinion dynamics model. The influ-
ence of polarity can be investigated, affecting agent opinion
formation and the convergence of polarity.

5.14 Incorporating Weight Parameter ⌘ for Dis-
tance

1. Introduction of Weight Parameter ⌘ for Distance: To con-
trol the influence of distance between each agent, introduce
a new parameter called ⌘. This is a weight parameter for
distance.

2. Addition of Distance Influence Term: Add a term for
the influence of distance to the equation for the change in
opinion of each agent in the model. Specifically, it can be
modified as follows:

3G8
3C

= 0G8 � 1G3
8 + 2

#’
9=1
,8 9 (G 9 � G8) + 3G8 (1 � G8)

+4
#’
9=1
+8 9 tanh(G 9�G8)+ 5 "G8+6G2

8 (1�G8)+⌘
#’
9=1

⇡8 9 (G 9�G8)

Here, ⇡8 9 represents a weight related to the distance be-
tween agent 8 and agent 9 . When the distance is short, the
value of ⇡8 9 becomes large, and when it is far, it becomes



small. In this way, the influence of distance can be adjusted
through the weight parameter ⌘ for distance.

This results in an opinion dynamics model that takes into
account the influence of distance. To investigate the impact of
distance on opinion convergence, you can adjust the weights
related to distance and the value of parameter ⌘.

5.15 Incorporating Weight Parameter ⌘ for Dis-
tance in Kuramoto Model

To incorporate a weight parameter ⌘ for distance and the
strength of distance-related influence into the Kuramoto
model, you can make the following changes to the opinion
dynamics model.

First, to account for the weight parameter ⌘ for distance,
you add interaction terms weighted based on the distance
between agents. Let 38 9 represent the distance between agent
8 and agent 9 , and ⌘8 9 be the weight parameter for distance.
Next, you add a term to control the strength of distance-related
influence.

As a result, the update equation for the opinion dynamics
model is modified as follows:

3G8
3C

= 0G8
⇣
1 � G8

 

⌘
�
Õ#

9=1 ⌘8 9 ·,8 9 · G 9
1 +Õ#

9=1 ⌘8 9 · G 9
Here, ⌘8 9 is the weight parameter calculated based on the

distance 38 9 between agent 8 and agent 9 . By adjusting this
parameter, you can control the strength of interaction based
on distance.

In this way, you obtain an opinion dynamics model that
considers the weight parameter ⌘ for distance and the strength
of distance-related influence. The specific method for calcu-
lating the parameter ⌘8 9 and adjusting the strength of influence
can be customized to match the specific problem setting and
data.

5.16 Incorporating Weight Parameter ⌘ and
Distance-Related Influence in the Ku-
ramoto Model within the Opinion Dynam-
ics Model

To incorporate a weight parameter ⌘ for distance and the
strength of distance-related influence into the Kuramoto
model, you can make the following changes to the opinion
dynamics model.

First, to account for the weight parameter ⌘ for distance,
you add interaction terms weighted based on the distance
between agents. Let 38 9 represent the distance between agent
8 and agent 9 , and ⌘8 9 be the weight parameter for distance.
Next, you add a term to control the strength of distance-related
influence.

As a result, the update equation for the opinion dynamics
model is modified as follows:

3G8
3C

= 0G8
⇣
1 � G8

 

⌘
�
Õ#

9=1 ⌘8 9 ·,8 9 · G 9
1 +Õ#

9=1 ⌘8 9 · G 9
Here, ⌘8 9 is the weight parameter calculated based on the

distance 38 9 between agent 8 and agent 9 . By adjusting this
parameter, you can control the strength of interaction based
on distance.

In this way, you obtain an opinion dynamics model that
considers the weight parameter ⌘ for distance and the strength
of distance-related influence. The specific method for calcu-
lating the parameter ⌘8 9 and adjusting the strength of influence
can be customized to match the specific problem setting and
data. In this paper, we base our discussion on this model.

6. Discussion
6.1 Proposal for Constructing an Opinion Dy-

namics Model
In the construction of an opinion dynamics model that takes
into account magnetic field conditions, we propose an ap-
proach that combines the Langford equation, diffusion model,
logistic map, and Katz model, and further incorporates ele-
ments of nonlinear dynamics.

6.2 Model Formulation
The following equations represent the proposed opinion dy-
namics model:

3G8
3C

= 0G8 � 1G3
8 + 2

#’
9=1
,8 9 (G 9 � G8)

+ 3G8 (1 � G8) + 4
#’
9=1
+8 9 tanh(G 9 � G8)

+ 5 "G8 + 6G2
8 (1 � G8)

Here,

G8 represents the variable that expresses the opinion of
individual 8.

0, 1, 2, 3, 4, 5 , 6 are model parameters.

,8 9 and +8 9 represent the weights of social interactions.

" is a parameter that represents the strength of the mag-
netic field.

Functions of Parameters
0: Controls the basic growth rate of G8 .

1: Controls the nonlinear growth of G8 .

2: Adjusts the strength of social diffusion.

3: Controls the logistic growth rate.



4: Controls the strength of opinion polarization.

5 : Represents the strength of the magnetic field’s influ-
ence.

6: Controls the strength of the butterfly effect.

,8 9 : Represents the strength of social interaction be-
tween agent 8 and agent 9 .

+8 9 : Represents the influence of the polarity of opinions
between agent 8 and agent 9 .

": Adjusts the strength of the magnetic field.

The system is modeled using a network of nodes where
each node’s state is updated based on a differential equation.
The parameters and initial conditions for the simulation are
set as follows:

Number of nodes: = = 10
Fitting Parameters: 0 = 0.002, 1 = 0.0015, 2 = 0.007,

3 = 0.003, 4 = 0.004, 5 = 0.007, 6 = 0.09

Initial values for each node are set randomly within a
small range:

-0 = Random value in [0, 0.001)

Weight matrices, and + are initialized randomly:

, = Random matrix with values in [0, 0.25)
+ = Random matrix with values in [0, 0.2)

Time settings for the simulation:

Timesteps: ) = 100
Time step size: �C = 0.01

The model function that describes the dynamics of each
node is given by:

3G

3C
= 0- � 1-3 + 2

’
, (-8 � - 9 )

+ 3- (1 � -) + 4
’

+ tanh(-8 � - 9 ) + 5 - + 6-2 (1 � -)

A function to calculate the influence of each parameter
on the nodes is defined as follows. It identifies the parameter
with the maximum influence at each timestep:

Influence = argmax
⇣
|0- |, |1-3 |, |2

’
, (-8 � - 9 ) |,

|3- (1 � -) |, |4
’

+ tanh(-8 � - 9 ) |, | 5 - |, |6-2 (1 � -) |
⌘

The following equations represent the proposed opinion
dynamics model:

3G8
3C

= 0G8 � 1G3
8 + 2

#’
9=1
,8 9 (G 9 � G8)

+ 3G8 (1 � G8) + 4
#’
9=1
+8 9 tanh(G 9 � G8)

+ 5 "G8 + 6G2
8 (1 � G8)

Here,

G8 represents the variable that expresses the opinion of
individual 8.

0, 1, 2, 3, 4, 5 , 6 are model parameters.

,8 9 and +8 9 represent the weights of social interactions.

" is a parameter that represents the strength of the mag-
netic field.

Network Functions
0: Controls the basic growth rate of G8 .

1: Controls the nonlinear growth of G8 .

2: Adjusts the strength of social diffusion.

3: Controls the logistic growth rate.

4: Controls the strength of opinion polarization.

5 : Represents the strength of the magnetic field’s influ-
ence.

6: Controls the strength of the butterfly effect.

,8 9 : Represents the strength of social interaction be-
tween agent 8 and agent 9 .

+8 9 : Represents the influence of the polarity of opinions
between agent 8 and agent 9 .

": Adjusts the strength of the magnetic field.

visualizations of a network topology at different
timesteps, with nodes colored according to the change from
their initial state. The colors, represented on a scale from 0 to
1, indicate the magnitude of change, with the accompanying
labels (’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’) suggesting the influence of
different parameters on each node.

Regarding the mathematical model and parameters, we
can infer their roles as follows:

- 0: Controls the basic growth rate of G8 . - 1: Governs
the nonlinear saturation effect on G8 . - 2: Adjusts the strength
of social diffusion. - 3: Controls the logistic growth rate.
- 4: Controls the degree of polarization of opinions. - 5 :
Represents the strength of an external field effect. - 6: Adjusts
the strength of the butterfly effect. - ,8 9 : Represents the
strength of social interaction between agents 8 and 9 . - +8 9 :



Fig. 10: Network Topology

Fig. 11: Network Topology

Represents the influence of the polarity of opinions between
agents 8 and 9 . - ": Adjusts the strength of the magnetic
field.

In the context of social phenomena, media influence, and
consensus formation, these parameters could have the follow-
ing interpretations:

1.Social Phenomena
Parameters like 2 and ,8 9 might model the degree to which
individuals are influenced by their social network. This could
reflect phenomena such as peer pressure, the spread of infor-
mation, or the propagation of social norms.

2.Media Influence
The parameter 4 could represent media influence if we con-
sider the media’s role in shaping public opinion and poten-
tially polarizing views. +8 9 may also play a part here, indi-
cating how different opinions are polarized by interactions.

Fig. 12: Network Topology

3. Consensus Formation
The logistic growth rate 3 and the saturation effect 1 might
be crucial in consensus formation, where opinions (or states)
cannot grow indefinitely and tend to stabilize. The balance
between conforming to the majority (consensus) and main-
taining individual differences could be modeled by these pa-
rameters.

Model and parameter 6
The parameter 6 in the model equation represents the non-
linear feedback within the system and can have different in-
terpretations depending on the context:

(1) Social Phenomena: 6 models the disproportionate ef-
fects of individual actions or decisions, leading to sud-
den shifts in social dynamics.

(2) Media Influence: 6 could represent the amplification of
social tendencies by the media, potentially leading to
polarized echo chambers.

(3) Consensus Formation: 6 reflects the critical mass
necessary for consensus formation, indicating a self-
reinforcing spread of consensus beyond a certain agree-
ment level.

The network topology at a significant timestep is visu-
alized below, showing the influence of various parameters,
including 6, on the network’s nodes.

6.3 CDF of Parameters Influence on Nodes
The result shows the Cumulative Distribution Function (CDF)
of the state values for each node at the final timestep of the
simulation. This type of graph helps to understand the distri-
bution of states across the nodes at the end of the simulation
period.



Fig. 13: CDF of Parameters Influence on Nodes

Given the parameters you’ve outlined and their influence
on the model, let’s discuss the considerations for social phe-
nomena, media influence, and consensus formation:

(1) Consideration of Social Phenomena:

The distribution of state values at the final timestep
can give insight into how social dynamics stabilize
over time.
The parameter 6, by controlling the strength of the
butterfly effect, could indicate that small changes in
individual behavior can lead to large differences in
the final distribution of states, which is particularly
relevant for understanding phenomena such as viral
trends or the emergence of new norms within a
society.

(2) Consideration of Media Influence:

Media plays a crucial role in influencing the state
of nodes, which in this context could represent
individual beliefs or opinions.
The CDFs might reflect the effectiveness of media
in homogenizing opinions (if the CDFs are closer
together) or in creating divergence (if the CDFs are
spread out). The parameter 4, controlling opinion
polarization, could be a key factor in determining
the shape of these CDFs.

(3) Consideration for Consensus Formation:

Consensus in a social network could be observed
if the CDFs of all nodes converge to a narrow
band, indicating that most nodes have similar state
values.
The non-linear terms controlled by 1 and 6 could
model the resistance or acceleration towards a con-
sensus state. If the CDF shows a quick rise to 1, it
could indicate rapid consensus formation.

These points could be further explored through simula-
tions varying these parameters to see their effect on the final
distribution of node states.

6.4 CDF of Parameters Influence on Nodes Pa-
rameter ⇡ Representing Distance

Fig. 14: CDF of Parameters Influence on Nodes at Final
Timestep

The results have provided shows the Cumulative Distri-
bution Function (CDF) of the influence values of various
parameters on nodes at the final timestep of the simulation.
This graph is particularly useful for analyzing the relative im-
pact of each parameter on the nodes’ state values throughout
the simulation.

Let’s discuss the difference of parameter 3 in relation to
other parameters from the perspectives of social phenomena,
media influence, and consensus formation, building upon the
conclusions from the CDF of nodes:

(1) Consideration of Social Phenomena:

Parameter 3might be related to the intrinsic growth
rate of a node’s state, possibly representing an in-
dividual’s inclination to change independently of
others. If 3 shows a significant influence in the
CDF, it suggests that personal growth or decay
plays a critical role in the overall dynamics.
Compared to other parameters that may represent
external influences or interactions, 3’s effect could
signify internal decision-making processes or in-
trinsic motivation within the social context.

(2) Consideration of Media Influence:

If media influence is modeled by parameters like 4
or 5 , which might signify external forces or fields
acting on nodes, 3 stands out by possibly repre-
senting the natural receptivity or resistance of in-
dividuals to such influences.



The CDF of 3 could indicate the degree to which
individual nodes are affected by media compared
to their internal dynamics. A lower influence value
for 3 would imply that external media influences
are more decisive in shaping node states than in-
trinsic factors.

(3) Consideration for Consensus Formation:

In a model where consensus is reflected by a con-
vergence of node states, the role of 3 could be seen
in how quickly nodes reach a stable state, either by
growing towards the consensus or resisting it.
A distinct pattern for 3 in the CDF compared to
other parameters, particularly those modeling in-
teractions like 2 and 6, would suggest that the inter-
nal growth rate is a determining factor in whether
and how nodes reach consensus.

These considerations of parameter 3 relative to others pro-
vide a nuanced view of how various factors contribute to the
state dynamics within a networked system. It allows for the
differentiation between the effects of internal versus external
influences and the understanding of their respective roles in
social behavior, media impact, and consensus-building pro-
cesses.

6.5 Opinion Dynamics Simulation:Toroidal Po-
larization

Fig. 15: Opinion Dynamics Simulation:Toroidal Polariza-
tion:2

1. Social Phenomena Consideration:
The trajectory plots might illustrate the dynamics of so-
cial interactions over time, with each curve representing
a different social parameter or agent.

Fig. 16: Opinion Dynamics Simulation:Toroidal Polariza-
tion:2

Parameter differentials could indicate the varying influ-
ence of individual behavior (Theta) and social connec-
tivity (Phi) on the overall system. For example, a steep
curve in the plot could represent a sudden change in
social behavior due to a critical event or threshold.

2. Media Influence Consideration:
These plots could represent the influence of media over
time or across different segments of society. The Z-
axis might denote the intensity of media influence, with
the other axes representing different media strategies or
content types.

The oscillations or patterns could signify how different
media approaches resonate with the public, where closer
loops may indicate a strong, repeated impact on public
opinion or behavior.

3. Consensus Formation Consideration:
In terms of consensus formation, the plots could visu-
alize the progression towards a common state or belief
across a population. The convergence of lines might
symbolize a move towards consensus, while divergence
could represent disagreement or the persistence of di-
verse opinions.

The interaction of the Theta and Phi parameters with
the Z-axis might show the role of internal (personal
beliefs) and external (social pressure) factors in forming
a consensus within a community or network.

6.6 Node of Toroidal Polarization
The provided Fig.16 displays multiple trajectories, each cor-
responding to a node in a networked system. The axes labeled



Fig. 17: Opinion Dynamics Simulation:Toroidal Polariza-
tion:3

Theta, Phi, and Z represent variables or parameters within the
opinion dynamics model.

1. Social Phenomena Consideration:
The trajectories suggest dynamic changes in opinions
over time within a social network. The variation in the
paths of different nodes indicates diversity in response
to social stimuli.

Theta could represent personal conviction or stubborn-
ness, affecting how strongly an individual adheres to
their initial opinion despite social pressure (Phi). The
plot shows that individuals (nodes) may experience
swings in their opinions before settling, which could
represent real-life scenarios of changing social stances.

2. Media Influence Consideration:
The nodes’ trajectories could also reflect the varying
impact of media on public opinion. Nodes that exhibit
similar patterns may be influenced similarly by media
campaigns or news cycles.

The Z-axis might quantify the degree of media influence,
with each node’s fluctuation representing the changing
impact on that individual’s opinion. Large swings in the
Z-axis for particular nodes could suggest susceptibil-
ity to media influence, whereas minimal change might
indicate resistance.

3. Consensus Formation Consideration:
The convergence or divergence of node trajectories can
imply the formation of consensus or persistent disagree-
ment within the network. If nodes converge to a similar

endpoint, it could suggest that a consensus has been
reached.

The plot may show that while some nodes quickly align
with the consensus (showing less deviation in their tra-
jectories), others may take a more circuitous route, re-
flecting individual differences in the process of reaching
a common stance.

These interpretations, inferred from the Opinion Dynam-
ics Simulation plot, underscore the complexity of modeling
opinion dynamics. The visual representation helps in under-
standing the multifaceted influences on individual and col-
lective opinion formation, the role of external factors such as
media, and the pathways through which a group may reach a
consensus.

6.7 CDF of Parameters )⌘4C0, %⌘8, / ,,

Fig. 18: CDF of Parameters Influence on Nodes at Final
Timestep

Fig. 19: CDF of Parameters )⌘4C0, %⌘8, / ,,

Results show the Cumulative Distribution Function
(CDF) for four different parameters—Theta, Phi, Z, and
W—across various nodes in an opinion dynamics simulation
at the final timestep.

1. Social Phenomena Consideration:
The CDF of Theta could represent individual tendencies
within the network, with the spread of the CDF indicat-
ing a diversity in the population’s opinion resilience or
adaptability.



The CDF of Phi, showing multiple step-like progres-
sions, may indicate clusters of nodes that have similar
levels of influence or are influenced similarly by their
neighbors, reflecting social segments or echo chambers
within the network.

2. Media Influence Consideration:
The Z parameter’s CDF might measure the intensity
of external factors such as media or propaganda, with
the curve’s shape reflecting how opinions are swayed or
polarized by such influences. A steep rise in the CDF
could point to a strong, possibly uniform impact of media
across nodes, while a more gradual slope could suggest
varied media impact across different nodes.

The CDF of W could potentially relate to external fac-
tors beyond media, such as socioeconomic or cultural
influences that affect opinion formation. The variation
in the curves between nodes could indicate heterogene-
ity in how these factors play a role in shaping individual
opinions.

3. Consensus Formation Consideration:
If consensus is represented by nodes reaching similar
state values, the convergence of CDFs at higher state
values could indicate nodes moving towards a common
opinion or decision.

Conversely, the divergence in CDFs, especially if seen in
the Phi or W parameters, might imply that despite com-
monalities in some aspects of opinion formation (like
susceptibility to media), consensus is not achieved due
to other diverging influences or stubbornness in personal
belief (Theta).

These interpretations, deduced from the CDF plots, high-
light the multi-dimensional and complex nature of opinion
dynamics within a network. They also emphasize the im-
portance of considering various factors, both internal (Theta)
and external (Phi, Z, W), when analyzing social consensus
formation, media influence, and overall social dynamics.

7. Conclusion
7.1 Issues with the Proposed Opinion Dynamics

Model
1. Abundance of Parameters: - The proposed model con-
tains numerous parameters (0, 1, 2, 3, 4, 5 , 6, ,8 9 , +8 9 , ").
Selecting and tuning these parameters is challenging and of-
ten requires extensive experimentation to fit real-world data.
Excessive parameters can increase model complexity and the
risk of overfitting.

2. Clarification of Parameter Meanings: - It’s crucial
to provide clear explanations of the meanings and impacts of

each parameter. There is a need for explanations regarding
what each parameter represents and how it influences the
model.

3. Complexity of Nonlinear Dynamics: - The model
includes nonlinear dynamics, which can lead to complex be-
haviors. Understanding and predicting nonlinear dynamics
can be challenging and may pose interpretability challenges
for the model.

4. Difficulty in Parameter Tuning: - Parameter tuning
is highly challenging, requiring extensive experiments to find
suitable values. Moreover, different combinations of param-
eters may lead to different outcomes, making it difficult to
understand their effects.

5. Comparison with Real Data: - Evaluating the
model’s validity requires comparison with real data. How-
ever, acquiring and aligning real data with the model can be
challenging, necessitating reliable data sources.

6. Model Interpretability: - Due to the model’s com-
plexity, interpreting its results can be challenging. Sufficient
interpretability should be incorporated into the model’s out-
comes and explanations.

7. Computational Resources: - The model demands
significant computational resources, particularly when con-
ducting large-scale simulations. Attention to computational
time and memory constraints is essential.

To overcome these challenges and make the model prac-
tical and useful, careful parameter tuning, data collection,
and comparison with real data, as well as improving model
interpretability, are necessary.
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