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Abstract: This paper delves into the history and integration of quantum theory into areas such as opin-
ion dynamics, decision theory, and game theory, offering a novel framework for social simulations. It
introduces a quantum perspective for analyzing information transfer and decision-making complexity
within social systems, employing a toric code-based method for error discrimination.Central to this
research is the use of toric codes, originally for quantum error correction, to detect and correct errors
in social simulations, representing uncertainty in opinion formation and decision-making processes.
Operator and error syndrome measurement, vital in quantum computation, help identify and analyze
errors and uncertainty in social simulations. The paper also discusses fault-tolerant computation
employing transversal gates, which protect against errors during quantum computation. In social
simulations, transversal gates model protection from external interference and misinformation, en-
hancing the fidelity of decision-making and strategy formation processes.
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1. Introduction

This paper explores the history of research in quantum opin-
ion dynamics, decision theory, and game theory, and how
these theories form a new paradigm for social simulation.
In particular, we present a new approach to analyze the com-
plexity of information transfer and decision-making processes
within social systems from a quantum theoretical perspective,
using a toric code-based error discrimination methodology.
Within the framework of quantum opinion dynamics, the for-
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mation and change of individual opinions are modeled by
quantum theory. This makes it possible to represent phenom-
ena such as opinion superposition and uncertainty, which
cannot be captured by conventional models. In decision the-
ory, on the other hand, the incorporation of quantum theory
provides a more realistic analysis of how individual deci-
sions affect group decisions. Furthermore, in game theory,
quantum game theory will be used to explore strategic inter-
actions among participants from perspectives that cannot be
explained by conventional theories.

At the core of this research is the concept of error dis-
crimination using toric codes. Toric codes, developed as an
error correction technique in quantum computation, are used
to effectively detect and correct errors in qubits. In this study,
we apply this technique to the context of social simulation and
attempt to model "errors" or uncertainty in opinion formation
and decision-making processes.

Also important are the concepts of operator and error syn-
drome measurement. In quantum computation, operators are
used to change the state of qubits, and error syndrome mea-
surement serves as a process to identify the presence and type
of error. Applying this process to social simulations makes
it possible to identify and analyze errors and uncertainty in
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opinion formation and decision processes.
Finally, the application of fault-tolerant computation us-

ing transversal gates will also be discussed. Transversal gates
play an important role in quantum computation while protect-
ing against errors during computation. In the context of social
simulation, they can be used to model how decision-making
and strategy formation processes are protected from exter-
nal interference and misinformation. Transversal gates play
an important role in quantum error correction. Using these
gates, quantum computation can be performed while protect-
ing against errors during computation. In social simulations,
they can help model how decision-making and strategy for-
mation processes are protected from external interference and
misinformation.

Fig. 2: Transversal Gate, Gauge Fixing Strategy Distribution

Fig. 3: Network with e-type and m-type Anomalies

Through this paper, we hope to show that quantum theory

is a powerful tool for understanding and analyzing various as-
pects of social science from new perspectives, and to suggest
prospects for research approaches that use quantum theory to
analyze and gain a deeper understanding of the complexity of
opinion formation and decision making in social systems.

2. Preview Research

2.1 Opinion Dynamics Research Case Studies

Much groundbreaking research has been conducted in the
field of opinion dynamics. For example, in "Mixing beliefs
among interacting agents" by Deffuant et al. (2000), a sim-
ple model was proposed to simulate the dynamics of opinion
convergence and polarization. The model is based on the as-
sumption that agents exchange opinions with each other and
are influenced by each other if the difference in opinion is be-
low a certain threshold. On the other hand, Hegselmann and
Krause (2002) in their study "Opinion dynamics and bounded
confidence: models, analysis and simulation" introduced the
so-called "Bounded Confidence Model" that takes into ac-
count the influence of individual beliefs and uncertainty on
the convergence of opinions. Bounded Confidence Model"
was introduced. In their model, agents consider only the
opinions of other agents whose opinions are somewhat simi-
lar to their own, and this leads to polarization of opinions and
the formation of multiple opinion clusters. These studies re-
vealed the complexity of interactions between individuals in
the process of social opinion formation and made important
contributions to our understanding of opinion dynamics. In
sum, the field of opinion dynamics is comprised of diverse
approaches that seek to elucidate the various factors behind
the formation and change of opinions through the simulation
of social interactions.

2.2 Research Case Study on Quantum Adamar

Computation

Research on quantum adamar computation has made impor-
tant contributions as a way to extend the efficiency and ca-
pabilities of quantum information processing. One of the
leading works in this area is "Fault-Tolerant Quantum Com-
putation with Constant Error Rate" by Aharonov and Ben-Or
(1997). Aharonov and Ben-Or’s work laid the foundation
for reducing the impact of errors in quantum computation
and achieving more reliable computation. and more reli-
able computation. In addition, Silvano Garnerone, Paolo
Zanardi, and Daniel A. Lidar’s (2012) "Adiabatic Quantum
Algorithm for Network Community Detection" utilizes quan-
tum adamantine computation to An algorithm was developed
to efficiently detect community structure within a network,
demonstrating the superior capabilities of quantum compu-
tation in analyzing complex networks. These studies clearly
demonstrate that quantum Adamar computation plays an im-



portant role in a wide variety of applications of quantum
information processing and open new avenues of research
in the field of quantum computation. Overall, these studies
on quantum adamantine computation have made important
contributions in the evolution of quantum computation tech-
niques and have laid the groundwork for further developments
in this field.

2.3 Research Case Studies on Toric Codes

Research on toric codes represents an important advance in
quantum error correction and quantum information theory.
For example, Alexey Kitaev’s (1997) landmark paper, "Fault-
tolerant quantum computation by anyons," established the
basic principles of quantum error correction and quantum
computation using toric codes. This work by Kitaev showed
that the toric code is naturally tolerant to errors and how
this helps in the stable storage and manipulation of quantum
information. A subsequent paper by H. Bombin and M.A.
Martin-Delgado (2006), "Topological Quantum Distillation,"
extended the concept of the toric code and proposed methods
to further improve the efficiency of quantum error correc-
tion. Their work is characterized by the ability to correct
more complex error patterns by exploiting the redundancy of
quantum information. These studies show how toric codes
play a fundamental role in quantum information science and
provide important guidance in the design and implementation
of quantum computers. Overall, these studies on toric codes
promote a deeper understanding of quantum error correction
in theory and practice, and represent important advances in
the field of quantum computing.

2.4 Research on Applications of Toric Codes

Case Study

Research on applications of toric codes has made important
contributions in the areas of quantum error correction and
quantum computing. For example, in "Surface codes: To-
wards practical large-scale quantum computation" by Austin
G. Fowler et al. (2012), the concept of surface codes based
on toric codes was described in detail and their application to
large-scale quantum computation Applications to large-scale
quantum computation were proposed. This work provided
concrete strategies for increasing the efficiency and practi-
cality of quantum error correction and was considered an
important step toward the realization of quantum computers.
In addition, Benjamin J. Brown et al. (2016), "Fault-tolerant
error correction with the gauge color code," introduced a new
class of quantum error-correcting codes called gauge color
codes, which are toric codes and showed that it can serve
as a generalization of the Their work further extended the
concept of the toric code and opened up new possibilities for
quantum error correction. These studies show how the toric
code plays a fundamental role in the development of quantum

information theory and represent important advances in the
field of quantum computing. Overall, these applied studies
on the toric code promote a deeper understanding of quantum
error correction in theory and practice, and lay an important
foundation for the future of quantum computing.

2.5 Applied Research Examples of Gauge Color

Codes

Research on gauge color codes represents a new development
in the field of quantum error correction. In particular, in
"Gauge Color Codes: Optimal Transversal Gates and Gauge
Fixing in Topological Stabilizer Codes" by Bombin et al.
(2013), optimal quantum error correction using gauge color
codes with Transversal Gates and Gauge Fixing Strategies
for Quantum Error Correction Using Gauge Color Codes
was developed. This study showed that the use of gauge
color codes in topological stabilizer codes can significantly
improve the efficiency and effectiveness of error correction
in the quantum computation process. Also, in "Universal
Color-Code Quantum Computation" by Kubica et al. (2015),
a framework for universal quantum computation using gauge
color codes was proposed and how this code can be used to
perform complex algorithms and operations in quantum com-
putation and how this code can be used to perform complex
algorithms and operations in quantum computation. These
studies clearly demonstrate that gauge-color codes play an
important role in the field of quantum error correction and
are an important step toward the practical application of quan-
tum computing. In summary, these applied studies on gauge
color codes contribute to the further development of quantum
error correction techniques and pave the way toward the re-
alization of quantum computing. An important research case
study on gauge color codes is "Gauge Color Codes: Optimal
Transversal Gates and Gauge Fixing in Topological Stabilizer
Codes" by Héctor Bombín (2015) Bombín’s work proposes
a new approach in quantum error correction and shows that
the use of these codes within topological stabilizer codes can
improve the efficiency and effectiveness of quantum error cor-
rection. and suggests how gauge color codes can be useful in
performing complex algorithms and operations in quantum
computation. The subsequent work by Aleksander Kubica et
al. (2015), "Universal Color-Code Quantum Computation,"
proposed a framework for universal quantum computation us-
ing gauge color codes. codes play an important role not only
in the field of quantum error correction, but also in the prac-
tical application of quantum computation. Taken together,
these research examples make it clear that gauge color codes
play a central role in the development of quantum information
theory and are an essential technology for the realization of
quantum computing.



2.6 Research Case Studies on Transversal Gates

Research on transversal gates has led to important advances
in quantum computing, as Daniel Gottesman (1998) in "The
Heisenberg Representation of Quantum Computers, Gottes-
man’s work was a breakthrough in the integration of quantum
error correction and quantum computation, and had a major
impact on later research in quantum computing. and had a
major impact on later research in quantum computing. Ef-
ficient fault-tolerant quantum computing" by Andrew Steane
(1999) developed specific methods for fault-tolerant quantum
computation using transversal gates, making error correction
in quantum systems more realistic. Steane’s work is an impor-
tant step toward practical quantum computing and strength-
ens the theoretical framework for quantum error correction.
These research examples illustrate that transversal gates play
a central role in the areas of error correction and fault-tolerant
computation in quantum computing. In general, these studies
on transversal gates have made important contributions in the
evolution of quantum computing technology and have laid
the groundwork for further developments in this field.

2.7 Research Case Study on Fault-Tolerant

Computation

The field of fault-tolerant computation has seen significant
research to increase the reliability and feasibility of quan-
tum computing; Peter Shor’s (1996) "Fault-Tolerant Quan-
tum Computation" is one of the pioneering works in this
field, Shor’s work addressed the vulnerabilities of qubits and
led to important advances in the design of practical quantum
computers. Andrew Steane’s (1997) subsequent work, "Ac-
tive Stabilization, Quantum Computation, and Quantum State
Synthesis," explored the possibility of fault-tolerant quan-
tum computation using active stabilization techniques and
provided a quantum error-correcting codes, Steane’s work
showed how the theory of quantum error correction could be
applied to actual quantum computation processes and paved
the way for the realization of quantum computation. These re-
search examples clearly demonstrate that fault-tolerant com-
putation is a central approach to ensuring error correction and
reliability in quantum computing. Overall, these studies on
fault-tolerant computation are an integral part of the evolution
of quantum computing technology and lay the groundwork
for further developments in the field.

2.8 Research Case Studies in Quantum and So-

cial Simulation

Research on the convergence of quantum computing and so-
cial simulation explores new boundaries between the two
fields.In Quantum Social Science, Jacob Biamonte and Peter
Wittek (2019) explore how quantum theory can be applied
to social science problems, especially decision making, game

theory, and social network analysis. The research focused
on the possibilities of going beyond classical social science
models to take advantage of the new perspectives and compu-
tational power offered by quantum computing principles. On
the other hand, Quantum Techniques for Stochastic Mechan-
ics by Eleanor Rieffel et al. (2018) explored how quantum
algorithms can be used in social science modeling, particu-
larly in the analysis of stochastic phenomena. Their work is
credited with opening new avenues for simulating more com-
plex social systems by taking advantage of the computational
power offered by quantum computing. These research cases
bridge the gap between quantum computing and the social
sciences, opening up new areas of understanding and analy-
sis of social systems. In sum, quantum and social simulation
research shows promise in applying quantum computing prin-
ciples to solve social science problems and lays an important
foundation for future research and applications.

2.9 Quantum and Game Theory Research Case

Study

Research on the integration of quantum computing and game
theory has provided innovative insights into the field. in his
paper "Quantum Strategies", David A. Meyer (1999) extended
the traditional game theory concept of strategy to the quantum
world and analyzed the new benefits that players can gain
by exploiting quantum states. Meyer’s work showed that
quantum mechanics adds a new dimension to game theory and
laid the foundation for quantum game theory. Subsequently,
Eisert, Wilkens, and Lewenstein’s (1999) "Quantum Games
and Quantum Strategies" further embodied the concepts of
quantum game theory by showing how quantum strategies can
provide advantages in classical games such as the prisoner’s
dilemma. They further embodied the concepts of quantum
game theory. Their work proposed the development of a new
type of game theory that exploits the properties of quantum
information and was an important step in the integration of
the fields of quantum and game theory. From these research
examples, it is clear that quantum game theory provides a new
framework for understanding and predicting the outcomes of
games and can add a new perspective to traditional game
theory by exploiting the principles of quantum computing.
Overall, these studies on the integration of quantum and game
theory play an innovative role in the development of game
theory and open up new research possibilities.

2.10 Research Cases on Quantum and Decision

Making

Research on the relevance of quantum theory and decision
making offers a new paradigm for decision theory. in "Quan-
tum Models of Cognition and Decision" by Jerome R. Buse-
meyer and Peter D. Bruza (2012), quantum probability theory
is applied to psychological It focuses on the application of



quantum probability theory to the modeling of psychologi-
cal decision-making processes. The study noted that human
decision making can exhibit contradictions and paradoxes
that cannot be explained by traditional classical probability
models, and showed that quantum theory can better model
these phenomena. Furthermore, in "Quantum Probability
Theory in Decision Making: From Quantum Physics to Eco-
nomics and Social Science" by Zheng Wang (2013), he ap-
plied decision-making problems in economics and social sci-
ence to Wang’s research demonstrates the potential of the con-
cepts provided by quantum theory to extend decision theory in
economics and social science. These research examples show
that quantum theory offers a new perspective on modeling de-
cision making and provides a new theoretical framework in
psychology, economics, and the social sciences. Overall, the
study of quantum and decision making challenges traditional
theories and adds a new dimension to our understanding of
decision making, opening up new research possibilities in
these fields.

2.11 Research Case Studies in Quantum and

Network Analysis

Research on the application of quantum theory to network
analysis offers new methods for better understanding and an-
alyzing networks. Notable work in this area includes "Quan-
tum Random Walks: A New Method for Designing Quan-
tum Algorithms" by Vittorio Giovannetti, Seth Lloyd, and
Lorenzo Maccone (2008) by Seth Lloyd, Lorenzo Maccone
(2008). In this study, a new type of quantum algorithm based
on quantum random walks was proposed, which allows ef-
ficient exploration and analysis on networks. pioneered a
new way to explore and analyze the complex structure of
networks more efficiently using quantum theoretical princi-
ples. In addition, Silvano Garnerone, Paolo Zanardi, and
Daniel A. Lidar’s (2012) "Adiabatic Quantum Algorithm for
Network Community Detection" used quantum adamantine
computation to develop an algorithm for detecting commu-
nity structure in networks. The work developed an algorithm
for detecting community structure within a network using
quantum adiabatic computation. This research demonstrated
the potential of quantum computation to go beyond classical
algorithms in analyzing the structure of networks, and showed
new avenues for coupling network theory and quantum infor-
mation science. These research examples clearly demonstrate
that the integration of quantum theory and network analysis
plays an important role in fostering the development of new
computational methods and analytical techniques in network
theory and in improving our understanding of complex net-
works. In sum, quantum and network analysis research is
opening new frontiers in network science and expanding the
possibilities for research in this field.

2.12 Research Case Studies in Quantum and

Opinion Dynamics

Research applying quantum theory to opinion dynamics offers
new perspectives in decision theory and the social sciences,
and Peter D. Bruza et al.’s (2009) study "Quantum Models
of Cognition as an Alternative Explanation for Some "Para-
doxes" in Opinion Dynamics," attempted to explain the tradi-
tional paradoxes in opinion dynamics using quantum cogni-
tive models. The study proposed that principles of quantum
theory can better capture the processes of opinion formation
and decision making, presenting a new approach that goes be-
yond the limitations in classical opinion dynamics models. In
addition, Zheng Wang’s (2013) paper, "Quantum Theory and
the Dynamics of Opinion," focuses on how quantum theory
can help model the dynamics of opinion evolution and change,
taking advantage of the stochastic and interference properties
that quantum theory offers The authors showed that quantum
theory can be used to more accurately capture the forma-
tion and change of social opinions. These research examples
demonstrate the potential of applying quantum theory to the
social sciences and provide a new theoretical framework for
opinion dynamics. Overall, these studies on the integration
of quantum and opinion dynamics add a new dimension to
theories of opinion formation and make important contribu-
tions to extending research methods and understanding in the
social sciences.

3. Discussion

3.1 Plaquette Operator and Star Operator

The Plaquette operator and Star operator play crucial roles
in the field of quantum error correction, particularly in toric
codes. They are central elements in understanding the con-
cept of topological quantum error correction.

3.2 Plaquette Operator

In toric codes, an operator corresponding to each cell (plaque-
tte) of the lattice is defined. Considering a two-dimensional
square lattice, each plaquette refers to one of the squares of
the lattice. The Plaquette operator ⌫? acts on the four qubits
(quantum bits) associated with the edges adjoining that pla-
quette. Typically, this is represented using the Z basis (Pauli
Z operator). It is expressed in the following formula:

⌫? = f
I
1 f

I
2 f

I
3 f

I
4

where f
I
8 is the Pauli Z operator acting on the 8-th qubit.

3.3 Star Operator

The Star operator �B is associated with each vertex of the
lattice. It acts on the four edges (or qubits) that are connected



to each vertex. This is usually represented using the X basis
(Pauli X operator) and is defined as follows:

�B = f
G
1 f

G
2 f

G
3 f

G
4

where f
G
8 is the Pauli X operator acting on the 8-th qubit.

3.4 Role in Toric Codes

In toric codes, these operators are used for error detection and
correction. The Plaquette operator and Star operator define
how the quantum state reacts to errors, and by measuring
the eigenvalues of these operators, the presence or absence
of errors can be detected. Importantly, these operators are
commutative; that is, the order of the operators does not
affect the outcome.

Toric codes are an example of topological quantum error
correction, and these operators play a central role in the con-
struction of such error correction codes. Such codes are a
crucial step toward the realization of future quantum comput-
ers.

When talking about the ’trajectory’ of a quantum error
correction code, it generally refers to the possible paths that
a quantum state can take during the error correction process
or the set of states defined by a specific error correction code.
There are several important features of the trajectory of an
error correction code:

(1) Error Correction Capability: The trajectory of an er-
ror correction code has the ability to correct a specific
type and number of errors. For instance, it may be able
to correct some simple errors (like bit flips, phase flips)
but not more complex errors.

(2) Code Space: The code space corresponding to a specific
error correction code is constructed based on the types
and numbers of permissible errors. This space includes
the basis states that represent the ’ideal’ quantum states
where no errors have occurred.

(3) Error Identification: In quantum error correction, it is
important to detect whether an error has occurred and,
if possible, to identify its type. The trajectory is defined
through the process of error detection and identification.

(4) Distinction Between Logical and Physical Opera-

tions: The trajectory includes the distinction between
errors (physical operations) on the physical qubits and
errors (logical operations) on the encoded information.

(5) Redundancy: Redundancy of quantum information is
essential for effective error correction. This involves
encoding the same information across multiple qubits
so that if some qubits experience errors, the information
is not lost.

(6) Set of Tolerable Errors: The trajectory of a certain
error correction code is optimized for a specific set of

errors. This depends on the error model for which the
code was designed.

(7) Topological Features: In topological quantum error
correction codes (like the toric code), the trajectory has
topological features and is robust against local changes
in space.

These features are important in the design and analysis of
quantum error correction codes. Error correction codes are
fundamental for enhancing the feasibility of quantum com-
putation and improving the resilience of quantum systems
against errors.

3.5 Error Syndrome Measurement

Error syndrome measurement is used in toric codes and other
quantum error correction codes to identify where an error has
occurred. The specific formulas vary depending on the type
of error correction code used, but here we explain it using the
toric code as an example.

In toric codes, error syndrome measurement is carried
out using the Plaquette operator ⌫? and the Star operator �B .

3.5.1 Plaquette Operator ⌫?

The Plaquette operator is associated with each plaquette (cell)
and is defined as follows:

⌫? = f
I
1 f

I
2 f

I
3 f

I
4

where f
I
8 is the Pauli Z operator, applied to the four qubits

adjacent to the plaquette.

3.5.2 Star Operator �B

The Star operator is associated with each vertex (star) and is
defined as:

�B = f
G
1 f

G
2 f

G
3 f

G
4

where f
G
8 is the Pauli X operator, applied to the four qubits

forming the arms of the star.
Error syndrome measurement involves measuring the

eigenvalues of these operators. In an ideal state, the eigen-
values of these operators are +1. However, when an error
occurs, the eigenvalues may become -1.

- If the eigenvalue of the Plaquette operator ⌫? is -1, it
indicates a Z-direction error (phase flip) in the qubits adjacent
to that plaquette. - If the eigenvalue of the Star operator �B

is -1, it indicates an X-direction error (bit flip) in the qubits
of that star.

To mathematically represent situations in toric codes
where the eigenvalues of the Plaquette operator ⌫? and the
Star operator �B become -1, basic knowledge of Pauli opera-
tors and the state of qubits is required. Below, we specifically
describe how these operators detect errors.



3.6 Case of Plaquette Operator ⌫?

The Plaquette operator ⌫? is defined as:

⌫? = f
I
1 f

I
2 f

I
3 f

I
4

where each f
I
8 is the Pauli Z operator. These operators have

the effect of flipping the phase of a qubit but do not change
the state itself when the qubit is in |0i or |1i state.

- No error: If all qubits are error-free, the eigenvalue of
⌫? is +1. That is, applying ⌫? does not change the overall
state of the system. - With a Z-direction error: If one or
more qubits adjacent to the plaquette have a Z-direction error
(application of fI), the eigenvalue of ⌫? becomes -1. In this
case, applying ⌫? inverts the overall state of the system.

3.7 Case of Star Operator �B

The Star operator �B is defined as:

�B = f
G
1 f

G
2 f

G
3 f

G
4

where each f
G
8 is the Pauli X operator. These operators have

the effect of flipping the state of a qubit from |0i to |1i or vice
versa.

- No error: If all qubits are error-free, the eigenvalue of
�B is +1. That is, applying �B does not change the overall
state of the system. - With an X-direction error: If one
of the four qubits forming the star has an X-direction error
(application of fG), the eigenvalue of �B becomes -1. In this
case, applying �B inverts the overall state of the system.

Let’s examine in detail the formulas and computational
processes for error syndrome measurement and error correc-
tion processes for a single bit flip error in toric codes. For
simplicity, we use the example of a small toric code with four
qubits.

3.8 Initial State

Let’s assume that the initial state is where all qubits are in the
|0i state. That is, the state of the system is |0000i.

3.9 Occurrence of Error

Suppose a bit flip error (application of the Pauli X operator
f

G) occurs on one qubit. If this error occurs on the first qubit,
the state of the system changes as follows:

f
G
1 |0000i = |1000i

3.10 Error Syndrome Measurement

In toric codes, error syndrome is measured using the Star
operator �B and the Plaquette operator ⌫? . Here, we focus
on the Star operator.

The Star operator �B is defined as follows (for simplicity,
consider only one vertex):

�B = f
G
1 f

G
2 f

G
3 f

G
4

Applying this operator to the error state |1000i gives:

�B |1000i = (fG
1 f

G
2 f

G
3 f

G
4 ) |1000i

Using the properties of the Pauli X operator fG |0i = |1i and
f

G |1i = |0i, we get:

= (fG
1 |1i) (fG

2 |0i) (fG
3 |0i) (fG

4 |0i)

= |0000i

This result indicates that the eigenvalue of the Star operator
�B is -1, as the original state |1000i has changed.

4. Error Correction

The error syndrome indicates that there is an error in the first
qubit. To correct this error, we again apply a bit flip (fG):

f
G
1 |1000i = |0000i

This returns the system to its original error-free state |0000i.
Using the Star operator, we have measured the error syn-

drome for a bit flip error and performed the appropriate error
correction operation (applying the bit flip again to the same
qubit), returning the system to its original error-free state.
This process demonstrates how the toric code can efficiently
detect and correct a single bit flip error.

To understand the computational process of the error syn-
drome for the Star operator �B in toric codes, it is necessary
to understand the action of the Pauli X operator and its eigen-
values.

4.1 Action of the Pauli X Operator f
G

The Pauli X operator fG has the effect of inverting the state
of a qubit. That is, - fG |0i = |1i - fG |1i = |0i

4.2 Action of the Star Operator �B

The Star operator �B is the product of four Pauli X operators.

�B = f
G
1 f

G
2 f

G
3 f

G
4

4.2.1 No Error Case

In a state where all qubits are error-free (that is, in a state
that is an eigenstate of fG), applying �B does not change the
overall state of the system. This is because applying f

G to
each qubit inverts their state, but overall, the system returns
to its original state. In this case, the eigenvalue of �B is +1.



4.2.2 With an X-direction Error

If one of the four qubits forming the star has an X-direction
error (for example, the state is inverted by f

G), the eigenvalue
of �B becomes -1. This is because when f

G is applied to the
qubit that is inverted by the error, it returns to its original
state. As a result, the overall state of the system is inverted,
and the eigenvalue of �B becomes -1.

4.3 Mathematical Representation

Mathematically, the action of �B in the case of no error and
with an X-direction error can be represented as follows: -
No Error Case: �B |i = |i (where |i is any error-free state)
- With an X-direction Error: �B |0i = �|0i (where |0i is a
state containing one or more X-direction errors)

To understand the computational process of the error syn-
drome for the Plaquette operator ⌫? in toric codes, it is first
necessary to know about the action of the Pauli Z operator
and its eigenvalues.

4.4 Mathematical Representation

Mathematically, the action of �B can be expressed as follows
for the cases with and without an error:

No Error: �B |i = |i (where |i is any state without error).
X-Direction Error Present: �B |0i = �|0i (where |0i is
a state with one or more X-direction errors).

To understand the calculation process of the error syn-
drome for the Plaquette operator ⌫? in toric codes, it is first
necessary to understand the action and eigenvalues of the
Pauli Z operator.

4.5 Action of the Pauli Z Operator f
I

The Pauli Z operator fI acts as follows:

f
I |0i = |0i

f
I |1i = �|1i

That is, fI does nothing to the state |0i and applies a
coefficient of -1 to the state |1i.

4.6 Action of the Plaquette Operator ⌫?

The Plaquette operator ⌫? is the product of four Pauli Z
operators:

⌫? = f
I
1 f

I
2 f

I
3 f

I
4

4.6.1 No Error

When all qubits are in their eigenstates of fI , such as the |0i
or |1i state, applying ⌫? applies fI to each qubit. If all qubits
are error-free (i.e., in the eigenstate of fI), the eigenvalue of
⌫? is +1. This is because each qubit gets a coefficient of +1
or -1 from f

I , and the total product results in +1.

4.6.2 Z-Direction Error Present

If one or more qubits experience a Z-direction error (for ex-
ample, an error that changes |0i to |1i), the action of fI on
those qubits does not change the state but applies a coefficient
of -1. If an odd number of qubits experience such an error,
the eigenvalue of ⌫? becomes -1. This is because an odd
number of -1 coefficients results in a total product of -1.

4.7 Mathematical Expression

Mathematically, the action of ⌫? can be expressed as follows
for the cases with and without an error:

No Error: ⌫? |i = |i (where |i is any state without
error).

Z-Direction Error Present: ⌫? |0i = �|0i (where |0i is
a state with one or more Z-direction errors).

Network Nodes: Each node in the network represents
individuals, communities, or organizations within a so-
cial system.

Node State: The state of each node is represented by a
numerical value indicating the node’s health, economic
status, social influence, etc. A normal state is denoted
as ’0’, and an abnormal state as ’1’.

4.8 Error Syndrome Measurement

Detection of Anomalies: A sudden change in the state
of a node to ’1’ is detected as a bit-flip error (social or
economic anomaly).

Assessment of Impact Range: The impact of anoma-
lies originating from a node is assessed on surrounding
nodes using the adjacency matrix to consider the con-
nections between nodes.

4.9 Error Correction Process

Local Correction: Direct interventions (such as eco-
nomic or social support) are implemented for nodes
where anomalies are detected.

Global Correction: If the anomaly affects the entire
system, a broader policy review and system-level inter-
ventions become necessary.

Detection of Anomalies:

⇢8 =
⇢

1 if node 8 is in an abnormal state
0 otherwise

Assessment of Impact Range:

�8 =
#’
9=1

�8 9⇢ 9



Here, �8 represents the total abnormal impact on node 8,
and �8 9 is the element of the adjacency matrix indicating
the connection between nodes 8 and 9 .

(1) Anomaly Detection: Evaluate the state of each node
and identify abnormal states (bit-flip errors).

(2) Calculation of Impact Range: Calculate the impact
range of the nodes where anomalies have occurred.

(3) Decision of Corrective Actions: Based on the detected
anomalies and their impact range, determine appropriate
interventions.

We propose formulas and calculation processes for apply-
ing the concepts of ’charge’ (e-type) anyons and ’magnetic
flux’ (m-type) anyons from toric codes to a social network
model. In toric codes, e-type anyons are detected by the
Star operator �B , and m-type anyons by the Plaquette oper-
ator ⌫? . Applying these to social systems corresponds to
modeling different types of ’anomalies’ and ’impacts’.

4.9.1 1. e-type anyons (Charge-Type Anomalies)

Modeling: e-type anyons can be considered as repre-
senting individual ’local anomalies’ within the social
system, such as sudden economic crises or social unrest
in specific areas.

Formulas:

⇢8 =
⇢

1 if node 8 has a local anomaly
0 otherwise

Calculation Process: Evaluate the state of each node
and detect local anomalies.

4.9.2 2. m-type anyons (Magnetic Flux-Type Anomalies)

Modeling: m-type anyons represent more extensive
’global anomalies’ or imbalances across the entire sys-
tem, such as overall economic instability or widespread
social dissatisfaction.

Formulas:

" =
#’
8=1

⇢8

Here, " represents the total anomaly across the system.

Calculation Process: Aggregate the number of anoma-
lies across the entire system and evaluate the overall
imbalance.

Local Interventions: Plan interventions of appropriate
scale and intensity based on the energy of local anoma-
lies.

Global Strategies: Consider more extensive policy
changes and system-level interventions based on the en-
ergy of global anomalies.

This approach allows for more effective identification of
different types of problems and optimal responses to each. By
using the concept of band structure, the ’weight’ and ’impact’
of problems can be understood in more detail, allowing for
the prioritization of interventions based on these aspects.

Fig. 4: Two different kinds of operators or states in the
network

Results of Toric Code model, given the mention of pla-
quette and star operators, which are concepts from that model.
In the context of opinion dynamics, the nodes of the network
could represent individuals, and their states could represent
their opinions on a certain topic. The update rules defined by
the plaquette and star operators would then correspond to the
way these opinions change due to interactions with other in-
dividuals in the network. For example, the plaquette operator
might represent the consensus of opinion between neighbor-
ing individuals, while the star operator might represent the
self-reinforcement or individual’s tendency to become more
extreme in their opinion.

Interaction Related to the Star Operator (�B)

- In quantum error correction, the star operator typically in-
volves a product of Pauli matrices around a given vertex (or
node) in the lattice, affecting its state. In your code, ‘g(states)‘
could be analogous to the star operator, with ‘states**2‘ in-
dicating that the interaction strength or effect increases with
the square of the state value. This could mean that the more
’opinionated’ or ’extreme’ a node is (higher state value), the
stronger the effect of this operator.

Interaction Related to the Plaquette Operator

(�?)

The plaquette operator usually involves a product of Pauli
matrices around a face (or plaquette) in the lattice, which



affects the states around that plaquette. In opinion dynamics,
this could be interpreted as a way to reach a middle ground or
average opinion among connected individuals. The function
‘(x + y) / 2‘ could represent a simple averaging of states,
suggesting a smoothing or consensus-forming interaction.

Term Related to Charge (e-type) Anyons (�4)

- In the Toric Code and related models, e-type anyons are
associated with errors on qubits that the plaquette operator
can detect. In opinion dynamics, this might be related to
discrepancies or ’errors’ in the consensus process, where the
plaquette operator could reveal nodes whose opinions are out
of sync with their neighbors.

Term Related to Flux (m-type) Anyons (�<)

- Similarly, m-type anyons are associated with errors that
the star operator can detect. In the context of your model,
this could relate to individual nodes that are becoming too
extreme, where the star operator’s role would be to identify
and potentially correct these states.

The visualization you’ve provided seems to be a histogram
showing the distribution of values obtained from the plaque-
tte and star operators after the simulation runs. The presence
of two histograms suggests that you are comparing the dis-
tributions of two different kinds of outcomes or states in the
network, likely before and after the error detection and cor-
rection algorithm is applied.

5. Error Syndrome Measurement

Application in Social Network Models

When applying the concept of error syndrome measurement
from toric codes to social network models, we can propose
the following formulas and concepts for error detection and
correction:

5.0.1 1. Representation of Network States

Each node in the network (individuals, communities, orga-
nizations) is represented by specific parameters. Indicators
such as economic health, social stability, environmental im-
pact, etc., are considered. These states are represented by a
vector v, where each element E8 represents the state of node
8.

5.0.2 2. Detection of Anomalies (Errors)

We define operations equivalent to the Plaquette operator and
Star operator from toric codes. These operators correspond
to local segments (Plaquette operator) and global segments
(Star operator) of the network.

Plaquette Operator ⌫?: To detect local anomalies, the
relationships between adjacent nodes are evaluated. For
example, if the economic disparity between adjacent
nodes exceeds a certain threshold, it can be detected as
a local imbalance (error).

⌫? (v) =
’
h8, 9 i

5 (E8 , E 9 )

Here, h8, 9i represents pairs of adjacent nodes, and 5 is
a function measuring the relationship between the pair.
Star Operator �B: To measure the balance of the en-
tire system, a statistical measurement of the state of the
entire network is performed. This may involve the use
of overall averages, variances, or other statistical indica-
tors.

�B (v) = 6({E8})

Here, 6 is a function assessing the state of the entire
network.

5.0.3 1. Correction Algorithm

When an error is detected, a correction algorithm is applied.
This algorithm proposes specific policies or interventions to
improve the state of the network.

Local Correction: Targeted interventions are carried
out for locally detected issues identified by the Plaque-
tte operator. This may include resource reallocation,
introduction of educational programs, infrastructure im-
provements, etc.
Global Correction: If the anomaly affects the entire
system, broader policy changes may be required, as in-
dicated by the Star operator. This could include eco-
nomic policy adjustments, legal reforms, large-scale
public projects, etc.

We consider the formulas and calculation processes for
applying the error syndrome measurement and error correc-
tion process for a single bit-flip error in toric codes to social
network models. Here, the ’bit-flip error’ represents anoma-
lies or fluctuations in social networks (e.g., economic crises,
social instability), and the measurement and correction of
the error syndrome are processes to detect and address these
anomalies.

Network Nodes: Each node in the network represents
individuals, communities, or organizations within a so-
cial system.
Node State: The state of each node is represented by a
numerical value indicating the node’s health, economic
status, social influence, etc. A normal state is denoted
as ’0’, and an abnormal state as ’1’.



5.1 Error Syndrome Measurement

Detection of Anomalies: A sudden change in the state
of a node to ’1’ is detected as a bit-flip error (social or
economic anomaly).

Assessment of Impact Range: The impact of anoma-
lies originating from a node is assessed on surrounding
nodes using the adjacency matrix to consider the con-
nections between nodes.

5.2 Error Correction Process

Local Correction: Direct interventions (such as eco-
nomic or social support) are implemented for nodes
where anomalies are detected.

Global Correction: If the anomaly affects the entire
system, a broader policy review and system-level inter-
ventions become necessary.

5.3 Formulas

Detection of Anomalies:

⇢8 =
⇢

1 if node 8 is in an abnormal state
0 otherwise

Assessment of Impact Range:

�8 =
#’
9=1

�8 9⇢ 9

Here, �8 represents the total abnormal impact on node 8,
and �8 9 is the element of the adjacency matrix indicating
the connection between nodes 8 and 9 .

(1) Anomaly Detection: Evaluate the state of each node
and identify abnormal states (bit-flip errors).

(2) Calculation of Impact Range: Calculate the impact
range of the nodes where anomalies have occurred.

(3) Decision of Corrective Actions: Based on the detected
anomalies and their impact range, determine appropriate
interventions.

We propose formulas and calculation processes for apply-
ing the differences in the band structure of excitation energies
between ’charge’ (e-type) anyons and ’magnetic flux’ (m-
type) anyons in toric codes to a social system model. Here,
the band structure represents the magnitude and range of im-
pact that different types of ’anomalies’ have on the system.

If we interpret the e-type and m-type anomalies in the
context of opinion dynamics, they could represent different
forms of ’opinion errors’ or deviations from a norm within a
community represented by the network. The e-type anoma-
lies could represent one form of deviation, while the m-type

Fig. 5: Two different kinds of Anomalies

represents another. The arrows in the visualization could in-
dicate the ’direction’ of the anomaly or deviation, with red
arrows for e-type and green for m-type.

Interactions Related to the Star Operator (�B)

The star operator is not explicitly defined in the new code
snippet, but typically it would check for e-type errors around
a vertex in a quantum error-correcting code. In this analogy,
if we were to implement a star operator, it would examine the
network’s nodes for patterns of e-type anomalies, potentially
to correct or reduce their influence.

Interactions Related to the Plaquette Operator

(�?)

Similarly, the plaquette operator would typically check for
m-type errors around a face or plaquette. In the opinion dy-
namics analogy, it would look for m-type anomalies. Again,
while not explicitly defined in your code, this operator could
serve to detect and address patterns of m-type deviations in
the network.

Behavior Related to Charge (e-type) Anyons

(�4)

The red arrows indicate the presence of e-type anomalies. If
we were to translate this into a form of energy or interaction
term �4, it would likely quantify the impact or ’cost’ of these
anomalies on the system. In a physical model, such anomalies
would disrupt the ground state, while in opinion dynamics,
they could represent disruptive or influential opinions that
diverge from the consensus.



Behavior Related to Flux (m-type) Anyons (�<)

The green arrows represent the m-type anomalies. As with
�4, an interaction term �< would describe the influence of
these anomalies. M-type anomalies typically interact dif-
ferently than e-type anomalies in quantum models; applying
this to opinion dynamics might suggest a different form of
influence or disruption within the network.

You’ve provided shows a grid network with annotated
nodes indicating the presence of e-type and m-type anoma-
lies. This could be the starting point for a simulation where
these anomalies are propagated, interact, and potentially cor-
rected through some algorithm that mimics the error correc-
tion process in a quantum system.

To extend the analogy to opinion dynamics, one could
simulate the spread of opinions (analogous to the propaga-
tion of anyons in a quantum system) and apply ’correction’
mechanisms to adjust the opinions towards a desired state or
consensus.

5.3.1 1. e-type anyons (Charge-Type Anomalies)

e-type anyons indicate local anomalies. Their energy band
structure varies based on the size and importance of the
anomaly.

Modeling: Quantify the ’strength’ or ’importance’ of
local anomalies. For example, indicators could be the
severity of an economic crisis or the scope of social
unrest.

Formulas:

⇢8 = 5 (local anomaly severity at node 8)

Here, 5 is a function evaluating the importance of the
anomaly.

Calculation Process: Evaluate the importance of
anomalies at each node and calculate the ’energy’ of
local anomalies based on this.

5.3.2 2. m-type anyons (Magnetic Flux-Type Anomalies)

m-type anyons indicate global anomalies. Their energy band
structure represents the magnitude of impact of anomalies
that affect the entire system.

Modeling: Quantify the degree of overall imbalance
or instability of the system. This could be an indica-
tor of overall economic instability or widespread social
dissatisfaction.

Formulas:

" = 6(total system imbalance)

Here, 6 is a function assessing the overall imbalance of
the system.

Calculation Process: Evaluate the impact of anomalies
across the entire system and calculate the ’energy’ of
overall imbalance.

5.4 Application to Social Systems

Local Interventions: Plan interventions of appropriate
scale and intensity based on the energy of local anoma-
lies.

Global Strategies: Consider more extensive policy
changes and system-level interventions based on the en-
ergy of global anomalies.

This approach allows for more effective identification of
different types of problems and optimal responses to each. By
using the concept of band structure, the ’weight’ and ’impact’
of problems can be understood in more detail, allowing for
the prioritization of interventions based on these aspects.

Fig. 6: Network with e-type and m-type Anomalies

Opinion Dynamics Consideration

- In the context of opinion dynamics, the network could rep-
resent individuals (nodes) in a social network, and the arrows
(anomalies) could represent differing opinions or influences.
The red arrows (e-type anomalies) could signify one type of



influence or opinion, while the green arrows (m-type anoma-
lies) could signify another. This depiction might be used to
visualize the distribution of these opinions or influences and
to understand how they might interact.

Interaction Related to the Star Operator (�B)

- The star operator in quantum error correction is associated
with the vertices of a lattice and is used to detect errors. In this
model, if we were to apply such an operator, it could represent
a form of local consensus mechanism, where the red arrows
(e-type anomalies) indicate points of disagreement that need
to be addressed.

Interaction Related to the Plaquette Operator

(�?)

- The plaquette operator usually applies to the faces of a lattice
and detects different types of errors. In this analogy, the green
arrows (m-type anomalies) might represent another form of
opinion or influence that is spread over a group of individuals.
The plaquette operator could be seen as a mechanism for
identifying and resolving broader consensus issues within
the network.

Behavior Related to Charge (e-type) Anyons

(�4)

- In a physical system, e-type anyons represent errors that can
be detected by the plaquette operator. If we translate this to the
network model, it could suggest areas where individual opin-
ions (e-type anomalies) are in conflict with the surrounding
consensus, which might require specific strategies to resolve.

Behavior Related to Flux (m-type) Anyons (�<)

- M-type anyons in a physical system are errors that can be
detected by the star operator. In the social network model, this
might point to regions where the overall opinion or influence
(m-type anomalies) is in conflict with the local individual
opinions, suggesting a need for broader strategies that address
group dynamics.

The illustration of the network with labeled anomalies can
be used to simulate how these opinions or influences might
propagate, interact, and possibly be corrected over time. Such
simulations could be valuable in studying complex social dy-
namics, understanding the spread of information, and man-
aging social consensus or conflict.

5.4.1 e-type Values

Opinion Dynamics Consideration

- In terms of opinion dynamics, the nodes could represent in-
dividuals in a social network, and the S and P values could rep-
resent two different aspects of their opinions, such as strength

Fig. 7: e-type Values in a 2D Mesh

Fig. 8: e-type Values in a 3D Mesh

and spread, respectively. The varying colors in the nodes
reflect the diversity of these aspects within the population.

Interactions Related to the Star Operator (�B)

- The star operator in a quantum error correction context is
used to detect and correct errors around a vertex. Translated
to opinion dynamics, �B could represent the influence of an
individual’s opinion based on the opinions of their immediate
neighbors, suggesting a local consensus mechanism.

Interactions Related to the Plaquette Operator

(�?)

- The plaquette operator usually applies to a plaquette (a
square or face of the grid) in error correction codes and de-
tects errors within that plaquette. In the analogy, �? could
represent the influence of a group’s collective opinion on the
individual, pointing to a broader societal influence mecha-
nism.

Behavior Related to Charge (e-type) Anyons

(�4)

- In the physical system, e-type anyons are associated with
errors on qubits that the plaquette operator can detect. In the
social model, this might correlate with discrepancies or ’er-
rors’ in local opinion consensus, where e-type values indicate
individual deviations from a local norm.



Fig. 9: e-type Values in a 3D Mesh

Behavior Related to Flux (m-type) Anyons (�<)

- Similarly, m-type anyons are associated with errors that the
star operator can detect. In the social network model, this
could relate to individuals whose opinions are becoming too
extreme or isolated from the broader consensus, indicated by
m-type values.

The arrows depicted in the images may symbolize the ten-
dency or movement of opinion changes in the network, with
red arrows possibly signifying a shift towards one opinion and
green arrows a shift towards another. The 3D scatter plots
further visualize how these opinions (or errors, in quantum
terms) are distributed across the network, potentially allow-
ing us to observe clusters, outliers, or patterns in opinion
dynamics.

In summary, the simulation captures the complexity of
opinion formation and change, influenced by local interac-
tions (�B) and global societal trends (�?), with the individual
nodes possibly representing agents undergoing changes in
opinion (anomalies) over time. This model could be insight-
ful for understanding the spread of information, the formation
of consensus, or polarization within a community.

5.4.2 m-type Values

Fig. 10: m-type Values in a 2D Mesh

Opinion Dynamics Consideration

If we consider this model as a representation of opinion dy-
namics, the nodes in the 2D mesh can be seen as individuals

Fig. 11: m-type Values in a 3D Mesh

Fig. 12: m-type Values in a 3D Mesh

in a social network. The S and P values could signify dif-
ferent aspects of their opinions, such as certainty and persua-
siveness. The different colors could indicate the strength or
direction of these opinions. The network shows the diversity
and distribution of these opinions among the individuals.

Interactions Related to the Star Operator (�B)

- In the context of quantum error correction, the star
operator applies to vertices and is used to detect cer-
tain types of errors. In an opinion dynamics model,
JB2>D;3A4?A4B4=C0B>280;8= 5 ;D4=24C⌘0C0;C4ABC⌘4>?8=8>=B> 5 8=38E83D0;B10B43>=C⌘4>?8=8>=B> 5 C⌘48A=486⌘1>AB, ?A><>C8=60;>20;2>=B4=BDB.

Interactions Related to the Plaquette Operator

(�?)

- �? , related to the plaquette operator, could be analogous to
the broader societal norms that impact individual opinions
in a social network model. This operator might detect and
correct for deviations from the broader societal consensus.

Behavior Related to Charge (e-type) Anyons

(�4)

- In a quantum system, �4 would be the term in the Hamilto-
nian related to the e-type anyons, which could be thought of
as errors or charges in the system. Translated into opinion dy-
namics, this might reflect the presence of a minority opinion
or a dissenting individual in a community that is otherwise in
agreement.



ion is divided.

6. Conclusion

6.0.1 Ising Model to Social Simulation

When applying the Ising model to social simulations, it is cru-
cial to correlate each element of the model with phenomena
and concepts in social systems. Below, we propose interpre-
tations of formulas and parameters for the application of the
Ising model to social simulations.

Spin States

Spin State B8: Represents the opinions or states of in-
dividual agents (individuals, groups). +1 can denote
adopting a specific opinion or behavior, while -1 repre-
sents the opposite.

Energy Function

Interaction �8 9 : Represents the strength of influence or
relationships between agents. A higher value implies
stronger interaction, modeling the degree of social con-
nections or influence.

External Field ⌘: Represents external influences or
pressures. This can indicate factors like media influence,
government policies, social trends, etc., affecting the
opinions or states of individual agents.

6.0.2 Bit-Flip Error (Opinion Change)

Bit-Flip: Represents a sudden change in an agent’s opin-
ion or behavior. This can occur due to new information
or external influences.

6.0.3 Energy Change and Error Correction

Energy Change �⇢ : Indicates an increase in anomalies
or instability in the social system. An increase in energy
is interpreted as disrupting social harmony or stability.

Error Correction: Represents mechanisms for restor-
ing stability in the social system. This could be social
mechanisms promoting opinion harmony or processes
for individuals to reassess their opinions.

State Change of Agents:

B8 ! �B8

Energy of the Social System:

⇢ = �
’
h8, 9 i

�8 9 B8B 9 � ⌘

’
8

B8

Energy Change Due to State Change:

�⇢ = ⇢after � ⇢before

(1) Setting the Initial State: Set the initial opinions or
states of each agent in the social system.

(2) Energy Calculation: Calculate the total energy of the
social system in its initial state.

(3) Introduction of Opinion Change: Invert the opinion
of a randomly selected agent.

(4) Assessment of Energy Change: Calculate the energy
change in the social system due to the opinion change.

(5) Error Correction: If energy increases, revert the
agent’s opinion to its original state or adopt a new state.

This approach allows for simulating the dynamics of opin-
ion formation and collective behavior in social systems and
exploring strategies for maintaining social harmony and sta-
bility.

6.1 Agent States

Fig. 13: Agent States in 2D Mesh

Opinion Dynamics Consideration

The 2D and 3D mesh plots represent a distribution of opin-
ions across a network of agents. The "spins" could symbolize
agreement (+1, often represented by blue) or disagreement
(-1, often represented by red) with a particular stance. The
dynamics would then involve how these opinions change over
time, influenced by their neighbors (modeled by the interac-
tion coefficients �) and an external factor (modeled by the
external field ⌘). The tendency of spins to align or oppose



Fig. 14: Agent States in 3D Mesh

each other can be influenced by the interaction coefficients �,
which represent the strength and sign of the pairwise influence
between agents. Positive � values encourage neighboring
spins to align, while negative � values encourage opposition.
The external field ⌘ can represent external media influence or
societal pressure that biases the agents’ spins in a certain di-
rection. In the context of opinion dynamics, an "error" could
represent an agent holding a dissenting opinion in a local
consensus. The simulation allows for spontaneous "errors"
where an agent’s spin (opinion) flips, which can represent
a change of opinion due to personal reflection or external
influences.

Tendency for Bit-flips

A bit-flip in this model is a change in the state of an agent’s
spin. This could be analogous to an individual changing their
opinion from agree to disagree or vice versa. The model
as currently constructed allows for random bit-flips, but in
a more sophisticated model, this could be made dependent
on the energy difference (�⇢) induced by the flip, with less
likely flips occurring when �⇢ is positive and more likely
when �⇢ is negative.

This kind of simulation can be particularly valuable for
studying phenomena such as social conformity, the spread of
misinformation, and the polarization of opinions. It can help
in understanding how local interactions and external pressures
contribute to the overall opinion landscape of a society or a
social network.

6.2 Transversal Gates and Gauge Fixing Strate-

gies (e-type)

Fig. 15: Transversal Gate Distribution and Gauge Fixing
Strategy Distribution(e-type)

Fig. 16: Total Bit Flip Error(e-type)

Opinion Dynamics Consideration

The visualizations can represent a society’s distribution of
opinions, where each individual (or agent) holds a binary
stance on an issue (e.g., agree/disagree, yes/no). The
"Transversal Gate Distribution" and "Gauge Fixing Strategy
Distribution" could reflect different strategies for reaching
consensus or correcting societal ’errors’ — where opinions
differ from the expected norm.The simulation could model
how opinions (or errors, in a quantum context) spread and are



corrected within a population. The heatmaps might indicate
the prevalence of certain opinions after a widespread event or
policy (transversal gate) and the subsequent attempts at social
regulation or norm enforcement (gauge fixing).

Behavior Related to Charge (e-type) Anyons

(�4)

In the context of this simulation, �4 might represent the
’energy’ or ’cost’ associated with the distribution of these
opinions or stances within the society. A more uniform
distribution (all blue or all red) could correspond to a
lower ’energy’ state, reflecting a consensus or common
opinion, while a mixed distribution indicates higher ’energy’,
reflecting societal disagreement or conflict. In terms of
quantum physics, H4F>D;314A4;0C43C>C⌘4?A4B4=24> 5 4 �
CH?40=H>=B,F⌘82⌘2>D;3148=C4A ?A4C430B4AA>AB>A34E80C8>=B 5 A><0=>A<.�>AB>280;BHBC4<B, C⌘8BC4A<2>D;3A4;0C4C>8=38E83D0;14⌘0E8>AB>A>?8=8>=BC⌘0C34E80C4 5 A><C⌘4<0 9>A8CH0=3C⌘42><<D=8CH

0
BA4B?>=B4C>BD2⌘34E80C8>=B.

Tendency of Transversal Gates

The transversal gate typically applies a corrective operation
across a system. In the simulation, this could correspond to a
societal mechanism that attempts to correct or flip the opinion
of a randomly chosen individual, aiming to reduce the overall
’error’ or disagreement.

Trend of Gauge Color Codes

Gauge color codes are typically used in quantum error cor-
rection to detect and correct errors. In this model, they might
represent an underlying belief or value system that influences
opinion formation. The tendency here would be how these
systems are upheld or changed over time, potentially as a
response to societal pressures or changes. The trend in the
gauge color codes could suggest how social norms and opin-
ions are influenced over time, with potential shifts towards or
away from a consensus.

Tendency of Gauge Fixing Strategies

A gauge fixing strategy in this context could represent the
societal norms or laws that ’fix’ the opinions or behaviors of
individuals to align with a certain standard. The distribution
reflects the effectiveness and patterns of these strategies over
the society.

Tendency for Bit Flips

Bit flips in a social model could represent individuals chang-
ing their opinions. The "Bit Flip Error Distribution" graph
shows the total number of opinion changes over time, reflect-
ing the volatility or stability of opinions within the society.

The "Transversal Gate Distribution" and

"Gauge Fixing

Strategy Distribution" heatmaps show the state of each indi-
vidual’s opinion at each simulation step, while the line graph
of "Bit Flip Error Distribution" over simulation steps provides
insight into the dynamics of how these opinions change over
time. Peaks in the graph could indicate times of high soci-
etal tension or significant events causing many individuals to
change their opinions.

6.3 Transversal Gates and Gauge Fixing Strate-

gies (m-type)

Fig. 17: Transversal Gate Distribution and Gauge Fixing
Strategy Distribution (m-type)

Fig. 18: Total Bit Flip Error(m-type)



Opinion Dynamics Consideration

In the realm of opinion dynamics, m-type entities could rep-
resent a different dimension or type of opinion compared to
e-type entities. The distribution of these opinions across
a population or network could be visualized through the
"Transversal Gate Distribution" and "Gauge Fixing Strategy
Distribution" images. These visualizations could show the
diversity of opinions and how they might be influenced by
corrective measures or strategies to achieve consensus.

Behavior Related to Flux (m-type) Anyons (�<)

In a system analogous to magnetic flux behavior, �< could
represent the ’energy’ or ’tension’ due to the distribution of
m-type entities across the lattice. A high variance in the
distribution (both black and yellow regions in the heatmap)
could indicate areas of high ’energy’, which might correspond
to conflicts or areas where opinions are highly polarized.

Tendency of Transversal Gates

Transversal gates typically apply a correcting operation across
an entire system. In the context of the simulation, they could
be seen as a broad strategy to change individual states in an
attempt to correct or align them with a certain pattern, mim-
icking the correction of errors in quantum error correction or
the alignment of societal opinions.

Trend of Gauge Color Codes

Gauge color codes in quantum computing are used to detect
and correct errors within a system. In the social dynamics
analogy, these could represent the underlying cultural or so-
cietal norms that dictate the acceptable range of opinions or
behaviors. The trend would be indicative of how societal
norms are maintained or evolve over time.

Tendency of Gauge Fixing Strategies

Gauge fixing strategies in this simulation might represent
the mechanisms by which a society enforces conformity or
manages diversity. The distribution reflects how effective
these strategies are in creating uniformity or allowing diver-
sity within the population’s opinions.

Tendency for Bit Flips

A bit flip in a social model could represent a change in in-
dividual opinion. The "Bit Flip Error Distribution" graph
indicates how often these opinion changes occur over time.
Fluctuations in the graph could reflect the societal response to
external events, indicating times of instability or widespread
changes in opinion.

The "Transversal Gate Distribution" and

"Gauge Fixing

Strategy Distribution" heatmaps depict the state of the system
at different simulation steps, possibly before and after the
application of strategies or corrective measures. The line
graph represents the total number of opinion changes (bit
flips) at each step, providing insight into the dynamics of
opinion change over time.

This type of simulation and analysis can be useful for
studying the effects of different policies or strategies on public
opinion, understanding the spread of information in social
networks, and predicting the stability of societal consensus.

6.4 Transversal Gates and Gauge Fixing Strate-

gies (Opinion Change)

Fig. 19: Transversal Gate Distribution

Fig. 20: Gauge Fixing Strategy Distribution

Fig. 21: Total Bit Flip Error



Opinion Dynamics Consideration

Opinion dynamics models study how individual opinions
evolve within a network and can be influenced by factors
such as social influence, connectivity, and personal propen-
sity. In the context of the model, the ’opinions’ may represent
the state of the nodes (whether they are in an error state or
not). The random initialization and subsequent modifications
of the states can be seen as a simplified representation of opin-
ion dynamics where each node’s state is influenced randomly
rather than by its neighbors.In this case, each node has a bi-
nary state that can flip based on random processes or through
the application of gates and strategies, analogous to how an
individual’s opinion might change due to external influences
or internal decision-making.

�4 - Charge (e-type) Anyons

�4 seems to represent a Hamiltonian component related to
e-type anyons, which are abstractions used in topological
quantum computing to represent quasiparticles that can arise
in a two-dimensional system. The behavior of these anyons
within the region could relate to how errors (represented by
these anyons) are distributed and corrected over time. The vi-
sualization suggests that errors are randomly distributed and
corrected at each step, possibly simulating the random appear-
ance of errors and their correction in a quantum system.The
first of the heatmap images shows the e-type transversal gate
distribution, and the third heatmap shows the e-type gauge
fixing strategy distribution. Both heatmaps indicate a ran-
dom distribution of the e-type gauge color codes over time.
The behavior of these e-type anyons would reflect the ran-
dom introduction of errors and their correction in a simulated
quantum system. Since the distribution appears random at
each step, it suggests that the error correction strategy does
not have a consistent or deterministic pattern in addressing
these errors.

�<- Magnetic Flux (m-type) Anyons

Similarly, �< likely corresponds to a component of the
Hamiltonian related to m-type anyons, which might repre-
sent another type of quasiparticle or error state. The behavior
within the region would also be indicative of the distribution
and correction of these types of errors. The fact that both
e-type and m-type anyons are being considered suggests that
the model could be simulating a topological quantum system
that can experience two distinct types of localized errors.The
behavior of m-type anyons, reflected in the second heatmap
for transversal gates and the middle heatmap for gauge fixing
strategy, shows a similar pattern to the e-type. The m-type
gauge codes also seem to be randomly distributed over time,
which again could suggest the stochastic nature of error intro-
duction and correction. The lack of a clear pattern could either

be intentional (simulating random environmental noise) or it
could indicate an area for improvement in the error correction
strategy.

Gauge Fixing Strategy Trends

The transversal gate distributions for e-type, m-type, and s-
type (as seen in the first image) are shown as heatmaps. The
randomness in the color variation indicates that the transver-
sal gates are applied in a non-uniform, random manner across
different simulation steps. This could suggest a model where
errors are corrected without a specific pattern, perhaps re-
flecting the unpredictability of error occurrence in quantum
systems.

Gauge fixing is a procedure to reduce the degrees of free-
dom in a gauge theory. In the simulation, the gauge fixing
strategy is applied after the transversal gates, which could
imply a two-step error correction process where errors are
first attempted to be corrected locally (transversal gates) and
then globally (gauge fixing).

Bit Flip Error Trends

The line graph showing bit flip error distribution indicates that
the total number of errors for each anyon type fluctuates over
time, with no clear trend towards reduction or stabilization.
This could imply that while the error correction methods
(transversal gates and gauge fixing strategies) are active, they
may not be optimally reducing the total number of errors.
The fluctuations could also represent the balance between
error introduction and correction.

In conclusion, the simulation appears to model a quantum
error correction scenario with stochastic error generation and
correction. The randomness in the transversal gate and gauge
fixing strategy distributions, as well as the fluctuations in
the bit flip error counts, suggest that the system is under
constant change with no stable state being reached within the
simulation steps observed. This could be representative of
a noisy quantum environment where error correction is an
ongoing challenge, and the strategies used do not converge
to a fault-tolerant state but rather attempt to manage errors as
they occur.
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